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Abstract

The random nature of unstructured P2P overlays im-
bues them with enhanced self-* properties. Most of the
algorithms which make searching in unstructured P2P
systems scalable, such as dynamic querying and 1-hop
replication, rely on the random nature of the overlay to
function efficiently. However, they do not take into account
the structure of the underlying physical communications
network, which is anything but random. Efforts to provide
topology awareness to unstructured P2P systems often
result to clustered graphs which affect negatively algo-
rithms that rely on random overlays. In this paper, we
propose ITA, an algorithm which creates a random overlay
of randomly connected neighborhoods providing topology
awareness to P2P systems, while at the same time has no
negative effect on the self-* properties or the operation
of the other P2P algorithms. Using extensive simulations,
we demonstrate that ITA reduces communication latency
by as much as 50% which is important for P2P users.
Furthermore, it reduces by 20% the number of IP network
messages which is critical for ISPs carrying the burden of
transporting P2P traffic. Finally, ITA is shown to reduce
significantly the load imposed on the routers of the IP
network layer.

Index Terms—Peer-to-peer, unstructured overlay network,
topology awareness, self-* properties, IP network layer, com-
munication latency.

I. Introduction

Over the last few years P2P systems have experienced
an ever expanding use, from file-sharing to content delivery
systems to Grid systems. All those applications have a

1 Paraskevi Fragopoulou is with the Department of Applied Informatics
and Multimedia, Technological Educational Institute of Crete, Greece.

common denominator, which is global-scale deployment.
Given the magnitude of deployment of today’s P2P sys-
tems, it is certain that they cannot afford to be oblivious
to the structure of the underlying physical communications
network.

Most P2P systems today are based on forming an
overlay network atop the underlying IP network layer. The
structure and formation procedure of this overlay network
is one of the most critical design choices for any P2P
system and usually the main goal that drives its formation
is the facilitation of the search mechanism. This means that
the search algorithm of a P2P system is tightly coupled
with the structure of the overlay. This is more evident in
the case of structured P2P systems, where the structure of
the overlay network is such as to allow for a binary-tree
like search to be performed, which amounts to a O(logN)
search cost in messages.

Unstructured P2P systems do not impose in principle a
structure on the overlay, thus most of them form a random
graph. This means that each peer selects its neighbors (the
peers it connects to) randomly, among all available peers,
without any regard to the IP distance. This leads to lack
of any correlation between the distance of two peers on
the IP layer and on the P2P overlay. The random nature of
the graph is essential for the efficient operation of many
mechanisms used in unstructured P2P systems today, such
as 1-hop replication [22] and dynamic querying [3].

From the above, it is evident that each P2P system
has its own agenda on the construction of its overlay.
This is the reason most P2P systems in use today fail to
take into any consideration the structure of the underlying
network, the Internet. The result is a misuse of the IP layer
from most of the P2P systems, with adverse impact on
their own operation, as well as the operation of the other
applications sharing the same medium. Some proposals,
which we will present in the following sections, have
already been made to rectify this. The main goal of these
proposals is to provide a better mapping between the P2P
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overlay and the underlying IP network. However, we argue
that this approach may affect some of the fundamental
characteristics of P2P systems.

The obliviousness of P2P systems to the underlying
network has two main drawbacks. The first is that the
average latency between any two neighbors on the P2P
overlay is increased since each peer does not actively
try to connect to peers which are close-by on the IP
layer. The second and most important drawback is that
each P2P overlay connection contains a large number of
routers. This means that each message may travel around
the world many times, passing through many routers before
it reaches its destination. Figure 1 illustrates such a simple
scenario, where a message from peer A to peer C crosses
the Atlantic twice before it reaches peer C on the same
continent as peer A. Such an inefficient routing, is one of
the main reasons behind the observed domination of P2P
traffic in the Internet [24], [25]. An obvious solution to
this problem is to make each peer connect to those peers
which are closest to itself, in terms of latency. However
this would create an overlay with high degree of clustering
having a negative impact on the mechanisms employed in
unstructured P2P networks.

In this paper, we propose ITA, an algorithm for Innocu-
ous Topology Aware construction, which injects topology
awareness to unstructured P2P overlays, while at the same
time takes into consideration the impact the proposed
changes will have on the rest of the mechanisms employed
in unstructured P2P systems. It is able to do so by building
a random graph of random graphs, therefore preserving
the random nature of the overlay, while at the same time
allowing for the existence of “neighborhoods”, allowing
peers to randomly connect to close-by peers. We use
a diverse set of metrics to experimentally evaluate out
proposal and to give a complete view of its impact in
the system’s operation. The results we obtain include a
50% reduction in search latency, a 20% reduction in the
number of IP messages and a significant reduction on the
load of the IP network routers. ITA is shown to have no
negative impact whatsoever on the 1-hop replication and
the dynamic querying mechanisms.

The remaining of the paper is organized as follows: In
Section 2 prior work related to the problem is reviewed.
Subsequently, in Section 3 some background knowledge
necessary to the understanding of the remaining material is
provided. The main result of this paper, the construction of
the ITA algorithm and its accompanied searching method,
is presented in Section 4 along with some analysis and dis-
cussion. Extensive experimental results are demonstrated
in Section 5 and, finally, we conclude in Section 6.

Fig. 1: Illustration of inefficient routing in today’s unstruc-
tured P2P systems

II. Related Work

One of the main limitation for the scalability of un-
structured P2P systems is the large number of messages
generated by their flooding mechanism. For this reason,
much of the research carried out in the field today aims
at reducing those messages [20], [27], [12], [8]. However,
the vast majority of the work is concerned with the overlay
messages, even though a single overlay message usually
translates to several IP messages. This abstraction has been
shown to be problematic for the network layer.

Over the last few years, some work has been carried out
aiming to address this problem. In the case of structured
systems, the possibilities are limited since there are specific
requirements for the neighbor selection of each peer. Due
to the rigid structure of those systems, one has less freedom
on how to rewire the connections in the system to allow
for greater topology awareness. In [9] the authors propose
the selection of the closest neighbor whenever there is
more than one choices. This approach can be applied in
systems like Pastry [23], Kademlia [19], and Tapestry [29].
However, in systems like Chord [28] and CAN [21], each
neighbor is uniquely defined.

Our work focuses on unstructured systems which offer
more versatility. Topology awareness algorithms that have
been proposed for unstructured systems, such as [5], [14],
focus on how to construct a topologically aware overlay
but do not describe how to efficiently search this overlay.
In addition, the constructed graph has a high clustering
degree, which means that mechanisms employed in un-
structured P2P systems and which depend on a random
overlay to function properly, will experience a high loss
in efficiency. In particular in [5], the overlay graph is
formed by having each peer connect to those other peers
with which it has the longest common domain suffix. In
addition, some random links are inserted to avoid the
partitioning of the network. The graph that is formed is
comprised of neighborhoods of diverse sizes, since not all
domains have the same peer population. This makes the
choice for a universal value for the TTL difficult. The
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same holds for the systems described in [4], [6], where
the neighborhoods are defined by the IP addresses instead
of the domain names. In flood-based P2P systems, the
TTL value is critical for the efficient operation of the
system. A TTL value which is appropriate for some of
the neighborhoods can be inefficient for others, leading
to either failure to locate content, or to the generation of
a large number of duplicate messages. ITA constructs
randomly connected “neighborhoods” of roughly equal
size, which means that one TTL value “fits all”.

In [11], the authors use synthetic coordinates to create
neighborhoods of close-by, in terms of latency, peers. Their
simulations were performed on a network which comprised
92 IP layer nodes and included 42 overlay peers. This
network size makes it difficult to reveal the real benefit of
the algorithm. In addition, in experiments of this scale it
would be difficult to notice the effect of high clustering in
the flooding mechanisms.

In [14], the overlay is constructed using a method
inspired by the k-median algorithm, in order to construct
again neighborhoods and reduce the average latency be-
tween peers in the overlay. This theoretical algorithm
appears to be computationally expensive since it requires
knowledge of the entire overlay topology to function.
Furthermore, as the overlay changes from the departure
and arrival of peers, the algorithm needs to continuously
adjust the overlay in order to maintain its efficiency.
The work described in [26] is a follow-up of [14]. The
algorithm still needs to be active all the time to preserve
the structure of the network. In addition, the main focus of
this work is on the construction of an efficient graph for
general use, as is the case for the work described in [15],
[16]. We focus on how to efficiently construct an overlay
with low clustering that maintains the beneficial properties
of random graphs and leads to efficient information lookup.
Finally, an interesting work is presented in [17]. The
method described limits the reorganization of the network
to add topology awareness in a 2-hop neighborhood for
each peer. ITA constructs the entire overlay from the
beginning to allow for the desired topology-awareness.

As we mentioned, previous work does not take into
consideration the impact of the proposed methods on the
widely deployed mechanisms such as 1-hop replication and
dynamic querying. ITA functions without affecting them
in any way, which means that there is no trade-off. In
addition, the aforemention works require that each peer
continuously execute the topology-awareness algorithm to
adopt to changes in the P2P overlay. ITA only requires
a simple and quick bootstrapping process, after which it
can continue to function unaffected by the churn of the
system. Furthermore, most of the aforementioned proposed
methods try to connect each peer to its closest possible
neighbors. This requires each peer to continuously probe

the network in case some new, closest peer has joined,
imposing additional traffic on the network and burden on
each peer. Finally, most of the existing literature focuses on
reducing the IP latency of queries. We evaluate our work
using a variety of metrics including IP latency reduction,
IP message reduction, and the traffic load placed on each
router in the underling IP network. The latter we believe
to be a crucial, often neglected, metric in current widely
deployed P2P systems.

III. Background

In this section we provide some information on the
technology of unstructured P2P systems today, which is
essential for the understanding of the remaining of the
paper. In particular, we present those mechanisms that
would be most adversely affected by any increase in
the clustering of the P2P overlay graph, since they were
designed to be deployed on random graphs.

One technique widely used in unstructured P2P systems
today, is 1-hop replication [22]. One-hop replication dic-
tates that each peer should send to all of its immediate
neighbors an index of its content (usually in the form
of a Bloom filter). Using this index during the last hop
propagation of a query at the Ultrapeer level, the request
is forwarded exclusively to those last hop Ultrapeers that
contain the requested file. One-hop replication reduces
the number of messages generated during the last hop of
flooding. However, as shown below, the traffic generated
during that last hop constitutes the overwhelming majority
of the traffic generated during the entire flooding.

Below we show the efficiency of flooding using 1-hop
replication. We further demonstrate that the efficiency of
1-hop replication relies on a random graph. In Proposition
2 we prove that in order to flood an entire, randomly
constructed, network that employs 1-hop replication, one
need only reach 3/(d − 1) of the peers during all hops
but the last. Before we proceed to Proposition 2 we need
to prove a preliminary result (Proposition 1). In what
follows, we assume full network coverage is achieved
when flooding has reached 95% of the graph nodes.

Proposition 1: In order to reach 95% of a graph’s
nodes using naı̈ve flooding we need a minimum of 3 ∗N
messages.

Proof: Let x be the number of messages generated
during flooding. We want to compute x so that the flood
reaches at least 95% of the graph nodes. This means that
at most 5% of the peers will not receive any of the x
messages. In a random graph, each time a message is sent,
each peer has the same probability 1/N of being on the
receiving side of that message. The probability that a peer
receives neither one of x messages is (1−1/N)x ≈ e−x/N .
In order to achieve 95% coverage, this probability should
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Fig. 2: Percentage of duplicate messages over all mes-
sages generated during each distinct flood hop
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Fig. 3: Coverage of the graph for given number of
messages

be less than 0.05:

e−x/N ≤ 0.05 ⇒ ln(e−x/N ) ≤ ln(0.05) ⇒

−x/N ≤ −3 ⇒ x ≥ 3 ∗N

Thus, we need at least 3 ∗ N messages using flooding to
reach 95% of the graph nodes.

Proposition 2: In order to reach 95% of a graph’s
nodes that employs 1-hop replication using flooding, we
need to reach 3/(d − 1) of the graph nodes in all hops
except the last one.

Proof: Let n be a function that returns the number of
new peers contacted at a given hop. Let f be a function
that returns the number of messages generated on a single,
given hop. Let d be the average degree of the graph.
Initially f(0) = 0 and n(0) = 1. At each hop i it holds:

f(i) = n(i− 1) ∗ (d− 1) (1)

because each one of the nodes that received a message for
the first time at hop i − 1, will send it, at hop i, to all
of their neighbors except the one it received the message
from, thus to d− 1 neighbors.
Let H be the hop before the last one. The total number of
peers contacted up to hop H is

∑H
i=0 n(i). Let r be the

ratio of peers contacted up to hop H , then:

H∑

i=0

n(i) = r ∗N (2)

We want to compute ratio r so that after hop H + 1, we
will have reached at least 95% of the graph nodes. We
have proven in Proposition 1 that we need a minimum of
3 ∗ N messages to reach 95% of a graph’s nodes using
naive flooding. So

H+1∑

i=1

f(i) ≥ 3 ∗N (3)

If we replace function f from (1) in the above formula:
H+1∑

i=1

f(i) =
H+1∑

i=1

[n(i− 1) ∗ (d− 1)] =

= (d− 1)
H+1∑

i=1

n(i− 1) = (d− 1)
H∑

i=0

n(i)

This combined with (2) and (3) gives:

(d− 1) ∗ r ∗N ≥ 3 ∗N ⇒ r ≥ 3
d− 1

Thus the required result.
According to Proposition 2, in order to flood an entire

randomly constructed network that employs 1-hop replica-
tion, one need only reach 3/(d− 1) of the peers. The last
hop peers are reached using 1-hop replication. In todays
Gnutella, where the average degree is 30, one would need
to reach 10% of the peers and then use 1-hop replication to
forward the query to the appropriate last hop peers, in order
to reach the entire network. This translates to a big saving
in the number of messages. However, this result does not
hold for clustered graphs, since the proof is based on the
preliminary result in Proposition 1 which is only valid if
each peer has equal probability to receive any message.
This is the case only in graphs whose edges are constructed
randomly. We have thus demonstrated that the efficiency
of 1-hop replication heavily relies on a random overlay.

The second algorithms whose performance heavily re-
lies on random overlays is dynamic querying. Dynamic
querying [3] tries to imbue flooding with a finer granular-
ity, regarding its extent of reach. The main idea is not
to flood all of one peer’s neighbors at the same time.
Instead, the peer that initiates the flood sends the query
message to only one of its neighbors. That neighbor, in
turn, floods all its own neighbors with a small TTL. If
that flood does not generate enough results, another flood
with a higher TTL is sent to the next neighbor of the
initiating peer and so forth, until the desired number of
results is obtained, or we run out of neighbors. Again,
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5
for this scheme to be efficient, it is required that when
forwarding a flood message, the receiving peer has a low
probability of having received that same message before,
which only is the case in random graphs and not graphs
with high degree of clustering. Otherwise, if all of the
initiator’s peers shared many neighbors, the flood would
reach the same peers again and again.

On a clustered graph, the number of new peers con-
tacted on each flood hop is greatly reduced. The reason
for this is the distribution of duplicate messages generated
on each hop of a flood. Given a flood with a boundless
TTL (which will reach all the peers), a large number of the
messages generated will be redundant, duplicate messages
due to the circles in the graph structure, which will result
in each peer receiving the flood message more than once.
On a random graph, the majority of these messages will
be generated during the last hops of the flood (after most
of the graph has already been covered by the flood). On a
clustered graph, on the other hand, the duplicate messages
are distributed, more or less, evenly among all the hops of
the flood (except the first of course). This shows why on
a random graph, in the first hops, all flood messages will
reach new peers, leading to a larger coverage of the graph
using the same number of messages, than in a clustered
graph. The above are illustrated in Figure 2, where one
can see the difference in duplicate messages distribution
between a clustered (small-world) and a random graph.
In Figure 3 one can see that with the same number of
messages, a larger portion of the random graph is reached.
In these figures, we constructed a graph of 80000 nodes
with an average degree of 13. The behavior illustrated in
those two figures however is the same for any number
of nodes or average degree and is only dependant on the
degree of clustering of the graph.

Both the aforementioned mechanisms are critical for the
scalability of unstructured P2P systems and for this reason
we believe that any modifications and new proposals for
those systems have to prove they only positively affect
their behavior or do not affect it at all.

IV. ITA Design

In this section we shall describe the parts that comprise
the design of our algorithm. We then present the advan-
tages which arise from the design.

A. Overlay construction

The ultimate objective of the bootstrapping algorithm
is to create for each peer a number of randomly selected
short connections to closer (but not the closest) peers and
the same number of randomly selected long connections to
distant peers. The methodology used to select the “short”

and “long” connections is based on parameter α ≤ 1 which
constitutes the basic parameter of the algorithm. Let N be
the total number of peers in the networks. Each peer A that
bootstraps to the network selects its “short” connections
randomly among its α ∗ N closer (latency wise) peers,
while it selects its “long” connections randomly among
the (1− α) ∗N more distant (latency wise) peers.

To implement this method, each peers A calculates a
threshold value x directly related to parameter α. Given
the value of parameter α ≤ 1, each peer A that bootstraps
to the network approximates threshold x so that its latency
to α∗N other peers is below threshold x while its latency
to (1−α)∗N other peers is above x. If C is the set of all
peers P for which it holds that latency(A,P ) ≤ x, peer
A calculates its threshold value x so that |C| = α ∗N .

Since the latency from each peer to all other peers
cannot be measured, the calculation of the threshold value
x is approximated by having each peer A make latency
measurements to 30/α randomly selected peers. It is
proven in Proposition 3 below, that this number of latency
samples leads to a good threshold approximation.

Proposition 3: Each peer needs 30/α latency mea-
surements to other peers in order to approximate threshold
x such that |C| = α ∗ N for given α ≤ 1, with accuracy
95%.

Proof: A peer belongs to C with probability α. To
obtain a good threshold approximation, we will select a
peer in C that is among the 0.1*—C— peers whose latency
is closer to the threshold value. The number of peers which
are closer to the threshold according to our choice is 0.1 ∗
α ∗ |C| = α′ ∗ |C|. The probability that a single randomly
selected peer belongs to that space is α′ = 0.1 ∗ α. The
probability that neither one of n randomly selected peers
belong to that space is (1−α′)n ' e−α′∗n. To approximate
the threshold with accuracy 95% we need,

e−α′∗n <= 0.05 ⇒ ln(−α′ ∗ n) ≤ ln(0.05) ⇒

−α′ ∗ n ≤ −3 ⇒ n ≥ 3/α′ ⇒ n ≥ 30/α

So each peer needs 30/α latency measurement samples to
approximate the threshold.

During the sampling measurements, peer A can connect
randomly to begin its operation without having to wait for
the end of the sampling procedure.

The Vivaldi coordinate system [10] can be used for
the bootstrapping. Vivaldi is a P2P network coordinate
system which can assign a 3-dimensional coordinate to
a host. The Euclidian distance between two Vivaldi points
(corresponding to two hosts) is an approximation of their
latency. Thus, each message broadcast by any peer can
contain its Vivaldi coordinates. A bootstrapping peer A can
monitor incoming traffic, collect 30/α Vivaldi coordinates
and thus compute the threshold value x.
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Fig. 7: Distribution of direct latencies between all pairs of
peers

It must be noted that, unless the structure and capacity
of the network changes significantly, the same threshold
value can be used multiple times, and does not need to be
recalculated each time the peer joins the overlay. After a
threshold value has been obtained, peer A connects to 2/α
neighbors in the following fashion:
• It connects randomly to 1/α peers, all of which

belong to C. These links are called short links.
• It also connects randomly to 1/α other peers, which

do not belong to C. These are called long links.
To illustrate, let’s assume that parameter α is set to
0.1. This means that C contains approximately 0.1 ∗ N
nodes. Each peer A will create 1/α = 10 short links
randomly selected among the 10% closer to A peers, and
the same number of long links randomly selected from the
90% further peers. The number of sample measurements
required for the calculation of the threshold, in this case, is
30/α = 300. Given that a Gnutella peer receives 50 query
messages per second on average [18], the latencies to 300
random peers can be collected in seconds.

B. Search algorithm

Search is conducted in the following fashion:
• The Initiator peer floods its long links with TTL = 1.

• Each of the peers that receives the flood over a long
link (and the Initiator peer) initiates a flood with a
given TTL = ttl (system parameter) over their short
links only.

The long link peers which initiate the localized floods (over
their short links) use 1-hop replication as well as dynamic
querying the same fashion it is used in Gnutella today.
Since short links are randomly connected the efficiency of
dynamic querying and 1-hop replication is guaranteed.

C. Analysis

The constructed graph, in conjunction with the de-
scribed search method, has the following advantages:
• Both the long link-based, system-wide graph and the

short link-based, local graphs are random, since each
peer selects peers (outside and inside C respectively)
randomly for neighbors. This enables both 1-hop
replication and dynamic querying to operate as if they
were executed on a random graph.

• Since any peer in C can serve as short link (instead
of opting for the closest ones), the bootstrapping
procedure is very fast and lightweight. The same
holds for the long links. This means that each peer
need only set up its neighbors once, regardless of ar-
rivals and departures elsewhere in the overlay, making
ITA as little affected by churn as Gnutella (i.e. a
peer only needs to act when a neighbor leaves the
system by simply replacing it with another one, as
in Gnutella). This simplicity helps preserve almost
intact the unstructured nature of the overlay. If we
tried to connect to the closest possible peers, this
would require each peer to be on the constant lookout
for some closer peer connecting to the network.
In addition, the threshold value is only affected by
changes in the structure of the underlying IP network
(which are not very frequent) and not by changes in
the P2P overlay, which are rather frequent.

• (1 − α) ∗ N peers (furthest away on the IP layer)
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Fig. 8: Flood reach for given number
of messages. Average degree = 10
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Fig. 10: Flood reach for given number
of messages. Average degree = 30

are excluded from becoming short links, which means
the proposed system is quite aware of the underlying
physical network topology. Increased awareness in
the form of a very small α (i.e. trying to connect
to the closest possible peers) would help us gain
little but lose much, since the small size of the local
neighborhoods would lead to high clustering.

• All local clusters/neighbourhoods have the same size,
enabling the use of a single, system-wide TTL = ttl
for flooding the short links.

We have conducted experiments using three distinct
values for α, namely 0.1, 0.05 and 0.033. These values
correspond to a number of 10, 20 and 30 long and the
same number of short links. The above discussion justifies
the reason for not using smaller values. Values in this range
are sufficient for excluding most of the peers from the local
“neigborhood” set C of each peer, while being at the same
time large enough to allow large enough neighborhoods
for quick and simple bootstrapping procedure (i.e. being
able to quickly locate short-link neighbors). The value of
α also dictates the number of the long links, since there
are N/|C| = 1/α “neighborhoods”. In addition, the use
of 1/α long links is due to the fact that the use of long
links should only take place on the first hop, to avoid extra
delays in the flood process. Finally, it is important to note
that there is no 1-hop replication between peers connected
by long links, so there is no index information exchange.
Thus, the maintenance overhead for the additional 1/α
long links very low.

V. Experimental results

In order to verify the arguments made in the previous
section, we performed several experiments comparing our
system with Gnutella, the most widely used unstructured
P2P network (approximately 2 million users) [7]. We
performed the comparison with Gnutella 0.6, which em-
ploys a 2-tier architecture [13], focusing on the Ultrapeer
layer where flooding occurs. The metrics upon which our

comparison was based were selected to capture the design
goals of ITA, namely to satisfy users by allowing them
to get the same number of search query results faster
by reducing query response time, and to satisfy ISPs by
reducing the load imposed on their routers.

The random nature of the constructed overlay is indi-
cated by the extent of the reach of a flood for given number
of messages. As shown in Figure 3, a flood on a clustered
graph will have a much smaller reach than on a random
graph, using the same number of messages. Figures 8, 9
and 10 show the similarity between the Gnutella overlay
(random graph) and the overlay constructed by ITA with
respect to flooding. The close fit of both curves on the
two graphs shows that the flood reach is the same in
both graphs using the same number of messages. This
means that ITA can provide reduced latency and reduced
router load benefits (see below) without affecting 1-hop
replication, dynamic querying, and the self-* properties on
which Gnutella-like systems depend for their performance.

Subsequently, we compare ITA and Gnutella using
three different metrics. The first metric is the latency of
the connections of the peers, which affects the duration of
a flood. We measure the average time it takes for a flood
to complete, for different TTL values. The second metric
is the number of IP messages generated during a single
flood. We measure the average number of IP messages
generated during floods of increasing TTLs. Finally, the
last metric is the standard deviation of the message load
imposed on the routers that comprise the IP layer of the
Internet. We argue that a reduction in the total number of
IP messages in the whole network is of little use if there
exist a small number of bottleneck routers whose traffic
load remains the same as before. As we mentioned above,
the key goals of the ITA algorithm is to benefit both the
P2P application and other applications sharing the same
medium, the Internet.

We simulated a network of 200,000 peers, which is a
realistic number for the size of the Ultrapeer overlay in
Gnutella according to LimeWire [2], the company that
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Fig. 11: Time required by a flood ver-
sus the percentage of nodes reached.
Average degree = 10
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Fig. 12: Time required by a flood ver-
sus the percentage of nodes reached.
Average degree = 20
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Fig. 13: Time required by a flood ver-
sus the percentage of nodes reached.
Average degree = 30

developed the most popular Gnutella client today. We
also used three average degree values for the overlay,
namely 30 (which is the average number of connections
in a Gnutella Ultrapeer today), 20 and 10. These three
numbers correspond to the number of connections per peer
in the Gnutella simulations and the number of short and
long links in the simulations of the ITA algorithm. Note
that since the long links are only used during the first
hop of flooding, whereas the short links are used during
the second and the remaining hops, the outbound degree
during any flood hop is the same both in Gnutella and
ITA, even though our algorithm uses double the number
of links.

In order to model the 200,000 by 200,000 latencies,
we obtained 250 real Vivaldi coordinates. Those 3D coor-
dinates were produced by the Vivaldi project experiments
on PlanetLab [10]. We then calculated a distribution which
best fits the values observed in those coordinates and we
generated 200,000 Vivaldi coordinates using this distribu-
tion, thus being able to model the latency between any
pair of the 200,000 peers. Figures 4, 5 and 6 show the
values of the original Vivaldi coordinates as well as the
distributions generated for each of the three Vivaldi sub-
coordinates (X, Y, Z). The close fit is an assurance that our
randomly generated coordinates closely reflect real-world
Vivaldi coordinates. Given the 200,000 x 200,000 latency
matrix we generated, Figure 7 shows the distribution of the
latency for an optimal full mesh graph where each peer has
a direct overlay connection to each other peer. The figure
shows that the average latency between any two peers is
90 time units.

A. Latency experiments

Figures 11, 12 and 13 show the time it takes to flood
the network, for a given node coverage. We can see that
for any desired coverage, the time it takes for our system
to reach that number of peers is, on average, at least half

the time for Gnutella flooding. Note that the measured time
reflects the time from the beginning of the flood until even
the last message generated by that particular flood reaches
its destination.

There are two reasons for measuring flood duration
rather than average response time for a search query.
First, a reduction by half in flood duration implies a
similar reduction in average query response time. Most
importantly however, it is common that a flood is still
active and being propagated in the network, even though no
new results are provided to the user, so minimizing flood
duration when possible is important. Given a constant rate
by which new queries enter the network, by measuring
the time it takes for a single flood to complete to the last
message, we show that ITA doubles the exit rate of floods
from the network. This means that ITA doesn’t only reduce
the number of IP messages per flood (as we will show in
the next section) but reduces also the build-up of queues
in the router buffers.

B. IP layer experiments

In this section we focus on the impact the ITA algo-
rithm has on the IP layer. In order to perform simulations
including the IP layer we obtained the latest trace of the
router-level topology of the Internet from CAIDA [1]. We
opted to use a router-level graph instead of an Autonomous
System graph for two reasons. Firstly, a router-level graph
is more detailed and will provide a better approximation of
the actual number of messages generated on the IP layer.
Secondly, many ASs contain routers even on different
continents. An AS-level graph will hide the latencies
between those routers.

In this simulation scenario, we used again 200,000
peers, each of which was randomly assigned to a router
in the router-level graph. Since the router-level trace did
not contain latencies, we approximated the latencies with
the number of IP hops between any two peers. Thus, each
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Fig. 14: IP messages generated by a
flood versus the percentage of nodes
reached. Average degree = 10

0.0+e 

5.0+e5

1.0+e6

1.5+e6

2.0+e6

2.5+e6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
r.

 o
f I

P
 m

es
sa

ge
s 

- 
(d

eg
re

e 
20

)

Coverage

Gnutella
ITA

Fig. 15: IP messages generated by a
flood versus the percentage of nodes
reached. Average degree = 20
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Fig. 16: IP messages generated by a
flood versus the percentage of nodes
reached. Average degree = 30
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Fig. 17: Standard deviation of router
traffic loads versus the percentage of
nodes reached. Average degree = 10

 300

 400

 500

 600

 700

 800

 900

1000

1100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
ta

nd
ar

d 
de

vi
at

io
n 

- 
(d

eg
re

e 
20

)

Coverage

Gnutella
ITA

Fig. 18: Standard deviation of router
traffic loads versus the percentage of
nodes reached. Average degree = 20

 300

 400

 500

 600

 700

 800

 900

1000

1100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
ta

nd
ar

d 
de

vi
at

io
n 

- 
(d

eg
re

e 
30

)

Coverage

Gnutella
ITA

Fig. 19: Standard deviation of router
traffic loads versus the percentage of
nodes reached. Average degree = 30

peer tries to form short links with those other peers whose
routers are close to its own on the IP layer. Again, we
do that by obtaining the α ∗ 100% of all routers which
are closest to our own router. Long links are again formed
randomly, as are short links in a given neighborhood. Some
measurements on the formed overlay show that the average
number of routers in a Gnutella direct link between two
peers is 6.9. In contrast, the same number for ITA’s long
links is 7 and for the short links it is 5.5. As we shall see
below, we can expect a reduction of message on the order
of 15% to 25%% (' (7 − 5.5)/7). Given the percentage
of the routers which can be reached for a single TTL
value, which is shown in Figure 20, the average values we
mentioned make a lot of sense. This figure shows the ratio
of all peers that can be reached for a given hop distance.
This shows that the vast majority of routers need to traverse
a chain of at least 3 hops before they start encountering
more than one per hop routers. This means that 4 is, more
or less, a minimum value for a short link, imposing a
lower bound on the reduction of IP messages that we can
accomplish.

After running the simulations, which included perform-
ing several floods from random peers, with several TTL
values, we obtained the following results: Figures 14,

15 and 16 illustrate the reduction in the number of IP
messages for floods of various lengths. As one can see,
the expected reduction that is observed is in the range of
15% to 25%.

Another important metric for the efficiency of any
topology-aware overlay construction algorithm is the traffic
load distribution across the routers in the system. For this
reason, we plotted the standard deviation in the traffic load
of all routers, again for floods of different sizes. Figures 17,
18 and 19 show that ITA reduces the standard deviation
approximately by 40% to 50%. Finally, we measured the
traffic load for the most heavily used router, which ITA
also cuts down by half.

VI. Conclusions

We presented ITA algorithm, a novel approach for
injecting topology awareness into unstructured Gnutella-
like P2P systems, while maintaining the self-* properties
of the overlay topologies that are highly desirable in these
systems. ITA reduces to half the time required for a search
query to achieve a particular network coverage compared
to the latest version of the widely deployed Gnutella.
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Fig. 20: Diameter (in hops) of different neighborhood sizes

Moreover, ITA reduces the number of IP messages gener-
ated during a search query flood by as much as 25%, which
is a significant reduction for ISPs who care about the load
imposed on their routers and its effect on the performance
of other applications.
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