Experiences with a Mobile Testbed

Kevin Lai, Mema Roussopoulos, Diane Tang, Xinhua Zhao, Mary Baker

Stanford University

Abstract. This paper presents results from an eight-day network packet
trace of MosquitoNet. MosquitoNet allows users of laptop computers to
switch seamlessly between a metropolitan-area wireless network and a
wired network (10 Mbit/s Ethernet) available in offices and on-campus
residences. Results include the amount of user mobility between the wired
and wireless networks, the amount of mobility within the wireless net-
work, an examination of application end-to-end delays, and an examina-
tion of overall packet loss and reordering in the wireless network.

We find that the average mobile host switches between the wired and
wireless networks 14 times during the trace and moves within the wireless
network five times. Round trip latencies in the wireless network are very
high, with a minimum of 0.2 seconds. Even higher end-to-end delays, of
up to hundreds of seconds, are due to packet loss and reordering. These
delays cause users to change their usage patterns when connected to the
wireless network. We conclude that latency is a critical problem in the
wireless network.

1 Introduction

The popularity of portable computers combined with the growth of wireless
networks and services has led to many efforts to make mobile computing an
everyday reality. To achieve this goal, designers need information about the
behavior of mobile hosts (portable computers) and the characteristics of the
networks they use. Although existing studies of the characteristics of local-area
wireless networks are helpful for investigating in-building mobile environments
[9] [19] [23], there is currently little packet-level information available about
wide-area wireless networks. This information is important if we are interested
in mobility outside of small areas such as homes and offices. Understanding wide-
area wireless network performance in terms of latencies, packet rates and packet
loss will help us design, model, simulate and optimize protocols and applications
to perform well in this environment, while information about the day-to-day
behavior of mobile hosts and their usage patterns in real systems will help us
choose which protocols and applications to tackle.

This paper presents the results from an eight-day trace of a network of mobile
hosts that incorporates a wireless system available throughout our metropolitan
area. The network, called MosquitoNet, allows users of laptop computers to stay
connected to the wireless network while moving around our area, and to switch
seamlessly between the wireless and a wired network. Switching seamlessly means

that all ongoing network applications continue working when a host’s network
connection changes.

Our results include the amount of user mobility between the wired and wireless
networks, the amount of mobility within the wireless network, a comparison
of usage patterns between the wired and wireless networks, an examination of
application end-to-end delays, and an examination of overall packet loss and
reordering in the wireless network. To summarize our findings:

— Mobility: On average, a mobile host switches between the wired and wireless
networks 14 times during the eight days (with a minimum of three times
and a maximum of 34). On average, a mobile host moves within the wireless
network five times during the eight days (with a minimum of one move and
a maximum of 14 moves). We found seven distinct locations at least one-half
mile apart in the wireless network that were visited by mobile hosts. The
widest spread locations were 70 miles apart.

— Latencies: Round trip latencies in the wireless network are high, with a
minimum of 0.2 seconds. Much higher end-to-end delays (up to hundreds of
seconds) result from packet retransmissions due to loss and reordering. High
latencies and the rate of packet loss and reordering prevent hosts from fully
utilizing the available bandwidth of the wireless network.

— Optimizations: Simply changing telnet from character mode to line mode
improves its interactive response by requiring 50% fewer round trips. Batch-
ing NFS meta-data requests can reduce them by as much as 20%, but NFS
still suffers from lack of data prefetching.

Many other wide-area wireless networks will also have high latencies relative
to local-area technologies, so we conclude that contending with latency presents
a critical challenge for making wide-area mobile data networks successful. Some
simple techniques for improving the behavior of applications sensitive to high
end-to-end delays, such as using local line editing in telnet, can vastly improve
users’ perceptions of network behavior. Additionally, it is clear that file systems
such as NFS that use a request/response (RPC) model will not survive in the
wireless environment unless they are optimized to prefetch data or combine
multiple operations into single requests (such as looking up information for a
whole directory at once).

The remainder of this paper is organized as follows. Section 2 describes the
project goals and the environment studied. Section 3 describes the tracing and
analysis tools. Section 4 describes the overall and per-application usage patterns
of hosts on the wired and wireless networks, as well as end-to-end delays, packet
loss, and packet reordering in our wireless network. Section 5 looks at some
possible optimizations for telnet and NFS in the wireless network. Section 6
describes related work, and Sect. 7 presents conclusions and some future work.

2 The System Under Study

This section describes the goals of the MosquitoNet project and the hardware
and software that make up our testbed.

2.1 Goals

The goal of the MosquitoNet project is to work towards providing “anywhere,
anytime” Internet connectivity for mobile hosts. A host should be allowed to
remain continuously connected to the Internet. If cost or battery power are
concerns, then the mobile host may disconnect as appropriate, but it should be
able to reconnect seamlessly whenever desired. If users have control over when to
disconnect, then they can choose to do so gracefully, perhaps by synchronizing
file caches or unlocking locked files.

For continuous connectivity, a mobile host must be able to switch to the best
network available in its current location. The metric for choosing the network,
if more than one network is available, could be performance, cost, available
resources in the network, security, or some combination of the above and other
features. We do not believe that a single, globally available wireless network
will provide mobile hosts with the best performance or cost. Instead, we believe
users will want the generally better performance of wired networks where they
are available. They may also choose local-area wireless networks over wide-area
wireless networks when available. While it is not yet possible for mobile hosts to
find a practical wireless network in all locations, we believe the recent growth of
wireless services is evidence that this is a direction worth pursuing.

2.2 Hardware

The MosquitoNet testbed currently consists of eight laptop computers (our mo-
bile hosts), a router, and two networks. The laptops are IBM Thinkpad 560’s,
Samsung SensLite 200’s and a Panasonic ProNote CF-11. The router is a 90MHz
Pentium. The laptops and the router all run Linux. The two networks are 10
Mbit/s Ethernet and packet radio. We picked the packet radio network for two
reasons. First, it is available throughout our metropolitan area, so it allows us to
experiment with continuous wide-area mobility. Second, it is sufficiently different
in characteristics from Ethernet to bring forth the problems and challenges that
arise for applications, protocols, and users when connectivity switches between
such extremes.

The packet radio network consists of Metricom spread-spectrum, frequency-
hopping radios [17]. These operate in the 902-928 MHz band of the unlicensed
spectrum allocated by the FCC for low-power devices. Each laptop is equipped
with one such radio connected via the serial port. We consider the Metricom
network to be one large wireless IP subnet. Radios may communicate with
each other peer-to-peer when within range, but otherwise they communicate

through Metricom’s packet-switched, geographically routed network, which for-
wards packets between “poletop” transceivers spread around our metropolitan
area. Packet forwarding within the wireless network is done at the link level and
is invisible to higher-level protocol layers.

Departmental
Network

Wireless
Subnet

route]_@ @ MH MH

Home Ethernet

Fig. 1. This figure shows the layout of the MosquitoNet testbed. The router forwards
packets between the wireless subnet, the “home” Ethernet of the mobile hosts, and
the departmental Ethernet. Mobile Hosts (MH) can connect to their home network, or
they can connect to (“visit”) the wireless subnet or other Ethernet subnets available
around the Internet. Note that the file server is on the departmental Ethernet, so all
file server traffic to the mobile hosts runs through the router.

The layout of the MosquitoNet testbed is shown in Fig. 1. The router forwards
packets between three networks: the wireless subnet, the mobile hosts’ “home”
Ethernet subnet, and the building-wide departmental Ethernet. Packets sent
by mobile hosts visiting “foreign” networks such as the wireless subnet pass
through the router (Sect. 2.3). Also, any packets from mobile hosts on their home
Ethernet will go through the router when accessing hosts or services outside that
network, such as our file server.

Although the radios are sold as Hayes AT modem emulators, we have written
a device driver in the Linux operating system that uses their lower-level packet
switching interface. This allows the one radio on our router to communicate with
multiple client radios. Otherwise, we would need to run a SLIP or PPP service
and attach a bank of radio modems to our router to support its point-to-point
connections with multiple laptop clients. The router would require one radio per
concurrently active client.

Compared to local-area networks, wide-area packet radio networks generally
have lower bandwidth and higher latencies for the same level of power. Metricom
radios are no exception. Their air transmission speed is 100 Kbits per second. We

run our serial ports at 115,200 bits per second to allow for the full bandwidth of
the radios. The radios are half-duplex, which means that data traveling through
an intermediate radio has its bandwidth cut to half the air transmission speed.
Per-packet latencies are very high, with a minimum round trip time of 200ms.

The Metricom radios have one additional characteristic that is not common
to all packet radio networks: they do not support broadcast. A Metricom radio
can only send a packet to one other radio at a time. To do so, the radios must
tune their frequency hopping sequence to match each other. To handle broadcast
protocols such as ARP, we currently establish one well-known radio hardware
address as the address of an ARP server [1]. Hosts periodically let this server
know their hardware-to-IP address mappings, and hosts can query this server
for other hosts’ mappings.

2.3 Software

To support mobility, it must be possible to switch seamlessly between networks,
i.e., without disrupting ongoing network connections. The MosquitoNet proto-
type uses a mobile IP protocol [22] to achieve this. With mobile IP, connection-
oriented protocols such as TCP can continue to use the “home” IP address of
the mobile host, even if it switches to a network interface with a different IP
address. Our mobile IP protocol supports the use of “foreign agents” if they
are found in the networks to which a mobile host connects, but we prefer the
extra flexibility that is provided when a mobile host acquires its own “care-of”
IP address in the networks it visits [2].

Mobile IP uses encapsulation of network packets, and the size of the extra
header reduces the maximum transmission unit (MTU) available when a mobile
host is connected to a “foreign” network (any network, including the wireless,
that is not its home Ethernet subnet). The radios have a small MTU to begin
with (1024 bytes), which is further reduced to 1004 bytes with encapsulation.

3 Data Collection

This section describes how we gathered and analyzed our network traces. To gain
a general picture of how mobile hosts are used, and to gather data to compare
wired and wireless usage, we set aside eight days (from 4:00am one Saturday
morning until 4:00am on Sunday morning) during which our research group
used only our laptops as display and input devices.

We record two types of information for our traces: a tcpdump record of all
packets sent over the network interfaces, and a record of the radio network
status. We use tcpdump to trace IP and ARP activity on both the radio and
Ethernet interfaces of each laptop, as well as on the radio and home Ethernet
interfaces of our router. The radio status information includes the list of visible
poletops and their signal strengths. We use this information to determine the
physical location of the mobile host within the wireless network.

4 Users, Latencies and Packet Loss

We received feedback about the usability of the wireless network from all of our
users. The overwhelming consensus is that high end-to-end delays are the biggest
problem. Even typing a single character in telnet or doing a directory listing in
NFS can incur a frustrating delay. Users report that X11 and NFS are unusable.
They also report that telnet can be painful, but they use it anyway, since there
are no better alternatives. However, all users reported web browsing (HT'TP) to
be acceptable on the wireless network. We believe this is the case for two reasons.
User expectation allows for longer delay of operations while web browsing, since
this can be slow even on wired networks when accessing sites over the Internet.
Also, many web browsing operations do a more satisfying amount of work per
user request than do more interactive applications such as telnet, which incurs
a round trip delay for a single character echo.

In the rest of this section, we examinine host mobility and telnet and NFS
behavior. We present evidence that high end-to-end delays cause users to change
their behavior. These delays are due to the high per-packet round trip time of
the wireless network and to packet loss and reordering in the network.

4.1 Host Mobility

We investigate the mobility of hosts in these networks. We are interested in
answering questions such as whether users take advantage of the wireless network
when the wired network is not available, how often they switch between the wired
and wireless networks, and how much they move around geographically within
the wireless network.

The first data column of Table 1 shows the number of times each host switches
between the wired and wireless networks over the eight days. A host switches
to the wired network when its user inserts an Ethernet PCMCIA card that is
connected to the network. The movement between networks varies significantly
across hosts, with the average number of switches being 14, the minimum three
and the maximum 34. The host that switched networks 34 times also had the
most traffic overall. Since users often leave the radios on even when they are
using the Ethernet, we do not count the wireless network as being active if the
Ethernet interface is active as well.

The second data column of Table 1 shows that users take advantage of the
wireless network at many locations. The table presents the number of times a
host uses the wireless network, moves by at least a half-mile, and then uses the
wireless network in the new location. The average number of moves is five, with
a minimum of one and a maximum of 14. There are seven distinct locations
represented in this data. Known visited locations include the Computer Science
department, the student campus residence area, the home of a faculty member,
a cafe on the south side of Palo Alto, Fremont, San Francisco, and the beach in
Santa Cruz. San Francisco and Santa Cruz are about seventy miles apart.

Table 1. This table shows the number of times a given laptop switches between the
wired and wireless networks and the number of times it changes its physical location
within the wireless network. Note that this is not a count of the number of user sessions,
as these may extend across network switches.

Host Name ant|bee|butterfly|dragonfly |junebug|midge|termite|weevil
Num. of Network Switches|11 (8 |12 34 16 3 13 18
Num. of Moves 2 |5 |5 5 8 3 1 14

Unfortunately, using poletop information alone, we are not able to detect move-
ment within a one-half mile radius. For instance, we are unable to distinguish
between a laptop user using his laptop in his office and at a nearby library. Thus,
this data represents a lower bound on the amount of mobility while using the
wireless network.

4.2 End-to-End Delays in the Wireless Network

In this section, we look at end-to-end delays experienced in the wireless network
by telnet (over TCP) and NFS (over UDP), two of the applications users reported
as being slow. We find that the high delays have two causes. The first cause is the
high minimum round trip latency of the wireless network. The second cause is a
high level of packet retransmissions, due to loss and reordering in the network.

We calculate the end-to-end delays for telnet and NFS in a manner that reflects
what the users actually experience with these applications. For telnet, the delay
is the difference between when data is sent and when the first acknowledgment
for that data is received. For NFS, the delay is the difference between when the
first packet for an NFS request is sent and when the first reply is received.

Figure 2 shows the distribution of round trip times seen for telnet and NFS
traffic. These results show delays in the wireless network ranging from 0.2 seconds
to several hundred seconds. Note that even the minimum latency is noticeable to
users, since previous reports show that users begin to find interactive response
time slow when it exceeds 100 to 200ms [12]. The median delays are painful,
but not hopeless: the telnet median is 0.97 seconds and the NFS median is 0.6
seconds. Sixty percent of telnet delays are 1.3 seconds or less, and sixty percent
of NFS delays are 0.7 seconds or less. However, the high end of the scale is clearly
intolerable.

From the figure, we see that telnet and NFS delays differ in distribution. This
is because TCP and NFS retransmission strategies and parameters differ. NFS
uses a fixed exponential backoff starting at 0.7 seconds. However, TCP in general
waits longer than NFS to retransmit, and so its overall delays will be larger. To
set its retransmission timer, TCP uses an adjustable mechanism based on its
estimate of the average round trip time and the average deviation of round trip

100

10 4

0.1 4

0.01 4

Percentage of Packets (log scale)

0.001 + ‘

0.0001

0.1 1 10 100
Round Trip Time in seconds (log scale)

100

10 1

0.1+

Percentage of Packets (log scale)

0.01 4 ‘

0.001 + ‘

0.0001

0.1 1 10 100
Response Time in Seconds (log scale)

Fig. 2. This figure shows the percentage of telnet packets (top) and NFS request pack-
ets (bottom) versus response time for the wireless network.

times [13]. For TCP’s retransmission timeout to be as small as NFS’s, it would
have to calculate the deviation in round trip times as being less than 125ms.
However, even under ideal conditions, TCP’s average estimate of the deviation
is 225ms. (This result was measured by pinging packets peer-to-peer between
nearby radios on two otherwise inactive hosts. There was an average round
trip time of 335ms over the 1800 samples.) TCP’s adjustable mechanism also
causes the smoother distribution of telnet delays, while NFS shows two peaks
(of about three percent) between one and ten seconds, which correspond to its
retransmission timeouts.

Although NFS delays are generally shorter than telnet delays, we find that
users are more frustrated with NFS than telnet. We believe this is because a
user can see what progress telnet is making, even if it is slow. In contrast, when
NFS is slow, users cannot see what is actually happening.

The very long delays of telnet and NFS are due to packet retransmissions. Figure
3 shows the number of telnet and NFS requests that undergo a given number
of retransmissions. In both cases, 80% or more of the requests are transmitted
only once (no retransmissions). One NFS request is retransmitted 26 times!

The reasons for these retransmissions are packet loss and a small amount of
reordering. Table 2 summarizes these results. The data is divided into packets
sent from the router to the mobile hosts and packets sent from the mobile hosts
to the router. For transmissions from the mobile hosts to the router, we see a
25.6% packet loss rate. This is clearly high enough to cause severe performance
degradation in the network.

100 100

10 n

Percentage of Packets (log scale)
-

Percentage of Packets (log scale)
-

0.1 0.1+

il il T

5 0 5 10 15 20 25 30 35 -5 0 5 10 15 20 25 30 35
Number of Retransmissions Number of Retransmissions

Fig. 3. This figure shows the percentage of telnet packets (left) and NFS request pack-
ets (right) that undergo a given number of retransmissions.

It is interesting to note that packet loss is much lower in the reverse direction,
from the router back to the mobile hosts (3.6%). This is because a mobile host
will retransmit requests until network conditions are good enough (the mobile
host is within range of a poletop, or a temporary condition of network inter-
ference or congestion has eased). When conditions are good, the mobile host’s
packets will get through to the router. Because the responses to these packets
follow quickly, they will usually experience the same good conditions and will
successfully reach the mobile host on the first try.

Table 2 also shows packets arriving out of order. One of the reasons for this is
that packets can take multiple routes from a source to a destination in our radio
network. Since a Metricom radio is usually in range of several poletops through
which it could send packets, packets sent later through a faster route will arrive
before packets sent earlier.

Table 2. This table summarizes the characteristics of the wireless network. We classify
packets into two categories: packets sent from the mobile hosts to the router and packets
sent from the router to the mobile hosts. The numbers in parentheses give the actual
number of packets involved.

Network Characteristic Mobile Hosts to Router(Router to Mobile Hosts
Packets lost 25.6% (13,232) 3.6% (2,143)

Packets received in order 72.3% (37,380) 91.3% (53,832)

Packets received out of order {2.1% (1,103) 5.1% (3,059)

Average out-of-order distance|3.04 3.9

We are able to calculate packet loss and reordering by matching packet “sig-
natures” on the hosts and the router. The packet signature is a 32 bit CRC.
A packet sent by a host is considered lost if its signature does not appear in
the router’s trace, and vice versa. Packet A is considered to be received out of
order if it arrives at the destination after some packet B that was sent later. The
out-of-order “distance” of a packet A is the number of packets sent after it but
received before it.

This packet reordering can contribute to retransmissions in protocols, such as
TCP, that are sensitive to it. TCP normally accounts for minimal out-of-order
delivery of packets, but treats packets as lost if they are delivered at an out-
of-order distance of three or more. Each out-of-order packet causes a duplicate
ACK to be sent, and three duplicate ACKs cause the sender to perform a fast
retransmit [26]. Unfortunately, the average out-of-order distance in MosquitoNet
is greater than three, so some of these packets are treated as lost and will thus
contribute to the total number of retransmissions.

5 Application Optimizations for the Wireless Network

In this section, we consider some optimizations for telnet and NFS over the wire-
less network. Since we are unable to reduce the latency of the wireless network,
we look for ways to avoid and hide end-to-end delays. We can avoid delays in tel-
net by batching together as many characters as possible into a packet. For NFS,
we can hide delays by prefetching data and avoid delays by batching together
lookups of files in one directory into a single request.

Telnet handles long end-to-end delays poorly because users must suffer the
round trip time for every character they type. In addition, placing only one
character in a packet is inefficient use of the network and router. With Nagle’s
algorithm, which sometimes batches together characters in interactive traffic,
this problem would not be as severe [18]. However, telnet applications sometimes
turn off this algorithm because it increases the end-to-end delay for terminal
keystrokes that generate multiple characters [25]. Our telnet traffic does not use
Nagle’s algorithm.

One possible optimization is to use “line mode telnet” [5]. This allows an
entire line to be typed and possibly edited before a packet is sent. For a line 10
characters long, line mode telnet would use 2 packets sent and received, while
regular telnet would use 22 packets sent and received. More importantly, the
user would only suffer the round trip delay once instead of 11 times (once for
each character and once for the return key). This optimization is more effective
for users than Nagle’s algorithm, because it gives users immediate feedback for
what they have typed and allows them to edit without suffering any network
latency.

We compared the trace of one of our heavy telnet users using line mode telnet
for one day with the same user’s trace (using regular, or “character mode” tel-
net) during our eight-day period. Table 3 summarizes the TCP payload sizes of
packets sent from the mobile host to the router. We omit TCP ACKs because
they are not sent as a direct result of user actions.

Table 3. This table compares the payload size for packets sent from the mobile hosts
to the router using character mode telnet and line mode telnet.

Telnet (Number of| Minimum | Median | Average |Maximum |Total Size
Mode Samples Size Size Size Size
Character 650 1 byte 1 byte 8.52 bytes (698 bytes |5544 bytes
Line 302 1 byte 4 bytes 18.44 bytes |697 bytes [5571 bytes

Although the total payload bytes sent from the mobile host to the router for
line mode telnet is approximately the same as for character mode, the line mode
trace has 54% fewer packets. This means that the router had about 50% less
incoming load on it and the user suffered the round trip time 50% less frequently
for the same amount of data typed. All the users who have tried this mechanism
report that it makes telnet acceptable on the wireless network. As a result of
this experiment, we are developing a mobile shell that uses this technique but is
more sophisticated about operations such as file editing that do not work well
in line mode.

We also look at possible optimizations for NFS. Overall, the request/response
(RPC) nature of NFS is awkward in a network with high per-packet latencies. A
new request will not be started until the previous one has received a reply. The
key to improving NFS performance is to reduce the number of end-to-end delays
seen by users. We can do this by caching and prefetching more data, pipelining
requests, or batching requests into single packets when possible.

NFS would benefit from techniques such as prefetching, as indicated by Fig.
4, which shows the distribution of NFS request types on the wired and wireless

100

90 1 EWireless
» 80 EWired
&

S 70 A

S

x 60

= _

%50

& 40 -

[

8 30

j)

a 20

" t
00— —— — T T T T
E:XD.::E.:XO)G):E:&xO)G)
SEE:22F8EsEE8EREC S
g o S E = s 3 £ & E 2 3 E > 8
e 2 Cogog o & 8

z
Request Type

Fig. 4. This figure shows the distribution of NFS request types on the wired and
wireless network.

networks. Users tend to decrease dramatically the number of data requests they
make when switching from the wired network to the wireless network (from
185,014 to 357). As a result, techniques to improve data transfers, by prefetching,
and to reduce needed transfers, by more aggressive caching, are essential in
making file system performance tolerable on the wireless network.

Batching together multiple requests into single packets might also help reduce
end-to-end delays. For example, we could speed up listing large directories if all
the directory information could be transferred in one READDIRPLUS opera-
tion, rather than in many LOOKUP operations as is currently the case. This
optimization is in the NFS version 3 specification [7]. To determine the possi-
ble benefit of the READDIRPLUS operation, we look at how many associated
LOOKUP requests follow a READDIR request. The READDIRPLUS request
would return attributes in addition to filenames, which is equivalent to batching
the READDIR and LOOKUP requests. Given the 1004-byte MTU of the radios
(including encapsulation overhead), we can fit the attributes and filenames for
a maximum of six files in a packet. Thus, if six or fewer LOOKUPS follow a
READDIR, they can be batched into one request packet.

Table 4 shows the results of batching. The number of batchable LOOKUP and
READDIR operations is reduced by a factor of six (from 18,527 to 3,015 requests
in the wired case), and the number of original meta-data operations is reduced
by over 20% (from 73,704 to 58,192 requests). This would somewhat improve the

speed of directory listings, which was one of the operations particularly reported
as slow by our users. Note, however, that this corresponds to only a six percent
improvement in overall requests on the wired network, so it might not improve
overall NFS performance significantly.

Table 4. This table shows how batching LOOKUP requests with their associated
READDIR requests into a single READDIRPLUS request would affect our NFS work-
load.

Type Wired Wireless

Original Requests: total, 258,718, (185,014; 73,704)|5,031, (357; 4,674)
(data;meta-data)

Number of READDIR’s with more |1,070 164

than 1 LOOKUP following

Number of LOOKUPs following 16.3, (1; 307) 15.25, (1; 20)
READDIR average, (minimum;

maximum)

Number of original LOOKUP and |18,527 2,665

READDIR requests that we can
batch together

Number of batchable LOOKUP 3,015 438
and READDIR requests after
batching

Resulting number of requests after 243,206, (185,014;58,192) |2,804, (357; 2,447)
batching originals: total, (data;
meta-data)

6 Related Work

We have found little literature about packet-level studies of wide-area networks,
although [11] includes a latency measurement of 15 seconds on average for a
round trip TCP/IP packet over CDPD [8]. Also, a study of asymmetry on TCP
performance [4], found the mean end-to-end round trip delay through a Metricom
packet radio network to be 2.5 seconds, vastly larger than our measured mean
of 0.97 seconds for telnet over TCP. While their measurements were made from
a bulk TCP transfer, rather than collected over the course of days, the reason
for this significant difference in mean delays remains unclear.

In contrast, there are several packet-level studies of local-area wireless net-
works. Work by [9] and [19] looks at the types of packet errors found in these
environments, and [23] also reports throughput. More recent work by [21] gives
an extensive study of the packet loss, latencies, and bandwidth of the Wave-
LAN network as seen by a host moving between buildings (but within the line of
sight of their WavePoint basestations) and within buildings. Packet loss between

buildings reaches as high as almost 40%, and corresponding latencies reach al-
most one second. In another scenario, while in an elevator, packet loss reaches
100%. Otherwise, packet loss seems to be quite low, averaging from less than
one percent to about five percent, and latencies seem to hover around 10ms. We
can conclude that the behavior of this wireless network depends greatly on the
location of the mobile host, but that it generally shows an order of magnitude
better latency, packet loss and bandwidth than the wide-area network in our
study.

Besides measurements of the WaveLAN network, [19] and [21] also present a
method to observe and predict the behavior of applications in a wireless network
in a repeatable manner. The authors first measure end-to-end behavior of round
trip packets in a local-area wireless network (WaveLAN). This information is
distilled into a model of packet loss and delays. A modulation layer is then placed
between applications and the wired network, and this layer drops and delays
packets according to the model. The results of running several workloads on the
wired network using this modulation technique closely predict the behavior of
those workloads when run in the real wireless network. It would be very useful
to repeat this effort in a wide-area wireless network.

There are many efforts to adapt applications and protocols to networks with
weak connectivity. Coda [16] uses a technique called hoarding to cache copies of
needed files on a laptop so they will be locally available during periods of poor
connectivity. This form of aggressive caching and prefetching, along with cache
consistency protocols, allows mobile hosts to avoid issuing many requests over a
poor link. Rover [14] uses queued, non-blocking remote procedure calls to allow
applications to continue processing even if the remote procedure call must wait
until network connectivity is reestablished. Thus Rover’s queuing techniques can
help hide the poor connectivity and high latencies found in a wireless network
environment.

The concept of proxies has been used to improve performance of many protocols
such as X, HTTP and TCP in low-bandwidth and high-latency environments [15]
[27] [3]. As seen in [3], this technique is particularly helpful for avoiding TCP’s
backoff and retransmission features, which were developed for wired networks
in which packet loss indicates congestion [6]. Unfortunately, there are many
networks a mobile host might visit (particularly networks not under the control
of the mobile host’s own administrative authorities) in which it may not be
possible to place proxies in useful positions. Nonetheless, our experiences in
MosquitoNet lead us to believe that proxies should be adopted where possible.

7 Conclusions and Future Work

The high latencies and rate of packet loss and reordering prevent hosts from
fully utilizing the available bandwidth on the wireless network. Other wide-area

wireless networks, such as CDPD, also have high or even higher latencies. Unfor-
tunately, network manufacturers currently tend to focus on increasing bandwidth
rather than reducing latency [24]. We need to convince network manufacturers
that reducing latency is just as crucial to the success of wide-area wireless net-
works as increasing bandwidth.

We must also search for ways to optimize the behavior of applications sensitive
to high end-to-end delays. We have at least two options. The first is to avoid
latency from applications. The local line editing technique we tried for telnet was
simple, yet effective enough to change users’ perception of telnet performance
on the wireless network. We will soon switch to using our mobile shell, which
incorporates this optimization and other features. The second option is to hide
end-to-end delays. NFS, for example, will not survive in the wide-area wireless
environment without techniques such as prefetching data. We must either fix
NFS, or we must switch to a more sophisticated file system (such as Coda [16])
that provides these techniques.

We plan to incorporate into MosquitoNet several other techniques that will
improve the performance of our wireless network. For instance, we are currently
experimenting with adding more than one radio onto our router. We do this
by creating a virtual radio device that actually uses one or more radios for
incoming packets and one or more radios for outgoing packets. To the outside
world, all the radios appear to be functioning as one single device. This way, we
can minimize some of the latencies caused by the router’s single radio switching
between incoming and outgoing traffic.

8 Acknowledgements

We would like to thank the USENIX Association, Daimler-Benz Research and
Technology and the Xerox Palo Alto Research Center for supporting the student
authors of this paper. This work was also supported in part by MITI (Ministry of
International Trade and Industry) through the ” Advanced Software Enrichment
Project” of IPA (Information-technology Promotion Agency, Japan).

References

1. Armitage, G.: Support for Multicast over UNI 3.0/3.1 based ATM Networks. Inter-
net Request for Comments 2022, November 1996.

2. Baker, M., Zhao, X., Cheshire, S., Stone, J.: Supporting Mobility in MosquitoNet.
Proceedings of the 1996 USENIX Conference, San Diego, CA, January 1996.

3. Balakrishnan, H., Padmanabhan, V., Seshan, S., Katz, R.: A Comparison of Mech-
anisms for Improving TCP Performance over Wireless Links. Proceedings of SIG-
COMM’96, August 1996.

4. Balakrishnan, H., Padmanabhan, V., Katz, R.: The Effects of Asymmetry on TCP
Performance. Proceedings of Mobicom’97, September 1997.

5. Borman, D.: Telnet Linemode Option. Internet Request for Comments 1184, Octo-
ber 1990.

6. Caceres, R., Iftode, L.: Improving the Performance of Reliable Transport Protocols
in Mobile Computing Environments. IEEE Journal on Selected Areas in Commu-
nications, vol. 13, no. 5, June 1995.

7. Callaghan, B., Pawlowski, B., Staubach, P.: NFS Version 3 Protocol Specification.
Internet Request for Comments 1813, June 1995.

8. Cellular Digital Packet Data Specification. Release 1.0. July 19, 1993.

9. Eckhardt, D., Steenkiste, P.: Measurement and Analysis of the Error Characteristics
of an In-Building Wireless Network. Proceedings of SIGCOMM’96, August 1996.
10. Fulton, J., Kantarjiev, C.: An Update on Low Bandwidth X (LBX); a Standard for
X and Serial Lines. Proceedings of the 7th Annual X Technical Conference, January

1993,

11. Housel, B., Lindquist, D.: WebExpress: A System for Optimizing Web Browsing
in a Wireless Environment. Proceedings of Mobicom’96, November 1996.

12. Jacobson, V.: Compressing TCP/IP Headers for Low-Speed Serial Links. Internet
Request for Comments 1144, February 1990.

13. Jacobson, V.: Berkeley TCP Evolution from 4.3-Tahoe to 4.3-Reno. Proceedings
of the 18th Internet Engineering Task Force, p. 365, September 1990.

14. Joseph, A., deLespinasse, A., Tauber, J., Gifford, D., Kaashoek, M.: Rover: A
Toolkit for Mobile Information Access. Proceedings of the 15th ACM Symposium
on Operating Systems Principles, December 1995.

15. Kantarjiev, C., Demers, A., Frederick, R., Krivacic, R., Weiser, M.: Experiences
with X in a Wireless Environment. Proceedings of the Usenix Mobile and Location-
Independent Computing Symposium, August 1993.

16. Kistler, J., Satyanarayanan, M.: Disconnected Operation in the Coda File System.
Proceedings of the 13th ACM Symposium on Operating Systems Principles, October
1991.

17. Metricom, Inc.: URL: http://www.metricom.com.

18. Nagle, J.: Congestion Control in IP/TCP Internetworks. Internet Request for Com-
ments 896, January 1984.

19. Nguyen, G., Katz, R., Noble, B., Satyanarayanan, M.: A Trace-Based Approach for
Modeling Wireless Channel Behavior. Proceedings of the 1996 Winter Simulation
Conference, 1996.

20. Noble, B., Nguyen, G., Satyanarayanan, M., Katz, R.: Mobile Network Tracing.
Internet Request for Comments 2041, October 1996.

21. Noble, B., Satyanarayanan, M., Nguyen, G., Katz, R.: Trace-Based Mobile Network
Emulationr. Proceedings of SIGCOMM’97, September 1997.

22. Perkins, C.: IP Mobility Support. Internet Request for Comments 2002, October
1996.

23. Reynolds, N., Duchamp, D.: Measured Performance of a Wireless LAN. Proceed-
ings of the 17th Conference on Local Computer Networks, September 1992.

24. Satyanarayanan, M.: Keynote Address to ACM Mobicom’96. November 1996.

25. Stevens, W.: TCP/IP Illustrated, Volume 1. Addison-Wesley, 1994, p. 269.

26. Stevens, W.: TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast
Recovery Algorithms. Internet Request for Comments 2001, January 1997.

27. Watson, T., Bershad, B.: Local Area Mobile Computing on Stock Hardware and
Mostly Stock Software. USENIX Symposium on Mobile and Location-Independent
Computing, August 1993.

This article was processed using the I#TEX macro package with LLNCS style

