
Constraints (2019) 24: 162–182
https://doi.org/10.1007/s10601-018-9296-3

Model counting with error-correcting codes

Dimitris Achlioptas1 ·Panos Theodoropoulos2

Published online: 8 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The idea of counting the number of satisfying truth assignments (models) of a formula by
adding random parity constraints can be traced back to the seminal work of Valiant and
Vazirani showing that NP is as easy as detecting unique solutions. While theoretically sound,
the random parity constraints used in that construction suffer from the following drawback:
each constraint, on average, involves half of all variables. As a result, the branching factor
associated with searching for models that also satisfy the parity constraints quickly gets out
of hand. In this work we prove that one can work with much shorter parity constraints and
still get rigorous mathematical guarantees, especially when the number of models is large
so that many constraints need to be added. Our work is motivated by the realization that
the essential feature for a system of parity constraints to be useful in probabilistic model
counting is that its set of solutions resembles an error-correcting code.

Keywords Model counting · Satisfiability · Randomized algorithms · Systems of parity
equations · Coding theory · Low density parity check codes

1 Introduction

Imagine a blind speaker entering an amphitheater, wishing to estimate the number of people
present. She starts by asking “Is anyone here?” and hears several voices saying “Yes.” She
then says “Flip a coin inside your head; if it comes up heads, please never answer again.”
She then asks again “Is anyone here?” and roughly half of the people present say “Yes.”
She then asks them to flip another coin, and so on. When silence occurs after i rounds, she
estimates that approximately 2i people are present.

Research supported by European Research Council Starting Grant 210743, NSF grant CCF-1514128,
NSF CCF-1733884, an Adobe research grant, and the Greek State Scholarships Foundation (IKY).

� Panos Theodoropoulos
panosth@gmail.com

Dimitris Achlioptas
optas@cs.ucsc.edu

1 Department of Computer Science, University of California Santa Cruz, 1156 High Street,
Santa Cruz, CA 95064, USA

2 Department of Informatics and Telecommunications, University of Athens, Panepistimiopolis,
157 84 Athens, Greece

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-018-9296-3&domain=pdf
http://orcid.org/0000-0003-2349-822X
mailto: panosth@gmail.com
mailto: optas@cs.ucsc.edu

Constraints (2019) 24:162–182 163

Given a CNF formula F with n variables we would like to approximate the size of its set of
satisfying assignments (models), S = S(F), using a similar approach. Concretely, to check
whether |S| ≥ 2i we will form a random set Ri ⊆ {0, 1}n such that Pr[σ ∈ Ri] = 2−i for
all σ ∈ {0, 1}n, and then check whether S ∩ Ri �= ∅. The key idea, following the theoretical
path pioneered by [15, 17], and [12], is to represent the random set Ri implicitly, as the
set of solutions of a system of i random parity (XOR) constraints (linear equations modulo
2). This way the check can be performed by either a SAT solver that also supports parity
constraints or by a standard SAT solver, after converting the parity constraints to clauses.

As we discuss in Section 2, there has been a long line of works aiming to make the above
theoretical scheme practical, including [5–8, 18] and [3, 4, 9]. In all of these works, the
variables appearing in each constraint are chosen independently of the variables in all other
constraints. Specifically, in most works, each constraint simply includes each variable inde-
pendently with probability 1/2 so that each constraint, on average, includes n/2 variables.
Systems of such long parity constraints have the benefit that membership in their set of solu-
tions enjoys pairwise independence, making the statistical analysis of the random variable
|S ∩ Ri | very simple. Unfortunately, though, as n increases, the correspondingly increasing
constraint length severely limits the capacity of solvers to find elements of S ∩ Ri , since
flipping any single variable flips the value of, roughly, half of all parity constraints. This
severe limitation was already recognized in the very first works in the area [7, 8], and later
works [6, 18] have tried to remedy it by considering parity equations where each constraint
includes each variable independently with probability p < 1/2. While such sparsity helps
in the search for elements of S ∩ R, the statistical properties of the resulting random sets R

deteriorate rapidly as p decreases.
In this work we make two contributions. The first is to give algorithms that come with

rigorous approximation guarantees without requiring pairwise independence from the sets
Ri . Indeed, our analysis does not even require the sets Ri to be the solution sets of systems
of parity constraints. Instead, the performance of the algorithms is characterized by a sin-
gle, explicitly defined statistical quantity of the distribution on the sets Ri , recovering all
previous known results when membership in Ri enjoys pairwise independence. This contri-
bution is largely one of exposition, as most of the ideas employed have appeared implicitly
or explicitly in earlier works, as we discuss in Section 2. Nevertheless, we feel that our anal-
ysis is significantly more accessible, succinct, and modular, highlighting exactly “where
the pain is.” As such, we hope that it will allow more researchers to contribute by focusing
attention to the key issue.

Our second and main contribution is to address the aforementioned pain by introducing
random sets Ri that are both statistically good and easy to intersect with S. We achieve this
by taking the sets to be the codewords of Low Density Parity Check (LDPC) codes. Simi-
larly to earlier works, the elements of our sets are the solutions of random systems of parity
equations. Unlike earlier works, though, the variables in each equation are not selected
independently of the other equations. This entanglement endows the resulting solution sets
with dramatically better statistical properties, a fact established via an analysis far more
sophisticated than the case of independent entries.

By analyzing the statistical properties of sets Ri defined via LDPC codes we give algo-
rithms that yield rigorous approximation guarantees with constraints far shorter than any
previously used. That said, the number of solver invocations implied by our analysis in
order to have a rigorous guarantee can be impractically large, due to the large constant fac-
tors involved. We believe that the fault in this lies with our analysis, which we conjecture is
very pessimistic. As experimental evidence for this conjecture we show that using our sets
Ri but invoking the solver dramatically fewer times than what is needed by our analysis,

164 Constraints (2019) 24:162–182

yields excellent accuracy (and dramatic speedup) on a wide range of formulas with known
model counts. Moreover, our sets yield rigorous model count lower bounds far beyond the
reach of all existing counters.

2 Previous work

We focus our discussion on previous works most directly related to ours to provide context
for our contribution. For a more general review of the use of random parity equations for
approximate counting and sampling, see the excellent recent survey by Meel et al. [10].
Also, to facilitate the discussion, let us define for an integer i the random set Ri = {σ ∈
{0, 1}n : Aσ = b}, where b ∈ {0, 1}i is uniformly random, while each entry of A ∈
{0, 1}i×n is set to 1 independently with probability p.

The first work on practical approximate model counting using systems of random parity
equations was by Gomes, Sabharwal, and Selman [8], using sets Ri as above. Specifically,
they proved that if p = 1/2, then one can rigorously approximate log2 |S| within an additive
constant by repeatedly checking whether S∩Ri = ∅ for various values of i. (To perform the
check the parity constraints were transformed to clauses using the Tseitin transformation
and a standard SAT solver was used.) Further, they showed that in order to get rigorous
lower bounds any 0 < p < 1/2 can be used, yielding easier to solve constraints, but
also lower bounds that may be arbitrarily far from the truth. In [7], Gomes et al. showed
experimentally that it can be possible to achieve good accuracy (without guarantees) using
parity constraints of length k � n/2, by considering formulas for which the correct answer
was derived by other means. Recently, Achim, Sabharwal, and Ermon [1] showed that one
can also derive rigorous lower bounds (but not upper bounds) by using constraints other
than parity constraints which can be easier for the solver.

Interest in the subject was rekindled by works of Chakraborty, Meel, and Vardi [3] and of
Ermon, Gomes, Sabharwal, and Selman et al. [5]. In [3], a complete rigorous approximate
model counter, called ApproxMC, was given which takes as input any δ, ε > 0, and with
probability at least 1 − δ returns a number in the range (1 ± ε)|S|. In [5] an algorithm
with a similar (δ, ε)-guarantee is given, called WISH, for the more general problem of
approximating sums of the form

∑
σ∈{0,1}n w(σ), where w is a non-negative real-valued

function over �n, where � is a finite domain. (The basic algorithm in [5] achieves a 16-
approximation, but using a transformation that blows up the number of variables, allows for
arbitrary approximation accuracy.)

ApproxMC uses the satisfiability solver CryptoMiniSAT (CMS) [14] which has native
support and sophisticated reasoning for parity constraints. Also, CMS can take as input a
cutoff value z ≥ 1, so that it will run until it either finds z solutions or determines the
number of solutions to be less than z. ApproxMC makes use of this capability in order to
target i such that |S ∩ Ri | = �(δ−2), instead of i such that |S ∩ Ri | ≈ 1. Our algorithms
make similar use of this capability by using several different cutoffs.

Both ApproxMC and WISH use sets Ri with p = 1/2, which limits the range of prob-
lems they can handle. One idea to mitigate this issue in practice, proposed by Chakraborty
et al. in [2], is motivated by the observation that there can often be a small subset, I , of
variables such that every value-assignment to the variables in I has at most one satisfy-
ing extension. Such a set I is called an independent support set and, clearly, |S| equals the
number of value assignments to the variables of I that can be extended to satisfying assign-
ments. As a result, it suffices to add random parity constraints that only involve variables in
I , so that each constraint has |I |/2 instead of n/2 variables on average. Since independent

Constraints (2019) 24:162–182 165

support sets of size much less than n can often be found [9] in practice, this allows scal-
ing ApproxMC to certain classes of formulas with thousands of variables. Naturally, the
benefit of only involving independent support variables in the parity constraints extends to
all methods using such constraints for model counting, including ours.

The first effort to develop rigorous performance guarantees for sets Ri as above with
p < 1/2 was made by Ermon, Gomes, Sabharwal, and Selman in [6], where an explicit
expression was given for the smallest allowed p as a function of |S|, n, δ, ε. The analy-
sis has two parts, one corresponding to the analysis of a probabilistic walk, and one that
corresponds to a packing argument. We use the same packing argument in Section 8 when
passing from (7) to inequality (8). Also, the analysis in [6] introduces the notion of average-
universal hash functions, which is very closely related to our definition of “lumpiness”
in (1). The analysis in [6] was recently improved by Zhao, Chaturapruek, Sabharwal, and
Ermon [18] who, among other results, showed that when log2 |S| = �(n), in order to get
rigorous approximation guarantees it is enough to use constraints of length only O(log n).
While, prima facie, this seems a very promising result, we will see that the dependence on
the constants involved in the asymptotics is very important in practice. For example, in our
experiments we observe that already setting p = 1/8 yields results whose accuracy is much
worse than that achieved by LDPC constraints.

Finally, Chakraborty, Meel, and Vardi [4] introduced a very nice idea for reducing the
number of solver invocations without any compromise in approximation quality. It amounts
to using nested sequences of random sets R1 ⊇ R2 ⊇ R3 ⊇ · · · ⊇ Rn in the quest for
i ≈ log2 |S|. The key insight is that using nested (instead of independent) random sets Ri

means that |S ∩ Ri | is deterministically non-increasing in i, so that linear search for i can
be replaced with binary search, thus reducing the number of solver invocations from linear
to logarithmic in n. We use the same idea in our work and give a streamlined proof that
highlights its generality.

3 Lower bounds are easy

To simplify exposition we only discuss lower bounds of the form |S| ≥ 2i for i ∈ N,
deferring the discussion of more precise estimates to Section 5. For any distribution D, let
R ∼ D denote that random variable R has distribution D.

Definition 1 Let D be a distribution on subsets of a set U and let R ∼ D. We say that D is
i-uniform if Pr[σ ∈ R] = 2−i for every σ ∈ U .

When U = {0, 1}n, some examples of i-uniform distributions are:

(i) R contains each σ ∈ {0, 1}n independently with probability 2−i .
(ii) R is a uniformly random subcube of dimension n − i.

(iii) R={σ :Aσ =b}, where A∈{0, 1}i×n is arbitrary and b∈{0, 1}i is uniformly random.

Any i-uniform distribution Di can be used to compute a rigorous lower bound on the
number of satisfying truth assignments of a formula (models). This is because if Ri ∼ Di

and in several independent trials we find that, typically, S ∩ Ri �= ∅, we can be highly
confident that the expectation of |S ∩ Ri | can not be much less than 1. But since for any
i-uniform distribution this expectation equals 2−i |S|, we can be highly confident that |S| is
not much less than 2i .

Algorithm 1 follows this intuition closely, except that instead of non-emptiness, it focuses
on S ∩ R typically having at least 2 elements. For this, in line 5 we trim |S ∩ R| to at most 4

166 Constraints (2019) 24:162–182

(by running CryptoMiniSAT with a cutoff of 4), so that the event Z ≥ 2t in line 8 can only
occur if the intersection had size at least 2 in at least t/2 trials.

To analyze Algorithm 1 we only need Hoeffding’s Inequality.

Lemma 1 (Hoeffding’s Inequality) If Z = Y1 + · · · + Yt , where 0 ≤ Yi ≤ b are
independent random variables, then for any w ≥ 0,

Pr[Z/t ≥ EZ/t + w] ≤ e−2t(w/b)2
and Pr[Z/t ≤ EZ/t − w] ≤ e−2t(w/b)2

.

Theorem 1 The output of Algorithm 1 is incorrect with probability at most e−t/8.

Proof For the algorithm’s output to be incorrect it must be that |S| < 2i and Z/t ≥ 2. If
|S| < 2i , then EYj ≤ |S|2−i < 1 for all j , implying EZ/t < 1. Since Z is the sum of
t i.i.d. random variables 0 ≤ Yj ≤ 4, Hoeffding’s inequality implies that Pr[Z/t ≥ 2] ≤
Pr[Z/t ≥ EZ/t + 1] ≤ exp (−t/8).

3.1 The efficacy of Algorithm 1

Notably, Theorem 1 only bounds the probability that Algorithm 1 gets us into trouble by
answering “Yes” when it shouldn’t, i.e., when |S| < 2i . It does not address at all the effi-
cacy of Algorithm 1, i.e., the probability of “Don’t know” when |S| ≥ 2i . As we will see,
bounding this probability requires much more than mere i-uniformity.

Naturally, increasing the number 4 in line 5 of Algorithm 1 and/or decreasing the number
2 in line 8 (and correspondingly in line 3) makes Algorithm 1 more likely to return “Yes.”
Such changes, though, also increase the number of iterations needed to guarantee the same
bound on the error probability. The numbers 4 and 2 appear in practice to strike a good
balance between the algorithm being fast vs. informative.

3.2 Dealing with timeouts

Line 5 of Algorithm 1 requires running the solver until either it finds 4 elements of S ∩ Rj

or until it determines that fewer than 4 such elements exist. In reality, timeouts may prevent
the solver from making this determination. Nevertheless, if we always set Yj to a number
no greater than min{4, |S ∩ Rj |}, then both Theorem 1 and its proof remain valid. Thus,
whenever a timeout occurs, we can set Yj to the number s < 4 of elements of S ∩ Rj found
so far. Naturally, this modification may increase the probability of the algorithm returning
“Don’t know.”

Constraints (2019) 24:162–182 167

3.3 Searching for a lower bound

To derive a lower bound for log2 |S| we can invoke Algorithm 1 with i = 1, 2, . . . , n sequen-
tially and keep the best lower bound returned (if any). For any δ > 0, Theorem 1 implies
that if we set t =
8 ln(n/δ)� in all invocations of Algorithm 1, the probability we will end
up with an invalid lower bound is at most δ (since invalidity requires at least one of the n

answers of Algorithm 1 to be erroneous).
There is no reason, though, to increase i sequentially. We can be more aggressive and

invoke Algorithm 1 with i = 1, 2, 4, 8, . . . until the first “Don’t know” occurs, say at i = 2u.
At that point we can perform binary search in {2u−1, . . . , 2u − 1}, treating every “Don’t
know” answer as a (conservative) imperative to reduce the interval’s upper bound to the
midpoint and every “Yes” answer as an allowance to increase the interval’s lower bound to
the midpoint. We call this scheme “doubling binary search.” In practice this can be further
accelerated by invoking Algorithm 1 with a very small number of trials in the course of
the doubling-binary search, e.g., just t = 2. The result of this search is then treated as an
optimistic “ballpark” estimate and we do a search in its vicinity using the proper number of
iterations. Algorithm 2 does precisely that. To avoid trivialities, below we assume that F is
satisfiable, so that log2 |S| ≥ 0.

Theorem 2 The output of Algorithm 2 exceeds log2 |S| with probability at most θ .

Proof Since log2 |S| ≥ 0, for the answer to be wrong it must be that an invocation of Algo-
rithm 1 in line 19 with i > log2 |S| returned “Yes”. Since Algorithm 2 invokes Algorithm 1
in line 19 at most
log2 n� times, and in each such invocation we set t so that the probability
of error is at most θ/
log2 n�, the claim follows.

168 Constraints (2019) 24:162–182

We note that Algorithm 2 can be modified to take as input any already established lower
bound 0 < � ≤ log2 |S|, e.g., one derived by running the unmodified algorithm above, so
that � becomes the starting point for the initial doubling search.

4 What does it take to get a good lower bound?

Algorithms 1 and 2 may underestimate log2 |S| arbitrarily. The reason for this is that even
though i-uniformity makes the expected size of S ∩ Ri be 2−i |S|, the actual size of S ∩ Ri

may behave like the winnings of a lottery: huge with very small probability, but typi-
cally zero. If such a lottery phenomenon is present, then in any realistic number of trials
we will always see S ∩ Ri = ∅ even if i � log2 |S|, in exactly the same manner that
anyone playing the lottery a realistic number of times will, most likely, never experience
winning.

The discussion above makes it clear that the heart of the matter is controlling the variance
of |S ∩ R|. We will do this is by bounding the “lumpiness” of the sets in the support of the
distributionDi , as measured by the quantity defined in (1) below, which measures lumpiness
at a scale of M (the smaller the quantity in (1), the less lumpy the distribution, and the
smaller the variance).

Definition 2 Let D be any distribution on subsets of {0, 1}n and let R ∼ D. For any fixed
M ≥ 1, let

Boost(D,M) = max
S⊆{0,1}n
|S|≥M

1

|S|(|S| − 1)

∑

σ,τ∈S
σ �=τ

Pr[σ, τ ∈ R]
Pr[σ ∈ R] Pr[τ ∈ R] . (1)

To get some intuition for (1) observe that the ratio inside the sum equals the factor by
which the a priori probability that a truth assignment belongs in R is modified by condi-
tioning on some other truth assignment belonging in R. For example, if membership in R is
pairwise independent, then Boost(D, ·) = 1, i.e., there is no modification. Another thing to
note is that since we require |S| ≥ M instead of |S| = M in (1), the function Boost(D, ·) is
trivially non-increasing in M .

While pairwise independence achieves Boost(D, ·) = 1 for all sizes, the associated par-
ity constraints tend to be make determining |S ∩ R| difficult, especially when |R| is far
from the extreme values 2n and 1. Distributions achieving Boost(D, ·) < 1 exist, but are
even harder to work with. In the rest of the paper we restrict to the case Boost(D, ·) ≥ 1
(hence the name Boost). As we will see, the crucial requirement for an i-uniform dis-
tribution Di to be useful is that Boost(Di , �(2i)) is not very large, i.e., an i-uniform
distribution can be useful even if Boost(Di) is huge for sets of size much less than 2i .
This is what will make it possible to derive rigorous results in the absence of pairwise
independence.

The three examples of i-uniform distributions discussed earlier differ dramatically in
terms of Boost.

(i) When R is formed by selecting each element of {0, 1}n independently, trivially,
Boost(D, ·) = 1 since we have full, not just pairwise, independence. But just
specifying R in this case requires space proportional to |R|.

Constraints (2019) 24:162–182 169

(ii) When R is a random subcube, specifying R is extremely compact and searching for
models in R is about as easy as one could hope for: just “freeze” a random subset of i

variables and search over the rest. Unfortunately, random subcubes can be statistically
terrible, having huge Boost, e.g., when S is itself a subcube.

(iii) When R = {σ : Aσ = b}, where b ∈ {0, 1}i is uniformly random, the distribution of
A can make a huge difference in the value of Boost.

– At one end of the spectrum, if A = 0, then R is either the empty set or the entire
cube {0, 1}n, depending on whether b = 0 or not. Thus, Boost(D, ·) = 2i , the
maximum possible.

– The other end of the spectrum occurs when A is uniform in {0, 1}i×n, i.e., when
the entries of A are independently 0 or 1 with equal probability. In this case
Boost(D, ·) = 1, a remarkable and well-known fact that can be seen by the
following simple argument. By the definition of R, for any fixed σ �= τ ,

Pr[σ, τ ∈ R] = Pr[Aσ = Aτ ∧ Aσ = b] = Pr[A(σ − τ) = 0] · Pr[Aσ = b] ,

where to see the second equality imagine first selecting the matrix A and only
then the vector b. As we already saw, Pr[Aσ = b] = 2−i . To prove that Pr[A(σ −
τ) = 0] = 2−i , and thus conclude the proof, select any non-zero coordinate of
σ − τ , say j (as σ �= τ there is at least one). Set arbitrarily all entries of A,
except those in the j -th column. Observe now that whatever the setting is, there
is exactly one choice for each entry in the j -th column such that A(σ − τ) = 0.
Since the i elements of the j -th column are selected uniformly and independently,
the claim follows.

5 Rigorous counting without pairwise independence

For each i ∈ [n], let us fix an arbitrary i-uniform distribution Di on subsets of {0, 1}n. We
will show that given a lower bound 0 ≤ L ≤ |S|, we can get a rigorous probabilistic approx-
imation of |S| within a factor of 1 ± δ with a number of solver invocations proportional to
the square of B = max�≤i≤n Boost(Di , 2i), where � ≈ log2(δL). To put this in perspective
we note the following.

– If membership in Ri ∼ Di enjoys pairwise independence for all i ∈ [n], then B = 1
and the number of solver invocations is O(nδ−2 log(n/θ)), as in [3]. If, further, we use
nested sampling sets, an idea introduced in [4], then the number of solver invocations
drops to O(δ−2 log(n/θ)), matching [4].

– The restriction i ≥ � in the definition of B is key for using short parity constraints. For
small values of i it seems unreasonable to expect good statistical behavior for random
sets Ri encoded by such constraints. But good statistical behavior is not necessary to
establish rigorous lower bounds. In other words, we are free to try to derive a rigorous
lower bound L ≤ |S| using arbitrary i-uniform random sets, e.g., encoded via short
constraints; our obligation to use distributions Di with provably good statistical behav-
ior (in order to establish a rigorous upper bound), is restricted to i ≈ log2(δL), i.e., for
i hopefully not much less than log2 |S|.

170 Constraints (2019) 24:162–182

– Our Algorithm 3 is very similar in spirit to the algorithms in [3, 5]. The reason we
present it is because it allows a separation of the upper and lower bound issues, it affords
a clean analysis, and it makes it clear that the only essential ingredient for approximate
model counting are random sampling sets with good statistical behavior over extents
of size at least δL. We discuss specific distributions of such sets and approaches to
bounding B in Sections 8 and 9.

Theorem 3 The output of Algorithm 3 is not in (1 ± δ)|S| with probability at most θ .

Remark 1 Algorithm 3 can be modified to have two approximation parameters β < 1 and
γ > 1 so that its output is between β|S| and γ |S|. For this, both ξ and the criterion for
choosing j in line 18 must be adapted to β, γ, θ . Here, for the benefit of exposition, we
focus on the symmetric, high-accuracy case β = 1 − δ, γ = 1 + δ, δ ∈ (0, 1/3], allowing
us to choose near-optimal ξ, b, t with relatively simple form.

6 Proof of Theorem 3

To prove Theorem 3 we will need the following tools.

Lemma 2 Let X ≥ 0 be an arbitrary integer-valued random variable. Write EX = μ and
Var(X) = σ 2. For some integer b ≥ 0, define the random variable Y = min{X, b}. For any
λ > 0, if b ≥ μ + λσ 2, then EY ≥ EX − 1/λ.

Constraints (2019) 24:162–182 171

Proof We start by recalling the well-known fact that if Z ≥ 0 is an integer-valued ran-
dom variable, then EZ = ∑

j>0 Pr[Z ≥ j]. Since both X, Y are integer-valued, using
Chebychev’s inequality to derive (2), we see that

EX − EY =
∑

j>b

Pr[X ≥ j]

≤
∞∑

t=1

Pr
[
X ≥ μ + λσ 2 + t

]

=
∞∑

t=1

Pr

[

X ≥ μ + σ

(

λσ + t

σ

)]

≤
∞∑

t=1

1

(λσ + t/σ)2
(2)

≤
∫ ∞

t=0

1

(λσ + t/σ)2
dt

= 1

λ
.

Lemma 3 Let D be any i-uniform distribution on subsets of {0, 1}n. For any fixed set
S ⊆ {0, 1}n, if R ∼ D and X = |S ∩ R|, then Var(X) ≤ EX + (Boost(D, |S|) − 1)(EX)2.

Proof Recall that Var(X) = EX2 − (EX)2. Write 1{·} for the indicator function. Then

EX2 = E

(
∑

σ∈S

1{σ ∈ R}
)2

= E

⎛

⎝
∑

σ,τ∈S

1{σ, τ ∈ R}
⎞

⎠

=
∑

σ,τ∈S

Pr[σ, τ ∈ R]

=
∑

σ∈S

Pr[σ ∈ R] +
∑

σ,τ∈S
σ �=τ

Pr[σ, τ ∈ R]

≤
∑

σ∈S

Pr[σ ∈ R] + 2−2i |S|(|S| − 1)Boost(D, |S|)

< EX + Boost(D, |S|)(EX)2 .

Let q = �log2(δ|S|/4)�. Recall that if |S| < 4/δ, the algorithm returns |S| and exits.
Therefore, we can assume without loss of generality that q ≥ 0. Armed with Lemmata 2
and 3 we will prove the following propositions:

(a) The probability that Aq2q is not in the range (1 ± δ)|S| is at most 2e−9t/(2b2).

(b) The probability that Aq+12q+1 is not in the range (1 ± δ)|S| is at most 2e−9t/(2b2).
(c) If Aq2q is in the range (1 ± δ)|S|, then the maximum in line 18 is at least q

(deterministically).
(d) For each i ≥ q + 2, the probability that the maximum in line 18 equals i is at most

e−8t/b2
.

172 Constraints (2019) 24:162–182

Propositions (a)–(d) imply that the probability of failure is at most the sum of the prob-
ability of the bad event in (a), the bad event in (b), and the (at most) n − 2 bad events in
(d). The fact that each of these bad events concerns only one random variable Aj allows a
significant acceleration of Algorithm 3, discussed in Section 7.

Fix any i = q + k, where k ≥ 0. Let Xi,j = |S ∩ Ri,j | and write EXi,j = μi and
Var(Xi,j) = σ 2

i .
To establish propositions (a), (b) observe that the value � defined in line 2 is at most q,

since L ≤ |S|, and that |S| ≥ 2q+1, since δ ≤ 2. Thus, since Boost(D,M) is non-increasing
in M ,

max
k∈{0,1} Boost(Dq+k, |S|) ≤ max{Boost(Dq, 2q+1), Boost(Dq+1, 2q+1)}

≤ max{Boost(Dq, 2q), Boost(Dq+1, 2q+1)}
≤ max

�≤i≤n
Boost(Di , 2i)

≤ B .

Therefore, we can apply Lemma 3 for i ∈ {q, q+1} and conclude that σ 2
i ≤ μi +(B−1)μ2

i

for such i. Since μi < 8/δ for all i ≥ q while ξ = 8/δ, we see that b =
ξ + 2(ξ + ξ2(B −
1))� ≥ μi + 2σ 2

i . Thus, we can conclude that for i ∈ {q, q + 1} the random variables
Xi,j , Yi,j satisfy the conditions of Lemma 2 with λ = 2, implying EYi,j ≥ EXi,j − 1/2.
Since Zi is the sum of t independent random variables 0 ≤ Yi,j ≤ b and EZi/t ≥ μi −1/2,
we see that for i ∈ {q, q + 1} Hoeffding’s inequality implies

Pr[Zi/t ≤ (1 − δ)μi] ≤ exp

(

−2t

(
δμi − 1/2

b

)2
)

. (3)

At the same time, since Zi is the sum of t independent random variables 0 ≤ Yi,j ≤ b

and EZi/t ≤ μi , we see that for all i ≥ q, Hoeffding’s inequality implies

Pr[Zi/t ≥ (1 + δ)μi] ≤ exp

(

−2t

(
δμi

b

)2
)

. (4)

To conclude the proof of propositions (a) and (b) observe that μq+k ≥ 22−k/δ. Therefore,
(3) and (4) imply that for k ∈ {0, 1}, the probability that Aq+k2q+k is outside (1 ± δ)|S| is
at most

2 exp

(

−2t

(
22−k − 1/2

b

)2)

≤ 2 exp(−9t/(2b2)) .

To establish proposition (c) observe that if Aq ≥ (1−δ)μq , then Aq ≥ (1−δ)(4/δ) and,
thus, j ≥ q. Finally, to establish proposition (d) observe that μi < 2/δ for all i ≥ q + 2.
Thus, for any such i, in order to have μi+w ≥ (1−δ)(4/δ), it must be that w > 2(1−2δ)/δ,
which, since δ ≤ 1/3, implies w > 2. Therefore, for every k ≥ 2, the probability that
j = q + k is at most e−8t/b2

.
Having established propositions (a)–(d) we argue as follows. If Aq+k2q+k is in the range

(1 ± δ)|S| for k ∈ {0, 1} and smaller than (1 − δ)(4/δ) for k ≥ 2, then the algorithm will
report either Aq2q or Aq+12q+1, both of which are in (1 ± δ)|S|. Thus, the probability that

the algorithm’s answer is outside the range (1 ± δ)|S| is at most 2 · 2e−9t/(2b2) + n · e−8t/b2

which, by our choice of t , is less than θ for all n > 2.

Constraints (2019) 24:162–182 173

7 Nested sample sets

In Algorithm 3, for each i ∈ [n] and j ∈ [t], we sample each set Ri,j independently from
an i-uniform distribution on subsets of {0, 1}n. Imagine instead that we generate all random
subsets of {0, 1}n that we may need before we start Algorithm 3, in the following manner
(in reality, we will only generate them as needed).

Organize now these sets in a matrix whose rows correspond to values of 0 ≤ i ≤ n and
whose columns correspond to j ∈ [t]. It is easy to see that:

1. For each (row) i ∈ [n]:
(a) Every set Ri,j comes from an i-uniform distribution on {0, 1}n.
(b) The sets Ri,1, . . . , Ri,t are mutually independent.

2. For each column j ∈ [t]:
(a) R0,j ⊇ R1,j ⊇ · · · ⊇ Rn−1,j ⊇ Rn,j .

With these new random sets, propositions (a)–(d) from the proof of Theorem 3, hold
exactly as in the fully independent case, since for each fixed i ∈ [n] the only relevant sets
are those in row i and their distribution, per (1a)–(1b), did not change. At the same time, (2a)
ensures that Y1,j ≥ Y2,j ≥ · · · ≥ Yn,j for every j ∈ [t]. As a result, Z1 ≥ Z2 ≥ · · · ≥ Zn

and since Ai = Zi/t , the indicator function for Ai ≥ (1 − δ)(4/δ) is now non-increasing.
This means that in order to compute j in line 18, instead of computing Zi for i from � to n,
we can compute A�,A�+1, A�+2, A�+4, A�+8, . . . until we encounter our first k such that
Ak < (1−δ)(4/δ), say at k = �+2c, for some c ≥ 0. At that point, if c ≥ 1, we can perform
binary search for j ∈ {A�+2c−1 , . . . , A�+2c−1} etc., so that the number of times the loop that
begins in line 13 is executed is logarithmic instead of linear in n − �. Moreover, as we will
see, the number of iterations t for the inner loop can now be reduced from O(ln(n/θ)) to
O(ln(1/θ)).

Theorem 4 Given θ > 0, modify Algorithm 3 so that t ←
(2b2/9) ln(5/θ)� in line 9 and
so that the sets Ri,j in line 14 are generated by Algorithm 4. The output of the modified
algorithm will lie in the range (1 ± δ)|S| with probability at least 1 − θ .

Proof Observe that for any fixed i, since the sets Ri,1, . . . , Ri,t are mutually independent,
(3) and (4) remain valid and, thus, propositions (a)–(c) hold. For proposition (d) we note
that if the inequality Aq+k2q+k < (1 − δ)(4/δ) holds for k = 2, then, by monotonicity, it
holds for all k ≥ 2. Thus, all in all, when monotone sequences of sample sets are used, the

174 Constraints (2019) 24:162–182

probability that the algorithm fails is at most 4e−9t/(2b2) + e−8t/b2
, a quantity smaller than

θ for t ≥ (2b2/9) ln(5/θ).

8 Homogeneous distributions

In Section 4 we saw that if Di is an arbitrary i-uniform distribution on subsets of {0, 1}n,
then we can not say much about Boost(D, ·). On the other hand, when the subsets in the
support of Di are the codeword-sets of linear error-correcting codes, we can say a lot, due to
the symmetries present in such codes. The most important implication of these symmetries
is that for any pair σ, τ ∈ {0, 1}n, the probability that both will be codewords depends
only on their Hamming distance, a fact that can be thought of as a second-order uniformity
(homogeneity). Definition 3 below captures this idea, along with the fact that this probability
tends to decay with distance (at least up to distance n/2 – when all equations have even
length, the complement of each codeword is also a codeword, in which case there is a
symmetry around n/2).

Definition 3 Let Di be any i-uniform distribution on subsets of {0, 1}n. Say that Di is
homogeneous if there exists a function f , called the density of Di , such that for all σ, τ ∈
{0, 1}n, if R ∼ Di , then Pr[τ ∈ R | σ ∈ R] = f (Hamming(σ, τ)), where for all j < n/2
we have f (j) ≥ f (j + 1) and f (j) ≥ f (n − j).

Homogeneity allows us to bound Boost by an analysis mimicking the one in [6]. For any
S ⊂ {0, 1}n and σ ∈ S, let HS

σ (d) denote the number of elements of S at Hamming distance
d from σ . Recalling the definition of Boost in (5), we get (6) by i-uniformity and (7) by
homogeneity,

Boost(Di , M) = max
S⊆{0,1}n
|S|≥M

1

|S|(|S| − 1)

∑

σ,τ∈S
σ �=τ

Pr[σ, τ ∈ R]
Pr[σ ∈ R] Pr[τ ∈ R] (5)

= max
S⊆{0,1}n
|S|≥M

2i

|S|(|S| − 1)

∑

σ∈S

∑

τ∈S−σ

Pr[τ ∈ S | σ ∈ S] (6)

= max
S⊆{0,1}n
|S|≥M

2i

|S|(|S| − 1)

∑

σ∈S

n∑

d=1

HS
σ (d)f (d) (7)

≤ max
S⊆{0,1}n

|S|≥M

σ∈S

2i

|S| − 1

n∑

d=1

HS
σ (d)f (d) . (8)

Observe that passing from (7) to (8) amounts to allowing the sum in (8) to take its
maximum value simultaneously for every σ ∈ S. Since f is non-increasing, this sum is max-
imized when S comprises two Hamming balls with complementary centers one of which is
σ , making it clear that this simultaneous maximization is increasingly pessimistic as |S|/2n

grows.

Constraints (2019) 24:162–182 175

To get a tractable bound for Boost (reflecting the above worst-case scenario), we proceed
as follows. Let z ≤ n/2 be such that (|S| − 1)/2 = (

n
0

)+ (
n
1

)+ · · ·+ (
n

z−1

)+α
(
n
z

)
, for some

α ∈ [0, 1). Homogeneity implies (9) and (12)
∑n

d=1 HS
σ (d)f (d)

|S| − 1
≤

∑n/2
d=1 HS

σ (d)f (d) + ∑
d>n/2 HS

σ (d)f (n − d)

|S| − 1
(9)

≤
2

(∑z−1
d=0

(
n
d

)
f (d) + α

(
n
z

)
f (z)

)

|S| − 1
(10)

=
∑z−1

d=0

(
n
d

)
f (d) + α

(
n
z

)
f (z)

∑z−1
d=0

(
n
d

) + α
(
n
z

) (11)

≤
∑z−1

d=0

(
n
d

)
f (d)

∑z−1
d=0

(
n
d

) (12)

:= B(z) . (13)

To bound B(z) observe that since f (j) ≥ f (j + 1) for j < n/2 it follows that B(j) ≤
B(j + 1) for j < n/2. Thus, to bound B(z) from above it suffices to bound z for below. Let
h : x �→ −x log2 x−(1−x) log2(1−x) be the binary entropy function and let h−1 : [0, 1] →
[0, 1] map y to the smallest number x such that h(x) = y. It is well-known that

∑z
d=0

(
n
d

) ≤
2nh(z/n), for every integer 0 ≤ z ≤ n/2. Therefore, z ≥
nh−1(log2(|S|/2)/n)�, which
combined with (8) and (13) implies the following.

Theorem 5 If Di is a homogeneous i-uniform distribution with density f , then

Boost(Di ,M) ≤ 2iB

(⌈

nh−1
(

log2 M − 1

n

)⌉)

, (14)

where B(z) = ∑z−1
d=0

(
n
d

)
f (d)/

∑z−1
d=0

(
n
d

)
and h−1 : [0, 1] → [0, 1] maps y to the smallest

number x such that h(x) = y, where h is the binary entropy function.

To get a heuristic feel for (14) observe that if we did have pairwise independence, i.e.,
f (d) = 2−i for all d > 0, then for i, M such that 2−iM � 1, we would have

B(z) = 1 + 2−i
∑z−1

d=0

(
n
d

)

1 + ∑z−1
d=0

(
n
d

) ≈ 1 + 2−iM

1 + M
≈ 2−i ,

in which case the bound in (14) reads Boost(Di ,M) ≈ 1, as it should.

9 Low density parity check codes

Consider a random set R = {σ : Aσ = b}, where b ∈ {0, 1}i is uniformly random, while
A ∈ {0, 1}i×n comes from a distribution to be specified. We would like the distribution of
A to be such that both of the following hold:

(a) The (average) number of ones in each row of A is small.
(b) Even for σ, τ close in {0, 1}n it should be that Pr[τ ∈ R | σ ∈ R] is small.

We have seen that (b) is trivial to achieve if we take A to be uniformly random, but this
completely destroys (a), as the average number of ones in each row is n/2. Conversely,

176 Constraints (2019) 24:162–182

setting each entry of A to 1 independently with probability p < 1/2, achieves (a), but
sacrifices (b) dramatically as p → 0. Moreover, (b) remains problematic even if we require
each row of A (parity equation) to have exactly r ones, selected uniformly from all

(
n
r

)

possibilities (as long as r is not too large).
We confront this predicament by adding a very simple requirement, motivated by the

seminal work of Sipser and Spielman on expander codes [13]:

each column of A must have have at least 3 ones

Observe that this correlates the entries of A, breaking with the i.i.d. constructions.
Explaining why this seemingly very benign modification has profound implications on

the geometry of the set R is beyond the scope of this paper. At a high level, if each variable
appears in at least 3 equations and Aσ = 0, then changing a single variable in σ initiates a
cascade of parity violations which, due to the randomness of A, typically, only settles �(n)

away from σ , making R an error-correcting code. Low Density Parity Check (LDPC) matri-
ces are a mainstay of modern coding theory [11], forming a vast field of active research.
For the purposes of this paper it will suffice to consider the simplest possible construction,
based on matrices A ∈ {0, 1}i×n where:

(i) Every column (variable) has exactly l ≥ 3 non-zero elements.
(ii) Every row (parity constraint) has exactly r = ln/i ∈ non-zero elements.

Naturally, the requirement ln/i ∈ N does not always hold, in which case some rows have
�ln/i� variables, while the rest have
ln/i� variables, so that the average is ln/i. To
simplify discussion we ignore this point in the following.

Given n, i,and l a code is generated by selecting A uniformly at random1 among all
matrices satisfying (i)–(ii) and taking the set of codewords to be the set of solutions of the
linear system Aσ = 0. (While, for model counting we must also take the right hand side of
the equation to be a uniformly random vector, when talking about the geometric properties
of the set of codewords, due to symmetry we can assume without loss of generality that
b = 0.) In particular, note that σ = 0 is always a solution of the system and, therefore, to
discuss the remaining solutions (codewords) instead of referring to them by their distance
from our reference solution σ = 0 we can refer to them by their weight, i.e., their number
of ones.

It is well-known [11] that the expected number of codewords of weight w in a bi-regular
LDPC code is given by the following (highly implicit) expression.

Lemma 4 (Average weight-distribution of regular LDPC code ensembles) The expected
number of codewords of weight w in a bi-regular LDPC code with n variables and i par-
ity equations, where each variable appears in l equations and each equation includes r
variables equals the coefficient of xwl in the polynomial

(
n

w

)(∑
i

(
r
2i

)
x2i

)n l
r

(
nl
wl

) . (15)

We will denote the quantity described in Lemma 4 by codewords(w).

1This can be done by selecting a uniformly random permutation of size [ln] and using it to map each of the
ln non-zeros to equations; when l,r ∈ O(1), the variables in each equation will be distinct with probability
�(1), so that a handful of trials suffice to generate a matrix as desired.

Constraints (2019) 24:162–182 177

9.1 The lumpiness of LDPC codes

Let Di be the i-uniform distribution that results when R = {σ : Aσ = b}, where A

is selected uniformly at random among all matrices satisfying (i)–(ii) and b is uniformly
random. The row- and column-symmetry in the distribution of A implies that for any pair
σ, τ having Hamming distance d, the probability they are both in R is 2−if (d) where
f (d) = codewords(d)/

(
n
d

)
, making f the density of Di . It is also easy to see that if r is

even, then codewords(d) = codewords(n − d) for all d and to simplify exposition we will
restrict to that case.

We are left to establish that f (j) ≥ f (j + 1) for all 0 ≤ j < n/2. Unfortunately,
this is not strictly true for a trivial reason: in the vicinity of n/2 the function f is non-
monotone, exhibiting minuscule fluctuations (due to finite-scale-effects) around its globally
minimum value at n/2. While this prevents us from applying Theorem 5 immediately, it is
easy to overcome. Specifically, for the proof of Theorem 5 to go through it is enough that
f (j) ≥ f (j + 1) for all 0 ≤ j < z (instead of all 0 ≤ j < n/2), something which for
most sets of interest holds, as z � n/2. Thus, in order to provide a rigorous upper bound
on Boost, as required in Algorithm 3, it is enough to verify the monotonicity of f up to z

in the course of evaluating B(z). This is precisely what we did for n ∈ {100, 110, . . . , 200},
log2 M = 2n/5, l = 8, and r = 20. We present the corresponding bounds for Boost from
(14) in Table 1 below.

Several comments are due here. First, the non-monotonicity of the bound is due to the
interaction of several factors in (14), most anomalous of which is the ceiling. Second, it is
instructive to compare the number of solver invocations necessary for a rigorous approxima-
tion based on these bounds vs. what would be needed if we had pairwise independence for
some reasonable parameter values. For example, for δ = 1/3, θ = 10−3, writing B = 1+q,
it is not hard to see that the number of iterations in line 9 of Algorithm 3 increases by a
factor close to (16q)2. While this is a rather dispiriting slowdown, there are two important
points to keep in mind.

– The bounds in Table 1 enable rigorous model count approximation using systems with
40 − 80 parity equations of length 20 over n ∈ [100, 200] variables. While the number
of solver invocations is very large, each invocation is quite fast and the invocations can
be run in parallel. In contrast, when equations of length n/2 are used, systems of this
size are completely outside the reach of CryptoMiniSAT.

– The bounds in Table 1 appear to be extremely pessimistic. As we demonstrate experi-
mentally in Section 10, the statistical behavior of LDPC constraints in practice appears
indistinguishable from that of long parity constraints.

10 Experiments

The goal of this section is to demonstrate empirically the promise of using systems of parity
equations corresponding to LDPC codes for model counting. To do this we will employ such
systems while making far fewer solver invocations than what is mandated by our theoretical

Table 1 Upper bounds for Boost for equations of length 20

n 100 110 120 130 140 150 160 170 180 190 200

Boost 75 50 35 26 134 89 60 44 34 154 105

178 Constraints (2019) 24:162–182

bounds for a rigorous approximation. The reason we do this is because we believe that while
the error-probability analysis of Theorems 3 and 4 is not too far off the mark, the same can
not be said for Theorem 5, providing our rigorous upper bound on Boost. So, until better
such bounds are derived, we can try to demonstrate the good statistical properties of these
systems empirically.

To make the demonstration as transparent as possible, we modify the state of the art
approximate model counter ApproxMC2, which uses long parity equations and always gives
rigorous results, as follows.

– We incorporate Algorithm 2 with LDPC constraints and run it first. The lower bound
derived replaces the (trivial) original starting point for ApproxMC2.

– We replace all systems of long parity equations used by ApproxMC2 with sparse
systems corresponding to LDPC codes.

Algorithm 2 is invoked at most once, while the change in the systems of equations is entirely
encapsulated in the part of the code generating the random systems. No other changes to
ApproxMC2 (AMC2) were made.

Naturally, the results returned by the modified algorithm are not rigorous. Neverthe-
less, on all formulas for which the original AMC2 terminates, we use its (rigorous) output as
a control for the output of the modified algorithm. Indeed, to illuminate the bigger picture,
besides AMC2 we also included in the comparison the exact model counter sharpSAT of
Thurley [16], and a modification of the modified algorithm in which the LDPC constraints
are replaced by random sparse constraints, where each equation involves each variable inde-
pendently with probability p = 1/2j , for j = 2, . . . , 5. (Recall that AMC2 uses j = 1).
The resulting algorithm is thus similar to the main algorithm of [7], which also uses sparse
systems with independent entries.

We consider the same 387 formulas as [4]. Among these are 2 unsatisfiable formulas,
which we removed. We also removed 9 formulas that were only solved by sharpSAT and
10 formulas whose number of solutions (and, thus, equations) is so small that the LDPC
equations devolve into long XOR equations. Of the remaining 366 formulas, sharpSAT
solves 233 in under 1 second, in every case significantly faster than all approximate methods.
At the other extreme, 46 formulas are not solved by any method within the given time limits,
namely 8 hours per method-formula pair (and 50 minutes for each solver invocation for the
sampling based algorithms). We report on the remaining 87, most interesting, formulas. All
experiments were run on a modern cluster of 13 nodes, each with 16 cores and 128GB RAM.

Our findings can be summarized as follows:

1. The LDPC-modified version of AMC2 did not time out on any formula. In contrast,
sharpSAT timed out on 38% of the formulas and AMC2 on 62%.

2. In every formula the count returned by the LDPC-modified version of AMC2 is very
close to the count returned by sharpSAT and/or AMC2.

3. The counts with p = 1/4 are as accurate as with p = 1/2. But for p ≤ 1/8, the counts
are very often significantly wrong and we don’t report results for such p.

4. The LDPC-modified version of AMC2 is faster than AMC2 in all but one formulas, the
speedup typically exceeding 10x and often exceeding 50x.

5. When both sharpSAT and the LDPC-modified version of AMC2 terminate, more
often than not sharpSAT is faster. That said, speed victories of a factor of 50x occur
for both algorithms.

In Table 2, the first four numerical columns report the binary logarithm of the estimate of
|S| returned by each algorithm. The next four columns report the time taken to produce the

Constraints (2019) 24:162–182 179

estimate, in seconds. We note that several of the 87 formulas come with a desired sampling
set, i.e., a subset of variables V such that the goal is to count the size of the projection of the
set of all models on V . Since, unlike AMC2, sharpSAT does not provide such constrained
counting functionality, to avoid confusion, we do not report a count for sharpSAT for
these formulas, writing “—” instead. Timeouts are reported as “NA”.

Table 2 Estimates of log2 |# models| by different methods, followed by their corresponding time in seconds

Formula name #SAT LDPC AMC2 1/4 #SAT LDPC AMC2 1/4

jburnim morton.sk 13 530 NA 248.49 NA NA NA 27826.4 NA NA

blasted case37 NA 151.02 NA NA NA 4149.9 NA NA

blasted case 0 b12 even1 NA 147.02 NA NA NA 1378.8 NA NA

blasted case 2 b12 even1 NA 147.02 NA NA NA 1157.5 NA NA

blasted case42 NA 147.02 NA NA NA 1008.0 NA NA

blasted case 1 b12 even1 NA 147.02 NA NA NA 1102.0 NA NA

blasted case 0 b12 even2 NA 144.02 NA NA NA 881.6 NA NA

blasted case 1 b12 even2 NA 144.02 NA NA NA 1156.3 NA NA

blasted case 2 b12 even2 NA 144.02 NA NA NA 1050.5 NA NA

blasted case 3 4 b14 even NA 138.02 NA NA NA 293.4 NA NA

blasted case 1 4 b14 even NA 138.02 NA NA NA 472.6 NA NA

log2.sk 72 391 — 136.00 NA NA — 12811.1 NA NA

blasted case1 b14 even3 NA 122.02 NA NA NA 169.6 NA NA

blasted case 2 b14 even NA 118.02 NA NA NA 89.2 NA NA

blasted case3 b14 even3 NA 118.02 NA NA NA 107.7 NA NA

blasted case 1 b14 even NA 118.02 NA NA NA 94.7 NA NA

partition.sk 22 155 NA 107.17 NA NA NA 5282.3 NA NA

sc tr delete4.sb.pl.sk 4 114 — 105.09 NA NA — 708.4 NA NA

blasted case140 NA 103.02 NA NA NA 1869.0 NA NA

sc tr search.sb.pl.sk 11 136 NA 96.46 NA NA NA 3314.2 NA NA

s1423a 7 4 90.59 90.58 NA NA 6.2 32.4 NA NA

s1423a 3 2 90.16 90.17 NA NA 5.7 28.3 NA NA

s1423a 15 7 89.84 89.83 NA NA 13.6 44.8 NA NA

sc tr delete1.sb.pl.sk 3 114 — 89.15 NA NA — 431.3 NA NA

blasted case 0 ptb 2 NA 88.02 NA NA NA 463.6 NA NA

blasted case 0 ptb 1 NA 87.98 NA NA NA 632.0 NA NA

sc tr delete2.sb.pl.sk 8 114 — 86.46 NA NA — 210.3 NA NA

sc aig traverse.sb.pl.sk 5 102 NA 86.39 NA NA NA 3230.0 NA NA

54.sk 12 97 82.50 81.55 NA NA 20.4 235.8 NA NA

blasted case 0 b14 1 79.00 79.09 NA NA 28.8 33.5 NA NA

blasted case 2 ptb 1 NA 77.02 NA NA NA 10.1 NA NA

blasted case 1 ptb 1 NA 77.02 NA NA NA 9.5 NA NA

blasted case 1 ptb 2 NA 77.02 NA NA NA 17.8 NA NA

blasted case 2 ptb 2 NA 77.00 NA NA NA 25.0 NA NA

blasted squaring70 66.00 66.04 NA NA 5822.7 87.7 NA NA

blasted case19 66.00 66.02 NA NA 25.1 6.9 NA NA

blasted case20 66.00 66.02 NA NA 2.0 4.4 NA NA

blasted case15 65.00 65.02 NA NA 172.3 12.4 NA NA

blasted case10 65.00 65.02 NA NA 209.8 8.8 NA NA

180 Constraints (2019) 24:162–182

Table 2 (continued)

Formula name #SAT LDPC AMC2 1/4 #SAT LDPC AMC2 1/4

blasted TR b12 2 linear NA 63.93 NA NA NA 1867.1 NA NA

blasted case12 NA 62.02 NA NA NA 21.5 NA NA

blasted case49 61.00 61.02 NA NA 8.9 15.6 NA NA

blasted TR b12 1 linear NA 59.95 NA NA NA 767.9 NA NA

sc tr insert insert.sb.pl.sk 3 68 — 51.86 NA NA 12.1 54.3 NA NA

blasted case18 NA 51.00 NA NA NA 16.7 NA NA

blasted case14 49.00 49.07 NA NA 117.2 7.6 NA NA

blasted case9 49.00 49.02 NA NA 123.6 7.1 NA NA

blasted case61 48.00 48.02 NA NA 154.2 6.7 NA NA

ProjectService3.sk 12 55 — 46.55 46.58 46.55 — 12.9 273.4 267.1

blasted case145 46.00 46.02 NA 46.02 29.2 8.4 NA 5570.4

blasted case146 46.00 46.02 46.02 NA 29.3 4.8 9528.6 NA

ProcessBean.sk 8 64 — 42.83 42.91 42.83 — 17.0 323.2 207.3

blasted case106 42.00 42.02 42.02 42.02 10.2 3.3 325.0 14728.3

blasted case105 41.00 41.00 41.04 NA 7.5 4.0 368.5 NA

blasted squaring16 40.76 40.83 NA 41.07 99.4 50.3 NA 1633.3

blasted squaring14 40.76 40.70 NA 41.00 102.1 34.3 NA 2926.5

blasted squaring12 40.76 40.61 NA 41.00 117.3 39.6 NA 1315.6

blasted squaring7 38.00 38.29 38.00 38.11 45.4 34.9 432.4 263.2

blasted squaring9 38.00 38.04 37.98 38.15 36.3 24.2 489.8 238.6

blasted case 2 b12 2 38.00 38.02 38.02 38.00 29.3 4.4 186.8 87.2

blasted case 0 b11 1 38.00 38.02 38.02 38.04 45.5 2.5 190.4 180.7

blasted case 0 b12 2 38.00 38.02 38.02 38.02 29.2 3.8 181.1 69.9

blasted case 1 b11 1 38.00 38.02 38.02 37.81 45.2 3.5 159.5 119.2

blasted case 1 b12 2 38.00 38.02 38.02 38.02 30.6 2.9 185.3 80.0

blasted squaring10 38.00 38.02 37.91 38.04 17.6 32.0 415.1 221.7

blasted squaring11 38.00 37.95 38.02 38.09 19.8 19.7 470.1 207.3

blasted squaring8 38.00 37.93 38.09 39.00 18.6 28.0 431.5 727.8

sort.sk 8 52 — 36.43 36.43 36.36 — 92.0 339.2 156.8

blasted squaring1 36.00 36.07 36.07 36.00 6.6 20.0 367.8 156.9

blasted squaring6 36.00 36.04 36.00 35.93 8.5 17.1 429.1 170.5

blasted squaring3 36.00 36.02 36.02 36.02 7.7 18.7 397.3 198.5

blasted squaring5 36.00 35.98 36.02 36.04 8.5 28.8 384.0 228.2

blasted squaring2 36.00 35.98 36.00 36.07 7.5 30.6 411.5 195.8

blasted squaring4 36.00 35.95 36.04 35.98 7.9 23.2 469.8 180.0

compress.sk 17 291 NA 34.00 NA NA NA 1898.2 NA NA

listReverse.sk 11 43 NA 32.00 32.00 32.00 NA 2995.3 2995.3 2995.7

enqueueSeqSK.sk 10 42 NA 31.49 31.39 31.43 NA 67.6 252.0 124.6

blasted squaring29 26.25 26.36 26.29 26.39 1.3 42.7 218.7 75.2

blasted squaring28 26.25 26.32 26.36 26.36 1.9 57.6 185.1 59.0

blasted squaring30 26.25 26.25 26.29 26.17 1.6 40.9 179.8 60.8

tutorial3.sk 4 31 NA 25.29 25.32 25.25 NA 3480.5 19658.2 2414.7

blasted squaring51 24.00 24.11 24.15 24.07 1.6 4.8 49.3 5.3

Constraints (2019) 24:162–182 181

Table 2 (continued)

Formula name #SAT LDPC AMC2 1/4 #SAT LDPC AMC2 1/4

blasted squaring50 24.00 23.86 24.00 24.02 1.3 4.7 54.2 5.1

N S Impl2.sk 10 36 — 22.64 22.49 22.55 — 13.7 29.6 9.6

karatsuba.sk 7 41 — 20.36 NA 20.52 — 24963.0 NA 19899.0

LoginService.sk 20 34 — 19.49 19.39 19.43 — 28.1 33.0 20.7

LoginService2.sk 23 36 — 17.55 17.43 17.43 — 72.9 40.8 32.6

11 Conclusions

We have separated the problem of probabilistically approximating the size of the set, S(F),
of all models of a CNF formula F , into two problems and shown that deriving rigorous lower
bounds does not require controlling the geometry of the random subsets used for sampling.
At the same time, we have shown that to derive rigorous upper bounds it is enough to control
the geometry of the sampling subsets over extents of size similar to |S(F)|, a task that gets
easier with increasing model density.

Motivated by this separation we introduced the idea of using as sampling subsets the
codeword sets of Low Density Parity Check codes and proved that they yield rigorous model
counts, with a number of solver invocations that grows (quickly) with their deviation from
pairwise independence. Finally, we demonstrated experimentally that this deviation may be
much smaller than indicated by our bounds for it.

We believe that developing tighter mathematical bounds for the deviation of LDPC codes
from pairwise independence is a fertile direction for future research and that success in this
endeavor would greatly promote the adoption of such codes as general sampling devices.
At the same time, since rigorous lower bounds for model counting do not require further
theoretical advances, another direction for future research is the exploration of more sophis-
ticated LDPC ensembles, e.g., to see if properties useful in the context of communications
are also helpful in the context of model counting.

Acknowledgements We are grateful to Kuldeep Meel and Moshe Vardi for sharing their code and for-
mulas and for several valuable conversations. We also thank Zayd Hammoudeh, Ben Sherman, and Kostas
Zampetakis for several comments on earlier versions.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Achim, T., Sabharwal, A., Ermon, S. (2016). Beyond parity constraints: Fourier analysis of hash func-
tions for inference. In M. Balcan, & K.Q. Weinberger (Eds.) Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, JMLR Work-
shop and Conference Proceedings, (Vol. 48 pp. 2254–2262). JMLR.org. http://jmlr.org/proceedings/
papers/v48/achim16.html.

2. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y. (2014). Distribution-aware sam-
pling and weighted model counting for SAT. In Brodley, C.E., & Stone, P. (Eds.) Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence (pp. 1722–1730). Québec City: AAAI Press.
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364.

3. Chakraborty, S., Meel, K.S., Vardi, M.Y. (2013). A scalable approximate model counter. In Schulte,
C. (Ed.) Principles and Practice of Constraint Programming - 19th International Conference, CP

http://jmlr.org/proceedings/papers/v48/achim16.html
http://jmlr.org/proceedings/papers/v48/achim16.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364

182 Constraints (2019) 24:162–182

2013, Uppsala, Proceedings, Lecture Notes in Computer Science, (Vol. 8124 pp. 200–216): Springer.
https://doi.org/10.1007/978-3-642-40627-0 18.

4. Chakraborty, S., Meel, K.S., Vardi, M.Y. (2016). Algorithmic improvements in approximate counting for
probabilistic inference: From linear to logarithmic SAT calls. In Kambhampati, S. (Ed.) Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016 (pp. 3569–3576).
New York: IJCAI/AAAI Press. http://www.ijcai.org/Abstract/16/503.

5. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B. (2013). Taming the curse of dimensionality: Discrete
integration by hashing and optimization. In Proceedings of the 30th international conference on machine
learning (ICML).

6. Ermon, S., Gomes, C.P., Sabharwal, A., Selman, B. (2014). Low-density parity constraints for hashing-
based discrete integration. In Proceedings of the 31st international conference on machine learning
(ICML) (pp. 271–279).

7. Gomes, C.P., Hoffmann, J., Sabharwal, A., Selman, B. (2007). Short XORs for model counting: From
theory to practice. In Theory and applications of satisfiability testing (SAT) (pp. 100–106).

8. Gomes, C.P., Sabharwal, A., Selman, B. (2006). Model counting: a new strategy for obtaining good
bounds. In Proceedings of the 21st national conference on artificial intelligence (AAAI) (pp 54–61).

9. Ivrii, A., Malik, S., Meel, K.S., Vardi, M.Y. (2016). On computing minimal independent support and its
applications to sampling and counting. Constraints, 21(1), 41–58. https://doi.org/10.1007/s10601-015-
9204-z.

10. Meel, K.S., Vardi, M.Y., Chakraborty, S., Fremont, D.J., Seshia, S.A., Fried, D., Ivrii, A., Malik, S.
(2016). Constrained sampling and counting: Universal hashing meets sat solving. In Workshops at the
thirtieth AAAI conference on artificial intelligence.

11. Richardson, T., & Urbanke, R. (2008). Modern coding theory. New York: Cambridge University Press.
12. Sipser, M. (1983). A complexity theoretic approach to randomness. In Proceedings of the 15th ACM

symposium on theory of computing (STOC) (pp 330–335).
13. Sipser, M., & Spielman, D.A. (1996). Expander codes. IEEE Transactions on Information Theory, 42(6),

1710–1722. https://doi.org/10.1109/18.556667.
14. Soos, M. (2009). Cryptominisat–a sat solver for cryptographic problems. http://www.msoos.org/

cryptominisat4.
15. Stockmeyer, L. (1985). On approximation algorithms for Ṗ. SIAM Journal on Computing, 14(4), 849–

861.
16. Thurley, M. (2006). Sharpsat: Counting models with advanced component caching and implicit bcp. In

Proceedings of the 9th International Conference on Theory and Applications of Satisfiability Testing,
SAT’06 (pp. 424–429). Berlin: Springer. https://doi.org/10.1007/11814948 38.

17. Valiant, L., & Vazirani, V. (1986). NP is as easy as detecting unique solutions. Theoretical Computer
Science, 47, 85–93.

18. Zhao, S., Chaturapruek, S., Sabharwal, A., Ermon, S. (2016). Closing the gap between short and long
xors for model counting. In Schuurmans, D., & Wellman, M.P. (Eds.) Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence (pp. 3322–3329). Phoenix: AAAI Press. http://www.aaai.org/ocs/
index.php/AAAI/AAAI16/paper/view/12546.

https://doi.org/10.1007/978-3-642-40627-0_18
http://www.ijcai.org/Abstract/16/503
https://doi.org/10.1007/s10601-015-9204-z
https://doi.org/10.1007/s10601-015-9204-z
https://doi.org/10.1109/18.556667
http://www. msoos. org/cryptominisat4
http://www. msoos. org/cryptominisat4
https://doi.org/10.1007/11814948_38
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12546
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12546

	Model counting with error-correcting codes*1pt
	Abstract
	Abstract
	Introduction
	Previous work
	Lower bounds are easy
	The efficacy of Algorithm 1
	Dealing with timeouts
	Searching for a lower bound

	What does it take to get a good lower bound?
	Rigorous counting without pairwise independence
	Proof of Theorem 3
	Nested sample sets
	Homogeneous distributions
	Low density parity check codes
	The lumpiness of LDPC codes

	Experiments
	Conclusions
	References

