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ABSTRACT: Let k be a fixed integer and f,(n, p) denote the probability that the random
graph G(n, p) is k-colorable. We show that for k > 3, there exists d,(n) such that for any
e€e>0,

diy(n)—e
limfk(n,L)=1, and lim f,
n
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(n’ dk(nn)+e)

As a result we conclude that for sufficiently large n the chromatic number of G(n,d/n)
is concentrated in one value for all but a small fraction of d > 1. © 1999 John Wiley & Sons,
Inc. Random Struct. Alg., 14, 63-70, 1999
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1. INTRODUCTION

Let G(n,p) denote the random graph on n vertices where each edge appears
independently with probability p = p(n) [4]. We will say that G(n, p) has a property
A almost surely (a.s.) if the probability it has A4 tends to 1 as n tends to infinity.
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Let x(G) denote the chromatic number of a graph G. Shamir and Spencer [11]
proved that for every constant « > 3, if p=O(n"*) then the chromatic number of
G(n, p) is almost surely concentrated in some fixed number of values. That is,
there exists a function ¢ =1t(n, p) and a constant s =s(a), which is at most the
smallest integer strictly larger than 2« + 1) /(2 — 1), such that a.s. ¢ < y(G(n, p))
<t+s. A further step in this direction was made by Luczak [8] who showed that if
a>2, then s(a)=2, ie., x(G(n,p)) is as. two point concentrated. It is not
difficult to see that the two point width of the concentration interval is best
possible for general p. Finally, Alon and Krivelevich [1] proved two point concen-
tration for a = 1 + §, for any 8> 0.

In a recent paper [5] the second author proved a necessary and sufficient
condition for a monotone graph property to have a sharp threshold (for a definition
see Section 2). In this paper, we use this condition to prove that k-colorability has a
sharp threshold, for every constant k> 3. The main result we present is the
following.

Theorem 1.1. Let f,(n, p) denote the probability that the random graph G(n, p) is
k-colorable. For every constant k > 3, there exists d,(n) such that for any € > 0,

(n’ d(n) —e (n’dk(n)+e

lim £,

n— o

)=1, and lim f,

n— o

Note that the theorem does not hold for k =2. To see this, consider G(n,c/n),
when ¢ € (0,1). The probability that the random graph contains an odd cycle, and
is thus non-2-colorable, is bounded away from 0 for any ¢ >0, but it is also
bounded away from 1 for any ¢ < 1. In the terminology we will introduce shortly,
non-2-colorability has a coarse threshold.

Remark 1.2. We believe that for all k > 3, d,(n) converges. However, we are not
able to prove this and it remains an interesting open problem.

Since for d > 1, a.s. 3 < x(G(n,d/n)) = O(d) the existence of the limit of d,(n)
would imply one point concentration of x(G(n,d/n)) for all, but a vanishing
fraction of d > 1. Nonetheless, Theorem 1.1 implies the following:

Corollary 1.3. Let € > 0 be some constant. For a given n, define a number x > 1 to
be bad if the chromatic number of G(n, x /n) is not determined with probability greater
than 1 — €, that is, Yk, Prl x(G(n,x/n)) =kl<1—¢€. For y>1 define X} ={x:
1<x<y, and x is bad}.
For every € > 0, and every y,
lim m(X?) =0,

n— o

where m is the Lebesgue measure.

Note that the bad xs are exactly those for which x/n belongs to the threshold
interval for the property of non-k-colorability for some k.
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2. PRELIMINARIES

Let us introduce some terminology. A property is a nontrivial, proper subset of the
set of all labeled graphs. We only consider properties that are invariant (closed)
under graph automorphisms. We say that A is a monotone property if whenever a
graph G has (is in) 4 and G is a subgraph of a graph H then H also has A. For a
monotone graph property A let

w(p) = u(A,n, p) = Pr[G(n, p) has property A].

Note that u(p) is a polynomial in p, monotone in [0,1], such that w(0) =0 and
w(1) = 1. Hence, for fixed n and 0 < 7 <1 we can define p,, p,, p; by

w(po) =17,
w(p.) =1,
p(p)=1-r.

We call [ p, p,] the threshold interval and define 6 = 6(7) = p, —p,. We say that a
property A has a sharp threshold if for all > 0 the ratio 6(7)/p, tends to 0 as n
tends to infinity. If for some 7> 0, the ratio 8(7)/p, is bounded away from 0 we
say that A has a coarse threshold. Clearly, these two cases are not exhaustive as the
ratio 6/p, could “oscillate” with n.

In [5] the second author gives necessary and sufficient conditions for a graph
property to have a coarse threshold. Roughly speaking, a graph property with a
coarse threshold can be approximated by the property of having a subgraph
isomorphic to a graph from a fixed list of graphs. Another necessary condition for a
property to have a coarse threshold, aimed at helping prove “by contradiction” that
the threshold is in fact sharp, is Theorem 2.1, which we use. Note that if A has a
coarse threshold, i.e., there exists a constant C such that for all n,6/p.>1/C
then for every n there exists p* within the threshold interval such that

du

p¥— <C.
dp p=p*

For given n,p, and a fixed graph H, let Ex(H, p) = Ex(H, p,n) denote the
expected number of copies of H in G(n, p). Recall that a balanced graph is one for
which the average degree is no smaller than that of any of its subgraphs.

Theorem 2.1 [5]. Let 6> 0. There exist functions B(e,C), b,(€,C), b,y(e,C) such
that for all n, p*, C, and €, and any monotone graph property A such that
8<u(p*)<1—=38andp*-du/dpl,_,« < C here exists a graph H with no more than
B edges such that

e H is balanced

e b, <Ex(H, p*) <b,

e Let Pr[ A | H] denote the probability that G € G(n, p*) belongs to A conditional
on the appearance of a specific copy of H in G. Then

Pr[AIH]>1—e.
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Note that conditioning on the appearance of, say, a triangle in G(n, p) is not the
same as conditioning on the appearance of three specific edges (i, j),(j, k), (k,i).

3. THE PROOF

The idea of the proof is as follows. For fixed k, assuming a not sharp threshold for
non-k-colorability we have from Theorem 2.1 the existence of a graph H such that
adding it to G(n, p) changes the probability of k-colorability significantly. We
compare the effect of such a graph to the effect of adding a large set of random
edges to G(n, p). We show that the random edges a.s. have no effect on the
k-colorability of the graph, but their effect is comparable to the effect of H, thus
reaching a contradiction.

Let us start by considering a slightly different model of random graphs. In this
model we first choose each edge independently with probability p, exactly as in
G(n, p). Then we “add” M random edges, i.e., we pick uniformly at random M
pairs of vertices, and for each one of them we add the corresponding edge if it does
not already exist (otherwise we do nothing). For a monotone graph property A4, let
w(p,M)=u"(A,n,p, M) denote the probability that the resulting graph,
G(n, p, M), has property A and recall that w(p) denotes the probability that
G(n, p) has A. The following observation is simple but very useful. Let N = (;)

Lemma 3.1. For any monotone graph property A, if M =o0(y/Np) then | u(p) —
w Cp, M) =o(1).

Proof. Keeping in mind that the number of edges in G(n,p) has binomial
distribution with variance o?=Np(1 —p) it seems plausible that for M=
o(\/Np(l —p)), adding M random edges cannot make much of a difference,
however a direct calculation of this is somewhat cumbersome. Instead, we find the
property which is most sensitive to changes in the value of p and use it to prove
our bound. Let A4, denote the number of graphs on n vertices that have property
A and have precisely k edges. Then

n(p) =LA p(1-p)" 7, (1)
and hence
dl“l’ 1 k N—k
E=mzf4kp (L-p)" "(k—Np). (2)

Upon inspecting (2), we see that for any p € [0, 1] every graph with k£ < Np edges
has negative contribution to du/dp at p while every graph with k> Np has
nonnegative. Thus, the monotone property with the greatest derivative at p is the
property B of “having at least Np edges.” For a monotone property 4 and an edge
e, let 1,(A,n, p) denote the probability of the following: after all other edges
appear in the random graph on n vertices independently and with probability p,
the appearance or nonappearance of e determines whether the graph has property
A. Russo’s formula (see [9, 10]) gives

d
d—§= Y 1,(A,n,p). (3)
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By symmetry, I,(B, n, p) is identical for all edges e and equal to the probability
that prior to determining the status of e, exactly [ Np — 1] edges have appeared.
Since the number of edges in G(n, p) has binomial distribution it follows that
I(B)=0(1/+/Np) and thus, by (3), that for any monotone property du/dp =
OW/N/p). Thus, if [p —p'| =0(yp/N) then | u(p) — u(p)l = o(D).

Assume now that the lemma is false and, hence, for some choice of M = o(y/Np)
and €> 0, we have | u(p) — u"(p, M)| > €, for all sufficiently large n. Let us set
p'=p+ AM /N and assume the dynamic point of view of the random graph process
(i.e., G(n, p) cG(n, p')). For A sufficiently large, but independent of n, G(n, p')
has at least M more edges than G(n, p), with probability greater than 1 — €/2. On
the other hand, for any constant A, if M =o0(;/Np) then |p —p'|=0(;/p/N) and
hence,

€ €
[w(p) —p" (P, M) <5+ u(p) = m(p)| =75 +o(1),
a contradiction. [ |

The following lemma compares the effect of certain constraints placed on the
coloring of a random graph with the effect of adding a set of random edges.

Lemma 3.2. Let A be the property of non-k-colorability, 0 < 7 <1 a constant and p
such that w(p) <1— 7. Assume that for a list of colors cy,...,c,, where each
c;e{1,...,k}, the following is true: if we pick vertices wy,...,w,, uniformly at
random the probability that G(n, p) has a k-coloring Where each w; receives a color
other than c; is not greater than 7/2. Then for M' = M2 ut(p, M') >1—-17/2.

Proof. The experiment we consider consists of first choosing G(n, p) and then
choosing, sequentially, the M vertices (constraints). Saying that, subject to the
constraints, the probability of k-colorability is at most 7/2, means that conditioning
on G(n, p) being k-colorable, the constraints spoil k-colorability with probability at
least 1. Let & denote the event that there is no legal k-coloring consistent with
the first i constraints. Thus, conditioning on G(n, p) being k-colorable, i.e., &,

Pr[%’Mq]JrPr[%’Mlm]Pr[m] > 3. (4)

Note that Pr[&,,|&,,_,] is the expected value of the fraction of vertices that must
receive color c,, after the first M — 1 constraints are imposed. Moreover, an edge
between any two such vertices spoils k-colorability. Hence, if instead of the last
constraint we add an edge at random, the probability of non-k-colorability would
be

A=Pr&, ]+ (Pr[&, B ) (1 - o(l))Pr[ém]-

Subject to (4), A is minimized when Pr[&,,_,] =0, and hence A > ; — o(1). Clearly,
adding the random edge before the M — 1 constraints has the same effect. Thus, we
can repeat the argument M times and since the probability of non-k-colorability is
essentially squared in each iteration, we get that, conditioning on &, after adding
M random edges the probability of non-k-colorability is at least 2~ 2" o(1).
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Hence, addin% M2*" edges yields noncolorability with probability at least 1, ie.,
for M'=M2>", u*(p,M')>1—1/2. [ |

Proof of Theorem 1.1. Let A be the property of non-k-colorability and assume, for
the sake of contradiction, that A4 does not have a sharp threshold. That is, there
exists a constant C and an infinite sequence of integers {n;} where for each of them
there is p* = p*(n;) inside A’s threshold interval such that

du
dp p=p*

p* <C. (5)

In the following, asymptotics are meant with respect to {n;} yet, for the sake of
simplicity, we retain the standard asymptotic parlance. Let w(p*)=1-— 7, for
some 7> 0. If in Theorem 2.1 we take € = 7/3, it follows that there exists a fixed
graph H, such that b, < Ex(H, p*) <b,, for some positive constants b,,b, and
such that

T

Pr{AIH]>1- 7 (6)

That is, the appearance of a specific copy of H lowers the probability of G(n, p*)
being k-colorable from 7 to less than 7/3, or stated differently, conditioning on
G(n, p) being k-colorable the additional copy of H spoils this with probability at
least 2.

The first thought that comes to mind is that this does not lead to a contradiction
since H may be a non-k-colorable graph. However, from the characterization of H
given in Theorem 2.1 we may assume that this is not the case. To see this, first note
that by an application of the first moment method [3] it follows that G(n,d/n) is
a.s. non-k-colorable for d > 2k log k, and hence p* = O(n~!). Moreover, observe
that any non-k-colorable graph 7' must contain a subgraph S of minimum degree
at least k. Since p* = O(n~'), H is balanced, and Ex(H, p*) > b,, every subgraph
of H must have average degree at most 2, so we may assume H is k-colorable (or
even 3-colorable). (This point also reflects why non-2-colorability has a coarse
threshold. For k =2, we cannot assume that H is 2-colorable as, for example, K,
has positive probability of appearing in the vicinity of p,.)

Now, fix any k-coloring V,,...,V, of the vertices of H and consider the graph R
formed by taking a copy of K, and joining all the vertices in V] to all the vertices of
K, other than i. Clearly, R contains H as a subgraph and is uniquely k-colorable.
By positive correlation of increasing events the probability of k-colorability condi-
tioned on the appearance of a specific copy of R is even smaller than the
probability conditioned on the appearance of a specific copy of H. (The probability
space of all graphs containing a fixed copy of some graph with the measure induced
by the conditional probability is a product space in which the FKG inequalities
hold, (see [6]). Thus, without loss of generality, we can condition on R appearing in
the random graph instead of H. Finally, consider the random graph Gg(n, p*) on
n vertices where we first add edges deterministically so that vertices vy,...,0,
induce a copy of R and then we have every other edge appear with probability p*.
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Thus, by (6), the probability that Gr(n, p*) is non-k-colorable is greater than
1—86/3. We will show that this leads to a contradiction.

The subgraph induced by v,,,...,v, is k-colorable with probability at least 7
(we say at least since this subgraph has fewer than n vertices). Also, since r is a
constant and p* = O(n~'), we have that a.s. there are no edges added between
vertices vy,...,0,. If v is the number of edges between v,,...,v, and v,, ,...,0,
then E[v] is bounded and hence there exists a constant M such that Pr(v < M) < %
Moreover, it is straightforward to show that these edges a.s. do not have any

endpoints in common besides v,,...,r,. From this it follows that in G(n —r, p*) if
we choose at random M vertices wy,...,w,, from v,, ,...,v, and for each one of
them forbid a color (that of its unique neighbor in v,,...,v,), this decreases the

probability of having a k-coloring consistent with these constraints from at least 7
to no more than 7/2. By Lemma 3.2, adding m2%" = O(1) random edges instead,
would reduce the probability by the same amount. Since

7 ("5 7) - om

this contradicts Lemma 3.1. [ |

3.1. Concluding Remarks

When k =k(n) - © as n — «, Noga Alon and Michael Krivelevich pointed out to
us that, while a sharp threshold can be shown using the results in [7], our approach
yields a very short proof of this fact. Let us construct the random graph containing
a specific copy of H by first including every edge with probability p* and then
adding a copy of H on a randomly chosen set of vertices. It is well-known that if
k— oo as n—>o, and p=p(n) is such that Pr[ y(G(n, p)) = k] = € then a.s. the
largest independent set of G(n, p) has size o(n). Thus, a.s. every k-coloring of
G(n, p*) has color classes of size o(n). As a result, when we add H as. all its
vertices end up in distinct color classes implying that the addition of H can only
decrease the probability of k-colorability by o(1).

The immediate open problem is determining whether d,(n) converges.
Equivalently, one could also consider the existence of lim, . f.(n,d/n) when
d # sup{d|lim, _, ., f,(n,d/n) = 1}. Much more ambitiously, one could also try to
determine the value of lim d,(n). Also of interest is to try and apply these

n— o

techniques to the analogous question for choosability.
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