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A Sharp Threshold for k-Colorability
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Ž .ABSTRACT: Let k be a fixed integer and f n, p denote the probability that the randomk
Ž . Ž .graph G n, p is k-colorable. We show that for kG3, there exists d n such that for anyk

e)0,

d n ye d n qeŽ . Ž .k k
lim f n , s1, and lim f n , s0.k kž / ž /n nnª` nª`

Ž .As a result we conclude that for sufficiently large n the chromatic number of G n, drn
is concentrated in one value for all but a small fraction of d)1. Q 1999 John Wiley & Sons,
Inc. Random Struct. Alg., 14, 63]70, 1999
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1. INTRODUCTION

Ž .Let G n, p denote the random graph on n vertices where each edge appears
Ž . w x Ž .independently with probability psp n 4 . We will say that G n, p has a property

Ž .A almost surely a.s. if the probability it has A tends to 1 as n tends to infinity.
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Ž . w xLet x G denote the chromatic number of a graph G. Shamir and Spencer 11
1 yaŽ .proved that for every constant a) , if psO n then the chromatic number of2

Ž .G n, p is almost surely concentrated in some fixed number of values. That is,
Ž . Ž .there exists a function ts t n, p and a constant sss a , which is at most the

Ž . Ž . Ž Ž ..smallest integer strictly larger than 2aq1 r 2ay1 , such that a.s. tFx G n, p
w xF tqs. A further step in this direction was made by Łuczak 8 who showed that if

5 Ž . Ž Ž ..a) , then s a s2, i.e., x G n, p is a.s. two point concentrated. It is not6

difficult to see that the two point width of the concentration interval is best
w xpossible for general p. Finally, Alon and Krivelevich 1 proved two point concen-

1tration for as qd , for any d)0.2
w xIn a recent paper 5 the second author proved a necessary and sufficient

Žcondition for a monotone graph property to have a sharp threshold for a definition
.see Section 2 . In this paper, we use this condition to prove that k-colorability has a

sharp threshold, for every constant kG3. The main result we present is the
following.

Ž . Ž .Theorem 1.1. Let f n, p denote the probability that the random graph G n, p isk
Ž .k-colorable. For e¨ery constant kG3, there exists d n such that for any e)0,k

d n ye d n qeŽ . Ž .k k
lim f n , s1, and lim f n , s0.k kž / ž /n nnª` nª`

Ž .Note that the theorem does not hold for ks2. To see this, consider G n, crn ,
Ž .when cg 0, 1 . The probability that the random graph contains an odd cycle, and

is thus non-2-colorable, is bounded away from 0 for any c)0, but it is also
bounded away from 1 for any c-1. In the terminology we will introduce shortly,
non-2-colorability has a coarse threshold.

Ž .Remark 1.2. We believe that for all kG3, d n converges. However, we are notk
able to prove this and it remains an interesting open problem.

Ž Ž .. Ž . Ž .Since for dG1, a.s. 3Fx G n, drn sO d the existence of the limit of d nk
Ž Ž ..would imply one point concentration of x G n, drn for all, but a vanishing

fraction of dG1. Nonetheless, Theorem 1.1 implies the following:

Corollary 1.3. Let e)0 be some constant. For a gï en n, define a number xG1 to
Ž .be bad if the chromatic number of G n, xrn is not determined with probability greater

w Ž Ž .. x y �than 1ye , that is, ;k, Pr x G n, xrn sk F1ye . For y)1 define X s x:e

41FxFy, and x is bad .
For e¨ery e)0, and e¨ery y,

lim m X y s0,Ž .e
nª`

where m is the Lebesgue measure.

Note that the bad xs are exactly those for which xrn belongs to the threshold
interval for the property of non-k-colorability for some k.
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2. PRELIMINARIES

Let us introduce some terminology. A property is a nontrivial, proper subset of the
Ž .set of all labeled graphs. We only consider properties that are invariant closed

under graph automorphisms. We say that A is a monotone property if whenever a
Ž .graph G has is in A and G is a subgraph of a graph H then H also has A. For a

monotone graph property A let

m p sm A , n , p sPr G n , p has property A .Ž . Ž . Ž .
Ž . w x Ž .Note that m p is a polynomial in p, monotone in 0, 1 , such that m 0 s0 and

Ž .m 1 s1. Hence, for fixed n and 0-t-1 we can define p , p , p by0 c 1

m p st ,Ž .0

1m p s ,Ž .c 2

m p s1yt .Ž .1

w x Ž .We call p , p the threshold inter̈ al and define dsd t sp yp . We say that a0 1 1 0
Ž .property A has a sharp threshold if for all t)0 the ratio d t rp tends to 0 as nc

Ž .tends to infinity. If for some t)0, the ratio d t rp is bounded away from 0 wec
say that A has a coarse threshold. Clearly, these two cases are not exhaustive as the
ratio drp could ‘‘oscillate’’ with n.c

w xIn 5 the second author gives necessary and sufficient conditions for a graph
property to have a coarse threshold. Roughly speaking, a graph property with a
coarse threshold can be approximated by the property of having a subgraph
isomorphic to a graph from a fixed list of graphs. Another necessary condition for a
property to have a coarse threshold, aimed at helping prove ‘‘by contradiction’’ that
the threshold is in fact sharp, is Theorem 2.1, which we use. Note that if A has a
coarse threshold, i.e., there exists a constant C such that for all n, drp G1rCc
then for every n there exists pU within the threshold interval such that

dm
Up ? FC.

Udp psp

Ž . Ž .For given n, p, and a fixed graph H, let Ex H, p sEx H, p, n denote the
Ž .expected number of copies of H in G n, p . Recall that a balanced graph is one for

which the average degree is no smaller than that of any of its subgraphs.

[ ] Ž . Ž . Ž .Theorem 2.1 5 . Let d)0. There exist functions B e , C , b e , C , b e , C such1 2
that for all n, pU , C, and e , and any monotone graph property A such that

Ž U . U
Ud-m p -1yd and p ?dmrdpN FC here exists a graph H with no more thanpsp

B edges such that

v H is balanced
v

UŽ .b -Ex H, p -b1 2
v

Uw x Ž .Let Pr ANH denote the probability that GgG n, p belongs to A conditional
on the appearance of a specific copy of H in G. Then

w xPr ANH )1ye .
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Ž .Note that conditioning on the appearance of, say, a triangle in G n, p is not the
Ž . Ž . Ž .same as conditioning on the appearance of three specific edges i, j , j, k , k, i .

3. THE PROOF

The idea of the proof is as follows. For fixed k, assuming a not sharp threshold for
non-k-colorability we have from Theorem 2.1 the existence of a graph H such that

Ž .adding it to G n, p changes the probability of k-colorability significantly. We
compare the effect of such a graph to the effect of adding a large set of random

Ž .edges to G n, p . We show that the random edges a.s. have no effect on the
k-colorability of the graph, but their effect is comparable to the effect of H, thus
reaching a contradiction.

Let us start by considering a slightly different model of random graphs. In this
model we first choose each edge independently with probability p, exactly as in
Ž .G n, p . Then we ‘‘add’’ M random edges, i.e., we pick uniformly at random M

pairs of vertices, and for each one of them we add the corresponding edge if it does
Ž .not already exist otherwise we do nothing . For a monotone graph property A, let

qŽ . qŽ .m p, M sm A, n, p, M denote the probability that the resulting graph,
Ž . Ž .G n, p, M , has property A and recall that m p denotes the probability that

nŽ .G n, p has A. The following observation is simple but very useful. Let Ns .ž /2

Ž . < Ž .'Lemma 3.1. For any monotone graph property A, if Mso Np then m p y
qŽ . < Ž .m p, M so 1 .

Ž .Proof. Keeping in mind that the number of edges in G n, p has binomial
2 Ž .distribution with variance s sNp 1yp it seems plausible that for Ms

Ž .'o Np 1yp , adding M random edges cannot make much of a difference,Ž .
however a direct calculation of this is somewhat cumbersome. Instead, we find the
property which is most sensitive to changes in the value of p and use it to prove
our bound. Let A denote the number of graphs on n vertices that have propertyk
A and have precisely k edges. Then

Nykkm p s A p 1yp , 1Ž . Ž . Ž .Ý k

and hence
dm 1 Nykks A p 1yp kyNp . 2Ž . Ž . Ž .Ý kdp p 1ypŽ .
Ž . w xUpon inspecting 2 , we see that for any pg 0, 1 every graph with k-Np edges

has negative contribution to dmrdp at p while every graph with kGNp has
nonnegative. Thus, the monotone property with the greatest derivative at p is the
property B of ‘‘having at least Np edges.’’ For a monotone property A and an edge

Ž .e, let I A, n, p denote the probability of the following: after all other edgese
appear in the random graph on n vertices independently and with probability p,
the appearance or nonappearance of e determines whether the graph has property

Ž w x.A. Russo’s formula see 9, 10 gives
dm

s I A , n , p . 3Ž . Ž .Ý edp
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Ž .By symmetry, I B, n, p is identical for all edges e and equal to the probabilitye
u vthat prior to determining the status of e, exactly Npy1 edges have appeared.

Ž .Since the number of edges in G n, p has binomial distribution it follows that
Ž . Ž . Ž .'I B sO 1r Np and thus, by 3 , that for any monotone property dmrdpse

X XŽ . < < Ž . < Ž . Ž . < Ž .' 'O Nrp . Thus, if pyp so prN then m p ym p so 1 .
Ž .'Assume now that the lemma is false and, hence, for some choice of Mso Np

< Ž . qŽ . <and e)0, we have m p ym p, M )e , for all sufficiently large n. Let us set
pX spqlMrN and assume the dynamic point of view of the random graph process
Ž Ž . Ž X.. Ž X.i.e., G n, p :G n, p . For l sufficiently large, but independent of n, G n, p

Ž .has at least M more edges than G n, p , with probability greater than 1yer2. On
XŽ . < < Ž .' 'the other hand, for any constant l, if Mso Np then pyp so prN and

hence,

e e
Xqm p ym p , M - q m p ym p s qo 1 ,Ž . Ž . Ž . Ž . Ž .

2 2

a contradiction. B

The following lemma compares the effect of certain constraints placed on the
coloring of a random graph with the effect of adding a set of random edges.

Lemma 3.2. Let A be the property of non-k-colorability, 0-t-1 a constant and p
Ž .such that m p F1yt . Assume that for a list of colors c , . . . , c , where each1 M

� 4c g 1, . . . , k , the following is true: if we pick ¨ertices w , . . . , w uniformly ati 1 M
Ž .random, the probability that G n, p has a k-coloring where each w receï es a colori

X 2 M qŽ X.other than c is not greater than tr2. Then for M sM2 , m p, M G1ytr2.i

Ž .Proof. The experiment we consider consists of first choosing G n, p and then
Ž .choosing, sequentially, the M vertices constraints . Saying that, subject to the

constraints, the probability of k-colorability is at most tr2, means that conditioning
Ž .on G n, p being k-colorable, the constraints spoil k-colorability with probability at
1least . Let EE denote the event that there is no legal k-coloring consistent withi2

Ž .the first i constraints. Thus, conditioning on G n, p being k-colorable, i.e., EE ,0

1<w xPr EE qPr EE EE Pr EE G . 4Ž .My 1 M My1 My1 2

w xNote that Pr EE N EE is the expected value of the fraction of vertices that mustM My1
receive color c after the first My1 constraints are imposed. Moreover, an edgeM
between any two such vertices spoils k-colorability. Hence, if instead of the last
constraint we add an edge at random, the probability of non-k-colorability would
be

2
<w xlsPr EE q Pr EE EE 1yo 1 Pr EE .Ž .Ž .Ž .My 1 M My1 My1

1Ž . w x Ž .Subject to 4 , l is minimized when Pr EE s0, and hence lG yo 1 . Clearly,My 1 4

adding the random edge before the My1 constraints has the same effect. Thus, we
can repeat the argument M times and since the probability of non-k-colorability is
essentially squared in each iteration, we get that, conditioning on EE , after adding0

y2 M Ž .M random edges the probability of non-k-colorability is at least 2 yo 1 .
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M 12Hence, adding M2 edges yields noncolorability with probability at least , i.e.,2
X 2 M qŽ X.for M sM2 , m p, M G1ytr2. B

Proof of Theorem 1.1. Let A be the property of non-k-colorability and assume, for
the sake of contradiction, that A does not have a sharp threshold. That is, there

� 4exists a constant C and an infinite sequence of integers n where for each of themi
U U Ž .there is p sp n inside A’s threshold interval such thati

dm
Up ? FC. 5Ž .

Udp psp

� 4In the following, asymptotics are meant with respect to n yet, for the sake ofi
Ž U .simplicity, we retain the standard asymptotic parlance. Let m p s1yt , for

some t)0. If in Theorem 2.1 we take estr3, it follows that there exists a fixed
Ž U .graph H, such that b -Ex H, p -b , for some positive constants b , b and1 2 1 2

such that

t
<w xPr A H )1y . 6Ž .

3

Ž U .That is, the appearance of a specific copy of H lowers the probability of G n, p
being k-colorable from t to less than tr3, or stated differently, conditioning on
Ž .G n, p being k-colorable the additional copy of H spoils this with probability at

2least .3

The first thought that comes to mind is that this does not lead to a contradiction
since H may be a non-k-colorable graph. However, from the characterization of H
given in Theorem 2.1 we may assume that this is not the case. To see this, first note

w x Ž .that by an application of the first moment method 3 it follows that G n, drn is
U Ž y1 .a.s. non-k-colorable for d)2k log k, and hence p sO n . Moreover, observe

that any non-k-colorable graph T must contain a subgraph S of minimum degree
U Ž y1 . Ž U .at least k. Since p sO n , H is balanced, and Ex H, p )b , every subgraph1

Žof H must have average degree at most 2, so we may assume H is k-colorable or
. Ževen 3-colorable . This point also reflects why non-2-colorability has a coarse

threshold. For ks2, we cannot assume that H is 2-colorable as, for example, K3
.has positive probability of appearing in the vicinity of p .c

Now, fix any k-coloring V , . . . , V of the vertices of H and consider the graph R1 k
formed by taking a copy of K and joining all the vertices in V to all the vertices ofk i
K other than i. Clearly, R contains H as a subgraph and is uniquely k-colorable.k
By positive correlation of increasing events the probability of k-colorability condi-
tioned on the appearance of a specific copy of R is even smaller than the

Žprobability conditioned on the appearance of a specific copy of H. The probability
space of all graphs containing a fixed copy of some graph with the measure induced
by the conditional probability is a product space in which the FKG inequalities

Ž w x.hold, see 6 . Thus, without loss of generality, we can condition on R appearing in
Ž U .the random graph instead of H. Finally, consider the random graph G n, p onR

n vertices where we first add edges deterministically so that vertices ¨ , . . . , ¨1 r
induce a copy of R and then we have every other edge appear with probability pU.
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Ž . Ž U .Thus, by 6 , the probability that G n, p is non-k-colorable is greater thanR
1ydr3. We will show that this leads to a contradiction.

The subgraph induced by ¨ , . . . , ¨ is k-colorable with probability at least trq1 n
Ž .we say at least since this subgraph has fewer than n vertices . Also, since r is a

U Ž y1 .constant and p sO n , we have that a.s. there are no edges added between
vertices ¨ , . . . , ¨ . If n is the number of edges between ¨ , . . . , ¨ and ¨ , . . . , ¨1 r 1 r rq1 n

1w x Ž .then E n is bounded and hence there exists a constant M such that Pr nFM - .6

Moreover, it is straightforward to show that these edges a.s. do not have any
Ž U .endpoints in common besides ¨ , . . . , ¨ . From this it follows that in G ny r, p if1 r

we choose at random M vertices w , . . . , w from ¨ , . . . , ¨ and for each one of1 M rq1 n
Ž .them forbid a color that of its unique neighbor in ¨ , . . . , ¨ , this decreases the1 r

probability of having a k-coloring consistent with these constraints from at least t
2 M Ž .to no more than tr2. By Lemma 3.2, adding m2 sO 1 random edges instead,

would reduce the probability by the same amount. Since

ny rUp sV nŽ .ž /2

this contradicts Lemma 3.1. B

3.1. Concluding Remarks

Ž .When ksk n ª` as nª`, Noga Alon and Michael Krivelevich pointed out to
w xus that, while a sharp threshold can be shown using the results in 7 , our approach

yields a very short proof of this fact. Let us construct the random graph containing
a specific copy of H by first including every edge with probability p* and then
adding a copy of H on a randomly chosen set of vertices. It is well-known that if

Ž . w Ž Ž .. xkª` as nª`, and psp n is such that Pr x G n, p Gk Ge then a.s. the
Ž . Ž .largest independent set of G n, p has size o n . Thus, a.s. every k-coloring of

Ž . Ž .G n, p* has color classes of size o n . As a result, when we add H a.s. all its
vertices end up in distinct color classes implying that the addition of H can only

Ž .decrease the probability of k-colorability by o 1 .
Ž .The immediate open problem is determining whether d n converges.k
Ž .Equivalently, one could also consider the existence of lim f n, drn whennª` k

� Ž . 4d/sup dN lim f n, drn s1 . Much more ambitiously, one could also try tonª` k
Ž .determine the value of lim d n . Also of interest is to try and apply thesenª` k

techniques to the analogous question for choosability.
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