
Knowledge Technologies

Manolis Koubarakis

1

An Introduction to OWL 2

Knowledge Technologies

Manolis Koubarakis

2

Acknowledgement

• This presentation is based on the OWL 2

Web Ontology Language Structural

Specification and Functional-Style Syntax

available at http://www.w3.org/TR/owl2-

syntax/

• Much of the material in this presentation is

verbatim from the above specification.

http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/

Knowledge Technologies

Manolis Koubarakis

3

Outline

• Features of OWL 2

• Structural Specification

• Functional Syntax

• Other Syntaxes

• Examples

• Semantics of OWL 2

• OWL 2 Profiles

Knowledge Technologies

Manolis Koubarakis

4

The Semantic Web “Layer Cake”

Knowledge Technologies

Manolis Koubarakis

5

OWL 2 Basics

• OWL 2 is the current version of the

 Web Ontology Language and a

 W3C recommendation as of

 October 2009.

• The previous version of OWL (OWL 1) became
a W3C recommendation in 2004.

• All W3C documents about OWL 2 can be found
at http://www.w3.org/TR/2009/REC-owl2-
overview-20091027/ .

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

Knowledge Technologies

Manolis Koubarakis

6

The Structure of OWL 2

Knowledge Technologies

Manolis Koubarakis

7

OWL 2 Basics (cont’d)

• OWL 2 is a language for writing ontologies

for the Web.

• It is based on well-known concepts and

results from description logics.

• Like DLs, OWL 2 is a language for

representing knowledge about things,

groups of things, and relations between

things.

Knowledge Technologies

Manolis Koubarakis

8

OWL 2 Terminology

• The things or objects about which
knowledge is represented (e.g., John,
Mary) are called individuals.

• Groups of things (e.g., female) are called
classes.

• Relations between things (e.g., married)
are called properties.

• Individuals, classes and properties are
called entities.

Knowledge Technologies

Manolis Koubarakis

9

OWL 2 Terminology (cont’d)

• As in DLs, entities can be combined using

constructors to form complex

descriptions called expressions.

• To represent knowledge in OWL (like in

any other KR language), we make

statements. These statements are called

axioms.

Knowledge Technologies

Manolis Koubarakis

10

Annotations

• Entities, expressions and axioms form the logical part of
OWL 2. They can be given a precise semantics and
inferences can be drawn from them.

• In addition, entities, axioms, and ontologies can be
annotated.

• Example: A class can be given a human-readable label
that provides a more descriptive name for the class.

• Annotations have no effect on the logical aspects of an
ontology. For the purposes of the OWL 2 semantics,
annotations are treated as not being present.

Knowledge Technologies

Manolis Koubarakis

11

IRIs

• Ontologies and their elements are
identified using International Resource
Identifiers (IRIs).

• In OWL 2, an IRI can be written in full or it
can be abbreviated as prefix:lname as
in XML qualified names where prefix is
a namespace and lname is the local
name with respect to the namespace.

Knowledge Technologies

Manolis Koubarakis

12

The Structure of an Ontology

Knowledge Technologies

Manolis Koubarakis

13

Ontology IRI and Version IRIs

• An ontology may have an ontology IRI, which is used to identify it.

• If an ontology has an ontology IRI, the ontology may additionally have a version IRI,
which is used to identify the version of the ontology. The version IRI may, but need
not be equal to the ontology IRI.

• An ontology series is identified using an ontology IRI, and each version in the series
is assigned a different version IRI. Only one version of the ontology is the current
one.

• Example:
– Ontology IRI: <http://www.example.com/my>

– Version IRIs: <http://www.example.com/my/1.0>,
<http://www.example.com/my/2.0>, …

• An ontology without an ontology IRI must not contain a version IRI.

• Ontology IRIs and version IRIs should satisfy various uniqueness constraints that
OWL 2 tools should check, for detecting possible problems.

Knowledge Technologies

Manolis Koubarakis

14

Ontology Document

• Each ontology is associated with an ontology
document which physically contains the
ontology stored in a particular way (e.g., a text
file).

• An ontology document should be accessible via
the IRIs determined by the rules defined in the
W3C specification.
– Example: The document of the current version of an

ontology should always be accessible via the
ontology IRI and the current version IRI.

Knowledge Technologies

Manolis Koubarakis

15

Imports

• An OWL 2 ontology can import (directly
or indirectly) other ontologies in order to
gain access to their entities, expressions
and axioms, thus providing the basic
facility for ontology modularization.

• Example: an ontology of sensors can
import a geospatial ontology to specify the
location of sensors.

Knowledge Technologies

Manolis Koubarakis

16

OWL 2 Syntaxes

• The Functional-Style syntax. This syntax is designed to be easier
for specification purposes and to provide a foundation for the
implementation of OWL 2 tools such as APIs and reasoners. This is
the syntax we will use in this presentation.

• The RDF/XML syntax: this is just RDF/XML, with a particular
translation for the OWL constructs. Here one can use other popular
syntaxes for RDF, e.g., Turtle syntax.

• The Manchester syntax: this is a frame-based syntax that is
designed to be easier for users to read.

• The OWL XML syntax: this is an XML syntax for OWL defined by
an XML schema.

Knowledge Technologies

Manolis Koubarakis

17

BNF Grammar for the Functional

Syntax of OWL 2

ontologyDocument := { prefixDeclaration } Ontology
prefixDeclaration := 'Prefix' '(' prefixName ‘:=' fullIRI
')'

Ontology :=
 'Ontology' '(' [ontologyIRI [versionIRI]]
 directlyImportsDocuments
 ontologyAnnotations
 axioms
 ')'
ontologyIRI := IRI
versionIRI := IRI
directlyImportsDocuments := { 'Import' '(' IRI ')' }
axioms := { Axiom }

Knowledge Technologies

Manolis Koubarakis

18

Example

Prefix(ex:=<http://www.example.com/ontology1#>)

Prefix(owl:=<http://www.w3.org/2002/07/owl#>)

Ontology(<http://www.example.com/ontology1>

 Import(<http://www.example.com/ontology2>)

 Annotation(rdfs:label "An example ontology")

 SubClassOf(ex:Person owl:Thing)

 SubClassOf(ex:Male ex:Person)

 SubClassOf(ex:Female ex:Person)

)

Knowledge Technologies

Manolis Koubarakis

19

Things One Can Define in OWL 2

Knowledge Technologies

Manolis Koubarakis

20

Classes

• Classes (e.g., a:Female) represent sets

of individuals.

• Built-in classes:

– owl:Thing, which represents the set of all

individuals.

– owl:Nothing, which represents the empty

set.

Knowledge Technologies

Manolis Koubarakis

21

Things One Can Define in OWL 2

(cont’d)

Knowledge Technologies

Manolis Koubarakis

22

Datatypes

• Datatypes are entities that represent sets of data values.

• OWL 2 offers a rich set of data types: decimal numbers, integers, floating
point numbers, rationals, reals, strings, binary data, IRIs and time instants.

• In most cases, these data types are taken from XML schema. From RDF
and RDFS, we have rdf:XMLLiteral, rdf:PlainLiteral and
rdfs:Literal.

• rdfs:Literal contains all the elements of other data types.

• There are also the OWL datatypes owl:real and owl:rational.

• Formally, the data types supported are specified in the OWL 2 datatype
map.

Knowledge Technologies

Manolis Koubarakis

23

Datatypes (cont’d)

• In a datatype map, each datatype is identified by
an IRI and is defined by the following
components:
– The value space is the set of values of the datatype.

Elements of the value space are called data values.

– The lexical space is a set of strings that can be used
to refer to data values. Each member of the lexical
space is called a lexical form, and it is mapped to a
particular data value.

– The facet space is a set of pairs of the form (F,v)
where F is an IRI called a constraining facet, and v
is an arbitrary data value called the constraining
value. Each such pair is mapped to a subset of the
value space of the datatype.

Knowledge Technologies

Manolis Koubarakis

24

Facet Space

• For the XML Schema datatypes xsd:double, xsd:float, and
xsd:decimal, the constraining facets allowed are:
xsd:minInclusive, xsd:maxInclusive,

xsd:minExclusive and xsd:maxExclusive.

• Example: The pair(xsd:minInclusive,v) of the facet space
denotes the set of all numbers x from the value space of the
datatype such that x=v or x>v.

• Similarly for other datatypes.

• We will see later how constraining facets can be used to define data
ranges.

Knowledge Technologies

Manolis Koubarakis

25

Things One Can Define in OWL 2

(cont’d)

Knowledge Technologies

Manolis Koubarakis

26

Object Properties

• Object properties (e.g., a:parentOf)

connect pairs of individuals.

• Built-in object properties:

– owl:topObjectProperty, which connects

all possible pairs of individuals.

– owl:bottomObjectProperty, which does

not connect any pair of individuals.

Knowledge Technologies

Manolis Koubarakis

27

Object Property Expressions

• Object properties can be used to form

object property expressions.

Knowledge Technologies

Manolis Koubarakis

28

Inverse Object Property

Expressions

• An inverse object property expression
ObjectInverseOf(P) connects an individual

I1 with I2 if and only if the object property P

connects I2 with I1.

• Example: If an ontology contains the axiom
ObjectPropertyAssertion(a:fatherOf a:Peter a:Stewie)

 then the ontology entails
ObjectPropertyAssertion(ObjectInverseOf(a:fatherOf) a:Stewie

a:Peter)

Knowledge Technologies

Manolis Koubarakis

29

Things One Can Define in OWL 2

(cont’d)

Knowledge Technologies

Manolis Koubarakis

30

Data Properties

• Data properties (e.g., a:hasAge)

connect individuals with literals.

• Built-in properties:

– owl:topDataProperty, which connects all

possible individuals with all literals.

– owl:bottomDataProperty, which does not

connect any individual with a literal.

Knowledge Technologies

Manolis Koubarakis

31

Data Property Expressions

• The only allowed data property

expression is a data property.

Knowledge Technologies

Manolis Koubarakis

32

Things One Can Define in OWL 2

(cont’d)

Knowledge Technologies

Manolis Koubarakis

33

Annotation Properties

• Annotation properties can be used to provide
an annotation for an ontology, axiom, or an IRI.

• Users can define their own annotation
properties (we will see how later on) or use the
available built-in annotation properties:
– rdfs:label, rdfs:comment, rdfs:see,
rdfs:isDefinedBy

– owl:deprecated, owl:versionInfo,
owl:priorVersion,
owl:backwardCompatibleWith,
owl:incompatibleWith

Knowledge Technologies

Manolis Koubarakis

34

Things One Can Define in OWL 2

(cont’d)

Knowledge Technologies

Manolis Koubarakis

35

Individuals

• Individuals represent actual objects from the

domain.

• There are two types of individuals:

– Named individuals are given an explicit name (an
IRI e.g., a:Peter) that can be used in any ontology

to refer to the same object.

– Anonymous individuals do not have a global name.

They can be defined using a name (e.g.,
_:somebody) local to the ontology they are

contained in. They are like blank nodes in RDF.

Knowledge Technologies

Manolis Koubarakis

36

Things One Can Define in OWL 2

(cont’d)

Knowledge Technologies

Manolis Koubarakis

37

Literals

• Literals represent data values such as particular
strings or integers. They are analogous to RDF
literals.

• Examples:
– "1"^^xsd:integer (typed literal)

– "Family Guy" (plain literal, an abbreviation for
"Family Guy"^^rdf:PlainLiteral)

– "Padre de familia"@es (plain literal with
language tag, an abbreviation for "Padre de
familia@es"^^rdf:PlainLiteral)

Knowledge Technologies

Manolis Koubarakis

38

Things One Can Define in OWL 2

(cont’d)

Knowledge Technologies

Manolis Koubarakis

39

Data Ranges

• Data ranges represent sets of tuples of literals. They are defined
using datatypes and constraining facets.

• Examples:
– The set of integers greater than 10.

– The set of strings that contain “good” as a substring.

– The set of (x,y) such that x and y are integers and x < y.

• Each data range is associated with a positive arity, which
determines the size of its tuples.

• Datatypes are themselves data ranges of arity 1.

• Data ranges are used in restrictions on data properties, as we will
see later when we define class expressions.

Knowledge Technologies

Manolis Koubarakis

40

Data Ranges

Knowledge Technologies

Manolis Koubarakis

41

BNF for Data Ranges

DataRange :=
 Datatype |
 DataIntersectionOf |
 DataUnionOf |
 DataComplementOf |
 DataOneOf |
 DatatypeRestriction

DataIntersectionOf := 'DataIntersectionOf' '(' DataRange DataRange
{ DataRange } ')'

DataUnionOf := 'DataUnionOf' '(' DataRange DataRange { DataRange }
')'

DataComplementOf := 'DataComplementOf' '(' DataRange ')'

DataOneOf := 'DataOneOf' '(' Literal { Literal } ')'

Knowledge Technologies

Manolis Koubarakis

42

Examples

DataIntersectionOf(xsd:nonNegativeInteger

xsd:nonPositiveInteger)

DataUnionOf(xsd:string xsd:integer)

DataComplementOf(xsd:positiveInteger)

DataOneOf("Peter" "John")

Knowledge Technologies

Manolis Koubarakis

43

Datatype Restrictions

DatatypeRestriction :=
'DatatypeRestriction' '('

Datatype constrainingFacet

restrictionValue

 { constrainingFacet restrictionValue } ')’

constrainingFacet := IRI

restrictionValue := Literal

Knowledge Technologies

Manolis Koubarakis

44

Datatype Restrictions

• A datatype restriction DatatypeRestriction(DT F1 lt1
... Fn ltn) consists of a unary datatype DT and n
pairs(Fi,lti) where Fi is a constraining facet of DT
and lti a literal value.

• The data range represented by a datatype restriction is
unary and is obtained by restricting the value space of
DT according to the conjunction of all (Fi,lti).

• Observation: Thus, although the definition of data range
speaks of tuples of any arity, the syntax defined allows
only unary data ranges.

Knowledge Technologies

Manolis Koubarakis

45

Example

• The following data type restriction

represents the set of integers 5, 6, 7, 8,

and 9:

DatatypeRestriction(xsd:integer

xsd:minInclusive "5"^^xsd:integer

xsd:maxExclusive "10"^^xsd:integer)

Knowledge Technologies

Manolis Koubarakis

46

Things One Can Define in OWL 2

(cont’d)

Knowledge Technologies

Manolis Koubarakis

47

Class Expressions

• Class names and property expressions can be

used to construct class expressions.

• These are essentially the complex concepts or

descriptions that we can define in DLs.

• Class expressions represent sets of individuals

by formally specifying conditions on the

individuals' properties; individuals satisfying

these conditions are said to be instances of the

respective class expressions.

Knowledge Technologies

Manolis Koubarakis

48

Ways to Form Class Expressions

• Class expressions can be formed by:
– Applying the standard Boolean connectives to

simpler class expressions or by enumerating the
individuals that belong to an expression.

– Placing restrictions on object property
expressions.

– Placing restrictions on the cardinality of object
property expressions.

– Placing restrictions on data property expressions.

– Placing restrictions on the cardinality of data
property expressions.

Knowledge Technologies

Manolis Koubarakis

49

Boolean Connectives and Enumeration

of Individuals

Knowledge Technologies

Manolis Koubarakis

50

Intersection Class Expressions

• An intersection class expression
ObjectIntersectionOf(CE1 ... CEn)

contains all individuals that are instances
of all class expressions CEi for 1≤i≤n.

• Example:

ObjectIntersectionOf(a:Dog a:CanTalk)

Knowledge Technologies

Manolis Koubarakis

51

Union Class Expressions

• A union class expression
ObjectUnionOf(CE1 ... CEn)

contains all individuals that are instances
of at least one class expression CEi for

 1≤i≤n.

• Example:

ObjectUnionOf(a:Man a:Woman)

Knowledge Technologies

Manolis Koubarakis

52

Complement Class Expressions

• A complement class expression
ObjectComplementOf(CE) contains all

individuals that are not instances of the
class expression CE.

• Example:

ObjectComplementOf(a:Man)

Knowledge Technologies

Manolis Koubarakis

53

Example Inference

• From

DisjointClasses(a:Man a:Woman)

ClassAssertion(a:Woman a:Lois)

 we can infer

ClassAssertion(ObjectComplementOf(a:Man)

a:Lois)

Knowledge Technologies

Manolis Koubarakis

54

Enumeration of Individuals

• An enumeration of individuals
ObjectOneOf(a1 ... an) contains

exactly the individuals ai with 1≤i≤n.

• Example:

ObjectOneOf(a:Peter a:Lois

a:Stewie a:Meg a:Chris a:Brian)

Knowledge Technologies

Manolis Koubarakis

55

Example Inference

• From
EquivalentClasses(a:GriffinFamilyMember

 ObjectOneOf(a:Peter a:Lois a:Stewie a:Meg
a:Chris a:Brian))

DifferentIndividuals(a:Quagmire a:Peter a:Lois
a:Stewie a:Meg a:Chris a:Brian)

 we can infer

ClassAssertion(

ObjectComplementOf(a:GriffinFamilyMember)
a:Quagmire)

Knowledge Technologies

Manolis Koubarakis

56

Example Inference (con’td)

• From
ClassAssertion(a:GriffinFamilyMember a:Peter)

ClassAssertion(a:GriffinFamilyMember a:Lois)

ClassAssertion(a:GriffinFamilyMember a:Stewie)

ClassAssertion(a:GriffinFamilyMember a:Meg)

ClassAssertion(a:GriffinFamilyMember a:Chris)

ClassAssertion(a:GriffinFamilyMember a:Brian)

DifferentIndividuals(a:Quagmire a:Peter a:Lois a:Stewie
a:Meg a:Chris a:Brian)

 we cannot infer
ClassAssertion(

ObjectComplementOf(a:GriffinFamilyMember) a:Quagmire)

Knowledge Technologies

Manolis Koubarakis

57

Ways to Form Class Expressions

(cont’d)

• Class expressions can be formed by:
– Applying the standard Boolean connectives to

simpler class expressions or by enumerating the
individuals that belong to an expression.

– Placing restrictions on object property
expressions.

– Placing restrictions on the cardinality of object
property expressions.

– Placing restrictions on data property expressions.

– Placing restrictions on the cardinality of data
property expressions.

Knowledge Technologies

Manolis Koubarakis

58

 Object Property Restrictions

Knowledge Technologies

Manolis Koubarakis

59

Existential Quantification

• An existential class expression
ObjectSomeValuesFrom(OPE CE) consists of an
object property expression OPE and a class expression
CE, and it contains all those individuals that are
connected by OPE to an individual that is an instance of
CE.

• Example:
ObjectSomeValuesFrom(a:fatherOf a:Man)

• If OPE is simple, the above class expression is
equivalent with the class expression

ObjectMinCardinality(1 OPE CE)

Knowledge Technologies

Manolis Koubarakis

60

Example Inference

• From

ObjectPropertyAssertion(a:fatherOf

a:Peter a:Stewie)

ClassAssertion(a:Man a:Stewie)

 we can infer

ClassAssertion(

ObjectSomeValuesFrom(a:fatherOf

a:Man) a:Peter)

Knowledge Technologies

Manolis Koubarakis

61

Universal Quantification

• A universal class expression
ObjectAllValuesFrom(OPE CE) consists of an
object property expression OPE and a class expression
CE, and it contains all those individuals that are
connected by OPE only to individuals that are instances
of CE.

• Example:
ObjectAllValuesFrom(a:fatherOf a:Man)

• If OPE is simple, the above class expression is
equivalent with the class expression
ObjectMaxCardinality(0 OPE ObjectComplementOf(CE))

Knowledge Technologies

Manolis Koubarakis

62

Example Inference

• From
ObjectPropertyAssertion(a:hasPet a:Peter a:Brian)

ClassAssertion(a:Dog a:Brian)

ClassAssertion(

ObjectMaxCardinality(1 a:hasPet) a:Peter)

 we can infer

ClassAssertion(

ObjectAllValuesFrom(a:hasPet a:Dog) a:Peter)

Knowledge Technologies

Manolis Koubarakis

63

Individual Value Restriction

• An individual value class expression
ObjectHasValue(OPE a) consists of an object
property expression OPE and an individual a, and it
contains all those individuals that are connected by OPE
to a.

• Example:

ObjectHasValue(a:fatherOf a:Stewie)

• The above class expression is equivalent to the class
expression

 ObjectSomeValuesFrom(OPE ObjectOneOf(a)).

Knowledge Technologies

Manolis Koubarakis

64

Example Inference

• From

ObjectPropertyAssertion(a:fatherOf

a:Peter a:Stewie)

 we can infer

ClassAssertion(

ObjectHasValue(a:fatherOf a:Stewie)

a:Peter)

Knowledge Technologies

Manolis Koubarakis

65

Self-Restriction

• A self-restriction
ObjectHasSelf(OPE) consists of an

object property expression OPE, and it

contains all those individuals that are
connected by OPE to themselves.

• Example:

ObjectHasSelf(a:likes)

Knowledge Technologies

Manolis Koubarakis

66

Example Inference

• From

ObjectPropertyAssertion(a:likes

a:Peter a:Peter)

 we can infer

ClassAssertion(

ObjectHasSelf(a:likes) a:Peter)

Knowledge Technologies

Manolis Koubarakis

67

Ways to Form Class Expressions

(cont’d)

• Class expressions can be formed by:
– Applying the standard Boolean connectives to

simpler class expressions or by enumerating the
individuals that belong to an expression.

– Placing restrictions on object property
expressions.

– Placing restrictions on the cardinality of object
property expressions.

– Placing restrictions on data property expressions.

– Placing restrictions on the cardinality of data
property expressions.

Knowledge Technologies

Manolis Koubarakis

68

Object Property Cardinality

Restrictions

• Object property cardinality restrictions are distinguished

into:

– Qualified: apply only to individuals that are

connected by the object property expression and are

instances of the qualifying class expression.

– Unqualified: apply to all individuals that are

connected by the object property expression (this is

equivalent to the qualified case with the qualifying

class expression equal to owl:Thing).

Knowledge Technologies

Manolis Koubarakis

69

Object Property Cardinality

Restrictions

Knowledge Technologies

Manolis Koubarakis

70

Minimum Cardinality

• A minimum cardinality expression
ObjectMinCardinality(n OPE CE)
consists of a nonnegative integer n, an object
property expression OPE, and a class expression
CE, and it contains all those individuals that are
connected by OPE to at least n different
individuals that are instances of CE. If CE is
missing, it is taken to be owl:Thing.

• Example:

ObjectMinCardinality(2 a:fatherOf a:Man)

Knowledge Technologies

Manolis Koubarakis

71

Example Inference

• From
ObjectPropertyAssertion(a:fatherOf a:Peter a:Stewie)

ClassAssertion(a:Man a:Stewie)

 ObjectPropertyAssertion(a:fatherOf a:Peter a:Chris)

ClassAssertion(a:Man a:Chris)

DifferentIndividuals(a:Chris a:Stewie)

 we can infer
ClassAssertion(

ObjectMinCardinality(2 a:fatherOf a:Man) a:Peter)

Knowledge Technologies

Manolis Koubarakis

72

Maximum Cardinality

• A maximum cardinality expression
ObjectMaxCardinality(n OPE CE)
consists of a nonnegative integer n, an object
property expression OPE, and a class expression
CE, and it contains all those individuals that are
connected by OPE to at most n different
individuals that are instances of CE. If CE is
missing, it is taken to be owl:Thing.

• Example:

ObjectMaxCardinality(2 a:hasPet)

Knowledge Technologies

Manolis Koubarakis

73

Example Inference

• From
ObjectPropertyAssertion(a:hasPet

a:Peter a:Brian)

ClassAssertion(ObjectMaxCardinality(1
a:hasPet) a:Peter)

 we can infer
ClassAssertion(

ObjectMaxCardinality(2 a:hasPet)
a:Peter)

Knowledge Technologies

Manolis Koubarakis

74

Example Inference

• From
ObjectPropertyAssertion(a:hasDaughter

a:Peter a:Meg)

ObjectPropertyAssertion(a:hasDaughter
a:Peter a:Megan)

ClassAssertion(ObjectMaxCardinality(1
a:hasDaughter) a:Peter)

 we can infer
SameIndividual(a:Meg a:Megan)

Knowledge Technologies

Manolis Koubarakis

75

Exact Cardinality

• An exact cardinality expression ObjectExactCardinality(n
OPE CE) consists of a nonnegative integer n, an object property
expression OPE, and a class expression CE, and it contains all those
individuals that are connected by OPE to exactly n different
individuals that are instances of CE.

• Example:

ObjectExactCardinality(1 a:hasPet a:Dog)

• The above expression is equivalent to

ObjectIntersectionOf(

ObjectMinCardinality(n OPE CE)

 ObjectMaxCardinality(n OPE CE)).

Knowledge Technologies

Manolis Koubarakis

76

Example Inference

• From

ObjectPropertyAssertion(a:hasPet a:Peter a:Brian)

ClassAssertion(a:Dog a:Brian)

ClassAssertion(

ObjectAllValuesFrom(a:hasPet
ObjectUnionOf(ObjectOneOf(a:Brian)

ObjectComplementOf(a:Dog)))

 a:Peter)

 we can infer

ClassAssertion(ObjectExactCardinality(1 a:hasPet
a:Dog) a:Peter)

Knowledge Technologies

Manolis Koubarakis

77

Ways to Form Class Expressions

(cont’d)

• Class expressions can be formed by:
– Applying the standard Boolean connectives to

simpler class expressions or by enumerating the
individuals that belong to an expression.

– Placing restrictions on object property
expressions.

– Placing restrictions on the cardinality of object
property expressions.

– Placing restrictions on data property expressions.

– Placing restrictions on the cardinality of data
property expressions.

Knowledge Technologies

Manolis Koubarakis

78

Data Property Restrictions

• Data property restrictions are similar to the restrictions on object property
expressions.

• The main difference is that the expressions for existential and universal
quantification allow for n-ary data ranges.

• Given the syntax for data ranges given earlier, only unary data ranges are
supported.

• However, the specification aprovide the syntactic constructs needed to have
n-ary data ranges e.g., sets of rectangles defined by appropriate geometric
constraints.

• The “Data Range Extension: Linear Equations” W3C note proposes an
extension to OWL 2 for defining n-ary data ranges in terms of linear
(in)equations with rational coefficients. See http://www.w3.org/TR/owl2-dr-

linear/ .

http://www.w3.org/TR/owl2-dr-linear/
http://www.w3.org/TR/owl2-dr-linear/
http://www.w3.org/TR/owl2-dr-linear/
http://www.w3.org/TR/owl2-dr-linear/
http://www.w3.org/TR/owl2-dr-linear/

Knowledge Technologies

Manolis Koubarakis

79

Data Property Restrictions

Knowledge Technologies

Manolis Koubarakis

80

Existential Quantification

• An existential class expression DataSomeValuesFrom(DPE1 ...
DPEn DR) consists of n data property expressions DPEi,1≤i≤n, and a
data range DR whose arity must be n.

• Such a class expression contains all those individuals that are connected by
DPEi to literals lti,1≤i≤n, such that the tuple (lt1 ,...,ltn) is in DR.

• Example:

DataSomeValuesFrom(a:hasAge
DatatypeRestriction(xsd:integer xsd:maxExclusive

"20"^^xsd:integer))

• A class expression of the form DataSomeValuesFrom(DPE DR) is
equivalent to the class expression DataMinCardinality(1 DPE DR).

Knowledge Technologies

Manolis Koubarakis

81

Example Inference

• From
DataPropertyAssertion(a:hasAge a:Meg

"17"^^xsd:integer)

 we can infer

ClassAssertion(

DataSomeValuesFrom(a:hasAge
DatatypeRestriction(xsd:integer

xsd:maxExclusive "20"^^xsd:integer))

a:Meg)

Knowledge Technologies

Manolis Koubarakis

82

Universal Quantification

• A universal class expression DataAllValuesFrom(DPE1 ... DPEn
DR) consists of n data property expressions DPEi,1≤i≤n, and a data
range DR whose arity must be n.

• Such a class expression contains all those individuals that are connected by
DPEi only to literals lti,1≤i≤n, such that each tuple (lt1,...,ltn) is
in DR.

• Example:

DataAllValuesFrom(a:hasZIP xsd:integer)

• A class expression of the form DataAllValuesFrom(DPE DR) can be
seen as a syntactic shortcut for the class expression
DataMaxCardinality(0 DPE DataComplementOf(DR)).

Knowledge Technologies

Manolis Koubarakis

83

Example Inference

• From

DataPropertyAssertion(a:hasZIP _:a1
"02903"^^xsd:integer)

FunctionalDataProperty(a:hasZIP)

 we can infer

ClassAssertion(

DataAllValuesFrom(a:hasZIP xsd:integer)

_:a1)

Knowledge Technologies

Manolis Koubarakis

84

Literal Value Restriction

• A literal value class restriction DataHasValue(DPE
lt) consists of a data property expression DPE and a
literal lt, and it contains all those individuals that are
connected by DPE to lt.

• Example:
DataHasValue(a:hasAge "17"^^xsd:integer)

• Each such class expression is equivalent to the class
expression
DataSomeValuesFrom(DPE DataOneOf(lt)).

Knowledge Technologies

Manolis Koubarakis

85

Ways to Form Class Expressions

(cont’d)

• Class expressions can be formed by:
– Applying the standard Boolean connectives to

simpler class expressions or by enumerating the
individuals that belong to an expression.

– Placing restrictions on object property
expressions.

– Placing restrictions on the cardinality of object
property expressions.

– Placing restrictions on data property expressions.

– Placing restrictions on the cardinality of data
property expressions.

Knowledge Technologies

Manolis Koubarakis

86

Data Property Cardinality

Restrictions

• Data property cardinality restrictions can
be distinguished into:

– Qualified: they only apply to literals that are
connected by the data property expression
and are in the qualifying data range.

– Unqualified: they apply to all literals that are
connected by the data property expression.
This is equivalent to the qualified case with
the qualifying data range equal to
rdfs:Literal.

Knowledge Technologies

Manolis Koubarakis

87

Minimum Cardinality

• A minimum cardinality expression
DataMinCardinality(n DPE DR) consists of a
nonnegative integer n, a data property expression DPE,
and a unary data range DR, and it contains all those
individuals that are connected by DPE to at least n
different literals in DR. If DR is not present, it is taken to
be rdfs:Literal.

• Example:

DataMinCardinality(2 a:hasName)

• There are similar definitions for
DataMaxCardinality(n DPE DR) and
DataExactCardinality(n DPE DR).

Knowledge Technologies

Manolis Koubarakis

88

Example Inference

• From
DataPropertyAssertion(a:hasName a:Meg

"Meg Griffin")

DataPropertyAssertion(a:hasName a:Meg
"Megan Griffin")

 we can infer
ClassAssertion(

DataMinCardinality(2 a:hasName)
a:Meg)

Knowledge Technologies

Manolis Koubarakis

89

Maximum/Exact Cardinality

• Defined similarly.

Knowledge Technologies

Manolis Koubarakis

90

What Have we Achieved so far?

• We have explained what the “things” that one

can define in OWL 2 are.

• Now let us see how to use these “things” to

represent knowledge about a domain.

• In OWL 2 knowledge is represented by axioms:

statements that say what is true in the domain of

interest.

Knowledge Technologies

Manolis Koubarakis

91

Axioms

Knowledge Technologies

Manolis Koubarakis

92

 Class Expression Axioms

Knowledge Technologies

Manolis Koubarakis

93

Subclass Axioms

• A subclass axiom SubClassOf(CE1 CE2) states that
the class expression CE1 is a subclass of the class
expression CE2.

• Example:
SubClassOf(a:Child a:Person)

• The properties known from RDFS for SubClassOf hold
here as well:
– Reflexivity

– Transitivity

– If x is an instance of class A and class A is a subclass of class B,
then x is an instance of B as well.

Knowledge Technologies

Manolis Koubarakis

94

Example Inferences

• From

SubClassOf(a:Baby a:Child)

SubClassOf(a:Child a:Person)

ClassAssertion(a:Baby a:Stewie)

 we can infer

SubClassOf(a:Baby a:Person)

ClassAssertion(a:Child a:Stewie)

ClassAssertion(a:Person a:Stewie)

Knowledge Technologies

Manolis Koubarakis

95

Example Inferences

• From

SubClassOf(a:PersonWithChild
ObjectSomeValuesFrom(a:hasChild
ObjectUnionOf(a:Boy a:Girl)))

SubClassOf(a:Boy a:Child)

SubClassOf(a:Girl a:Child)

SubClassOf(ObjectSomeValuesFrom(a:hasChild a:Child)
a:Parent)

 we can infer

SubClassOf(a:PersonWithChild a:Parent)

Knowledge Technologies

Manolis Koubarakis

96

Equivalent Classes

• An equivalent classes axiom
EquivalentClasses(CE1 ... CEn) states that all of
the class expressions CEi,1≤i≤n, are semantically
equivalent to each other.

• Example:
EquivalentClasses(a:Boy

ObjectIntersectionOf(a:Child a:Male))

• An axiom EquivalentClasses(CE1 CE2) is
equivalent to the conjunction of the following two axioms:

SubClassOf(CE1 CE2)

SubClassOf(CE2 CE1)

Knowledge Technologies

Manolis Koubarakis

97

Example Inferences

• From

EquivalentClasses(a:Boy

ObjectIntersectionOf(a:Child a:Male))

ClassAssertion(a:Child a:Chris)

ClassAssertion(a:Male a:Chris)

 we can infer

ClassAssertion(a:Boy a:Chris)

Knowledge Technologies

Manolis Koubarakis

98

Example Inferences

• From
EquivalentClasses(a:MongrelOwner

ObjectSomeValuesFrom(a:hasPet a:Mongrel))

EquivalentClasses(a:DogOwner ObjectSomeValuesFrom(a:hasPet
a:Dog))

SubClassOf(a:Mongrel a:Dog)

ClassAssertion(a:MongrelOwner a:Peter)

 we can infer

SubClassOf(a:MongrelOwner a:DogOwner)

ClassAssertion(a:DogOwner a:Peter)

Knowledge Technologies

Manolis Koubarakis

99

Disjoint Classes

• A disjoint classes axiom DisjointClasses(CE1
... CEn) states that all of the class expressions CEi,
1≤i≤n, are pairwise disjoint.

• Example:

DisjointClasses(a:Boy a:Girl)

• An axiom DisjointClasses(CE1 CE2) is equivalent
to the following axiom:

SubClassOf(CE1 ObjectComplementOf(CE2))

Knowledge Technologies

Manolis Koubarakis

100

Disjoint Union of Classes

• A disjoint union axiom DisjointUnion(C CE1 ... CEn) states that a
class C is a disjoint union of the class expressions CEi,1≤i≤ n, all of
which are pairwise disjoint.

• Such axioms are sometimes referred to as covering axioms, as they state
that the extensions of all CEi exactly cover the extension of C.

• Example:

DisjointUnion(a:Child a:Boy a:Girl)

• Each such axiom is equivalent to the conjunction of the following two
axioms:

EquivalentClasses(C ObjectUnionOf(CE1 ... CEn))

DisjointClasses(CE1 ... CEn)

Knowledge Technologies

Manolis Koubarakis

101

Example Inferences

• From

DisjointUnion(a:Child a:Boy a:Girl)

 ClassAssertion(a:Child a:Stewie)

ClassAssertion(ObjectComplementOf(a:Girl)
a:Stewie)

 we can infer

ClassAssertion(a:Boy a:Stewie)

Knowledge Technologies

Manolis Koubarakis

102

Axioms (cont’d)

Knowledge Technologies

Manolis Koubarakis

103

Object Property Axioms

• OWL 2 provides axioms that can be used

to characterize and establish

relationships between object property

expressions.

Knowledge Technologies

Manolis Koubarakis

104

Object Property Axioms

Knowledge Technologies

Manolis Koubarakis

105

Object Subproperty Axioms

• Object subproperty axioms are analogous to subclass

axioms.

• The basic form of an object subproperty axiom is
SubObjectPropertyOf(OPE1 OPE2).

• This axiom states that the object property expression
OPE1 is a subproperty of the object property expression
OPE2 — that is, if an individual x is connected by OPE1
to an individual y, then x is also connected by OPE2 to
y.

• SubObjectPropertyOf is a reflexive and transitive
relation.

Knowledge Technologies

Manolis Koubarakis

106

Example Inferences

• From

SubObjectPropertyOf(a:hasDog a:hasPet)

ObjectPropertyAssertion(a:hasDog a:Peter

a:Brian)

 we can infer

ObjectPropertyAssertion(a:hasPet a:Peter

a:Brian)

Knowledge Technologies

Manolis Koubarakis

107

Object Subproperty Axioms:

Inclusions with Property Chains

• If OPE1, …, OPEn are object properties then

OPE1 … OPEn is called an object property chain.

• The more complex form of object subproperty axioms is

SubObjectPropertyOf(

ObjectPropertyChain(OPE1 ... OPEn) OPE).

• This axiom states that, if an individual x is connected by a sequence
of object property expressions OPE1, ..., OPEn with an
individual y, then x is also connected with y by the object property
expression OPE.

• These axioms are known as complex role inclusions in the DL
literature.

Knowledge Technologies

Manolis Koubarakis

108

Example Inferences

• From

SubObjectPropertyOf(

ObjectPropertyChain(a:hasMother a:hasSister)
a:hasAunt)

ObjectPropertyAssertion(a:hasMother a:Stewie a:Lois)

 ObjectPropertyAssertion(a:hasSister a:Lois
a:Carol)

 we can infer

ObjectPropertyAssertion(a:hasAunt a:Stewie a:Carol)

Knowledge Technologies

Manolis Koubarakis

109

Equivalent Object Properties

• An equivalent object properties axiom
EquivalentObjectProperties(OPE1 ... OPEn)
states that all of the object property expressions
OPEi,1≤i≤n, are semantically equivalent to each
other.

• The axiom EquivalentObjectProperties(OPE1
OPE2) is equivalent to the following two axioms:

SubObjectPropertyOf(OPE1 OPE2)

SubObjectPropertyOf(OPE2 OPE1)

Knowledge Technologies

Manolis Koubarakis

110

Example Inferences

• From
EquivalentObjectProperties(a:hasBrother a:hasMaleSibling)

 ObjectPropertyAssertion(a:hasBrother a:Chris a:Stewie)

ObjectPropertyAssertion(a:hasMaleSibling a:Stewie a:Chris)

 we can infer

ObjectPropertyAssertion(a:hasMaleSibling a:Chris a:Stewie)

ObjectPropertyAssertion(a:hasBrother a:Stewie a:Chris)

Knowledge Technologies

Manolis Koubarakis

111

Disjoint Object Properties

• A disjoint object properties axiom
DisjointObjectProperties(OPE1 ...

OPEn) states that all of the object property

expressions OPEi,1≤i≤n, are pairwise disjoint.

• Example:

DisjointObjectProperties(a:hasFather

a:hasMother)

Knowledge Technologies

Manolis Koubarakis

112

Inverse Object Properties

• An inverse object properties axiom
InverseObjectProperties(OPE1 OPE2)

states that the object property expression OPE1

is an inverse of the object property expression
OPE2.

• Each such axiom is equivalent with the following:

EquivalentObjectProperties(OPE1

ObjectInverseOf(OPE2))

Knowledge Technologies

Manolis Koubarakis

113

Example Inferences

• From
InverseObjectProperties(a:hasFather a:fatherOf)

ObjectPropertyAssertion(a:hasFather a:Stewie
a:Peter)

 ObjectPropertyAssertion(a:fatherOf a:Peter a:Chris)

we can infer

ObjectPropertyAssertion(a:fatherOf a:Peter a:Stewie)

ObjectPropertyAssertion(a:hasFather a:Chris a:Peter)

Knowledge Technologies

Manolis Koubarakis

114

Object Property Domain Axioms

• An object property domain axiom
ObjectPropertyDomain(OPE CE) states that the
domain of the object property expression OPE is the
class expression CE — that is, if an individual x is
connected by OPE with some other individual, then x is
an instance of CE.

• Each such axiom is equivalent to the following axiom:

SubClassOf(ObjectSomeValuesFrom(OPE

owl:Thing) CE)

Knowledge Technologies

Manolis Koubarakis

115

Example Inferences

• From
ObjectPropertyDomain(a:hasDog a:Person)

ObjectPropertyAssertion(a:hasDog a:Peter

a:Brian)

we can infer

ClassAssertion(a:Person a:Peter)

Knowledge Technologies

Manolis Koubarakis

116

Object Property Range Axioms

• An object property range axiom
ObjectPropertyRange(OPE CE) states that the
range of the object property expression OPE is the class
expression CE — that is, if some individual is connected
by OPE with an individual x, then x is an instance of CE.

• Each such axiom is equivalent to the following axiom:

SubClassOf(owl:Thing ObjectAllValuesFrom(OPE

CE))

Knowledge Technologies

Manolis Koubarakis

117

Example Inferences

• From
ObjectPropertyRange(a:hasDog a:Dog)

ObjectPropertyAssertion(a:hasDog
a:Peter a:Brian)

we can infer

ClassAssertion(a:Dog a:Brian)

Knowledge Technologies

Manolis Koubarakis

118

Object Property Axioms (cont’d)

Knowledge Technologies

Manolis Koubarakis

119

Functional Object Properties

• An object property functionality axiom
FunctionalObjectProperty(OPE) states
that the object property expression OPE is
functional — that is, for each individual x, there
can be at most one distinct individual y such that
x is connected by OPE to y.

• Each such axiom is equivalent to the following
axiom:

SubClassOf(owl:Thing
ObjectMaxCardinality(1 OPE))

Knowledge Technologies

Manolis Koubarakis

120

Example Inferences

• From
FunctionalObjectProperty(a:hasFather)

ObjectPropertyAssertion(a:hasFather a:Stewie
a:Peter)

ObjectPropertyAssertion(a:hasFather a:Stewie

a:Peter_Griffin)

we can infer

SameIndividual(a:Peter a:Peter_Griffin)

Knowledge Technologies

Manolis Koubarakis

121

Inverse-Functional Object

Properties
• An object property inverse functionality axiom
InverseFunctionalObjectProperty(OPE) states
that the object property expression OPE is inverse-
functional — that is, for each individual x, there can be
at most one individual y such that y is connected by OPE
with x.

• Each such axiom is equivalent to the following axiom:

SubClassOf(owl:Thing ObjectMaxCardinality(1

ObjectInverseOf(OPE)))

Knowledge Technologies

Manolis Koubarakis

122

Example Inferences

• From
InverseFunctionalObjectProperty(a:fatherOf)

ObjectPropertyAssertion(a:fatherOf a:Peter a:Stewie)

ObjectPropertyAssertion(a:fatherOf a:Peter_Griffin
a:Stewie)

we can infer

SameIndividual(a:Peter a:Peter_Griffin)

Knowledge Technologies

Manolis Koubarakis

123

Reflexive Object Properties

• An object property reflexivity axiom
ReflexiveObjectProperty(OPE) states that
the object property expression OPE is reflexive
— that is, each individual is connected by OPE to
itself.

• Each such axiom is equivalent to the following
axiom:

SubClassOf(owl:Thing ObjectHasSelf(

OPE))

Knowledge Technologies

Manolis Koubarakis

124

Example Inferences

• From
ReflexiveObjectProperty(a:knows)

ClassAssertion(a:Person a:Peter)

we can infer

ObjectPropertyAssertion(a:knows

a:Peter a:Peter)

Knowledge Technologies

Manolis Koubarakis

125

Irreflexive Object Properties

• An object property irreflexivity axiom
IrreflexiveObjectProperty(OPE) states
that the object property expression OPE is
irreflexive — that is, no individual is connected
by OPE to itself.

• Each such axiom is equivalent to the following
axiom:

SubClassOf(ObjectHasSelf(OPE)

owl:Nothing)

Knowledge Technologies

Manolis Koubarakis

126

Symmetric Object Properties

• An object property symmetry axiom
SymmetricObjectProperty(OPE) states that the
object property expression OPE is symmetric — that is,
if an individual x is connected by OPE to an individual y,
then y is also connected by OPE to x.

• Example:

SymmetricObjectProperty(a:friend)

• Each such axiom is equivalent to the following axiom:

SubObjectPropertyOf(OPE

ObjectInverseOf(OPE))

Knowledge Technologies

Manolis Koubarakis

127

Asymmetric Object Properties

• An object property asymmetry axiom
AsymmetricObjectProperty(OPE) states

that the object property expression OPE is

asymmetric — that is, if an individual x is

connected by OPE to an individual y, then y

cannot be connected by OPE to x.

• Example

AsymmetricObjectProperty(a:parentOf)

Knowledge Technologies

Manolis Koubarakis

128

Transitive Object Properties

• An object property transitivity axiom
TransitiveObjectProperty(OPE) states that the
object property expression OPE is transitive — that is, if
an individual x is connected by OPE to an individual y
that is connected by OPE to an individual z, then x is
also connected by OPE to z.

• Each such axiom is equivalent to the following axiom:

SubObjectPropertyOf(ObjectPropertyChain(OPE

OPE) OPE)

Knowledge Technologies

Manolis Koubarakis

129

Example Inferences

• From
TransitiveObjectProperty(a:ancestorOf)

ObjectPropertyAssertion(a:ancestorOf a:Carter
a:Lois)

ObjectPropertyAssertion(a:ancestorOf a:Lois a:Meg)

we can infer

ObjectPropertyAssertion(a:ancestorOf a:Carter a:Meg)

Knowledge Technologies

Manolis Koubarakis

130

Axioms (cont’d)

Knowledge Technologies

Manolis Koubarakis

131

Data Property Axioms

Knowledge Technologies

Manolis Koubarakis

132

Data Property Axioms (cont’d)

• OWL 2 also provides for data property

axioms. Their structure and semantics is

similar to the corresponding object

property axioms.

• We will not present data property axioms

in detail. We will only give some examples.

Knowledge Technologies

Manolis Koubarakis

133

Examples

• From
SubDataPropertyOf(a:hasLastName a:hasName)

DataPropertyAssertion(a:hasLastName a:Peter
"Griffin")

we can infer

DataPropertyAssertion(a:hasName a:Peter

"Griffin")

Knowledge Technologies

Manolis Koubarakis

134

Examples (cont’d)

• The ontology

FunctionalDataProperty(a:hasAge)

DataPropertyAssertion(a:hasAge a:Meg
"17"^^xsd:integer)

DataPropertyAssertion(a:hasAge a:Meg
"17.0"^^xsd:decimal)

DataPropertyAssertion(a:hasAge a:Meg "+17"^^xsd:int)

is consistent because the different age literals given map to the same

value.

Knowledge Technologies

Manolis Koubarakis

135

Examples (cont’d)

• The ontology
FunctionalDataProperty(a:numberOfChildren)

DataPropertyAssertion(a:numberOfChildren
a:Meg "+0"^^xsd:float)

DataPropertyAssertion(a:numberOfChildren
a:Meg "-0"^^xsd:float)

 is unsatisfiable because literals "+0"^^xsd:float and

 "-0"^^xsd:float are mapped to distinct data values
+0 and -0 in the value space of xsd:float; these data
values are equal, but not identical.

Knowledge Technologies

Manolis Koubarakis

136

Axioms (cont’d)

Knowledge Technologies

Manolis Koubarakis

137

Datatype Definitions

• A datatype definition
DatatypeDefinition(DT DR) defines a new

datatype DT as being semantically equivalent to

the data range DR; the latter must be a unary

data range.

• The datatypes defined by datatype definition

axioms support no facets so they must not

occur in datatype restrictions.

Knowledge Technologies

Manolis Koubarakis

138

Example

DatatypeDefinition(a:SSN

DatatypeRestriction(xsd:string

xsd:pattern "[0-9]{3}-[0-9]{2}-

[0-9]{4}"))

DataPropertyRange(a:hasSSN

a:SSN)

Knowledge Technologies

Manolis Koubarakis

139

Axioms (cont’d)

Knowledge Technologies

Manolis Koubarakis

140

Keys

• A key axiom

HasKey(CE (OPE1 ... OPEm) (DPE1 ... DPEn))

 states that each named instance of the class expression CE is uniquely
identified by the object property expressions OPEi and/or the data property
expressions DPEj.

• In this case, no two distinct, named instances of CE can coincide on the
values of all object property expressions OPEi and all data property
expressions DPEj.

• A key axiom of the form HasKey(owl:Thing (OPE) ()) is similar to the
axiom InverseFunctionalObjectProperty(OPE). Their main
difference is that the former axiom is applicable only to individuals that are
explicitly named in an ontology, while the latter axiom is also applicable to
unnamed individuals.

Knowledge Technologies

Manolis Koubarakis

141

Example Inferences

• From
HasKey(owl:Thing () (a:hasSSN))

 DataPropertyAssertion(a:hasSSN a:Peter "123-45-
6789")

DataPropertyAssertion(a:hasSSN a:Peter_Griffin "123-
45-6789")

we can infer

SameIndividual(a:Peter a:Peter_Griffin)

Knowledge Technologies

Manolis Koubarakis

142

Example Inferences

• From
HasKey(a:GriffinFamilyMember () (a:hasName))

DataPropertyAssertion(a:hasName a:Peter "Peter")

ClassAssertion(a:GriffinFamilyMember a:Peter)

DataPropertyAssertion(a:hasName a:Peter_Griffin "Peter")

ClassAssertion(a:GriffinFamilyMember a:Peter_Griffin)

DataPropertyAssertion(a:hasName a:StPeter "Peter")

we can infer

SameIndividual(a:Peter a:Peter_Griffin)

Knowledge Technologies

Manolis Koubarakis

143

Example

• The ontology

HasKey(a:GriffinFamilyMember () (a:hasName))

DataPropertyAssertion(a:hasName a:Peter "Peter")

DataPropertyAssertion(a:hasName a:Peter "Kichwa-

Tembo")

ClassAssertion(a:GriffinFamilyMember a:Peter)

is consistent because a key axiom does not make all the properties

used in it functional.

Knowledge Technologies

Manolis Koubarakis

144

Axioms (cont’d)

Knowledge Technologies

Manolis Koubarakis

145

Declarations

• In an OWL 2 ontology, the entities (individuals,
classes, properties) used can be, and
sometimes even needs to be, declared.

• Declarations are nonlogical axioms. They have
no semantics but can allow OWL 2 tools to catch
errors.

• Declarations are optional. But in OWL DL
classes, datatypes and properties of various
kinds need to be declared as such.

Knowledge Technologies

Manolis Koubarakis

146

BNF for Entity Declarations

Declaration := 'Declaration' '(' axiomAnnotations
Entity ')‘

Entity :=
 'Class' '(' Class ')' |
 'Datatype' '(' Datatype ')' |
 'ObjectProperty' '(' ObjectProperty ')' |
 'DataProperty' '(' DataProperty ')' |
 'AnnotationProperty' '(' AnnotationProperty
')' |
 'NamedIndividual' '(' NamedIndividual ')'

Knowledge Technologies

Manolis Koubarakis

147

Example

Declaration(Class(a:Person))

Declaration(NamedIndividual(a:Peter))

ClassAssertion(a:Person a:Peter)

Knowledge Technologies

Manolis Koubarakis

148

Axioms (cont’d)

Knowledge Technologies

Manolis Koubarakis

149

Assertions

• OWL 2 supports a rich set of axioms for stating
assertions about individuals:
– Individual equality

– Individual inequality

– Class assertion

– Positive object property assertion

– Negative object property assertion

– Positive data property assertion

– Negative data property assertion

• Assertions are often also called facts. They are
part of the ABox in DLs.

Knowledge Technologies

Manolis Koubarakis

150

Individual Equality Axiom

• An individual equality axiom
SameIndividual(a1 ... an) states

that all of the individuals ai, 1≤i≤n, are

equal to each other.

Knowledge Technologies

Manolis Koubarakis

151

Example Inference

• From
SameIndividual(a:Meg a:Megan)

 ObjectPropertyAssertion(a:hasBrother a:Meg
a:Stewie)

we can infer

ObjectPropertyAssertion(a:hasBrother a:Megan

a:Stewie)

Knowledge Technologies

Manolis Koubarakis

152

Individual Inequality Axiom

• An individual inequality axiom
DifferentIndividuals(a1 ... an)

states that all of the individuals ai,

1≤i≤n, are different from each other.

• Example:

DifferentIndividuals(a:Peter a:Meg

a:Chris a:Stewie)

Knowledge Technologies

Manolis Koubarakis

153

Class Assertions

• A class assertion ClassAssertion(CE

a) states that the individual a is an

instance of the class expression CE.

• Example:

ClassAssertion(a:Dog a:Brian)

Knowledge Technologies

Manolis Koubarakis

154

Object Property Assertions

• A positive object property assertion
ObjectPropertyAssertion(OPE a1 a2)
states that the individual a1 is connected by the
object property expression OPE to the individual
a2.

• A negative object property assertion
NegativeObjectPropertyAssertion(OPE

a1 a2) states that the individual a1 is not
connected by the object property expression
OPE to the individual a2.

Knowledge Technologies

Manolis Koubarakis

155

Examples

ObjectPropertyAssertion(a:hasDog

a:Peter a:Brian)

NegativeObjectPropertyAssertion(

a:hasSon a:Peter a:Meg)

Knowledge Technologies

Manolis Koubarakis

156

Data Property Assertions

• A positive data property assertion
DataPropertyAssertion(DPE a lt) states
that the individual a is connected by the data
property expression DPE to the literal lt.

• A negative data property assertion
NegativeDataPropertyAssertion(DPE a

lt) states that the individual a is not connected
by the data property expression DPE to the literal
lt.

Knowledge Technologies

Manolis Koubarakis

157

Example Inference

• From

DataPropertyAssertion(a:hasAge a:Meg "17"^^xsd:integer)

SubClassOf(
 DataSomeValuesFrom(a:hasAge
 DatatypeRestriction(xsd:integer
 xsd:minInclusive "13"^^xsd:integer
 xsd:maxInclusive "19"^^xsd:integer
)
)
 a:Teenager
)

we can infer

ClassAssertion(a:Teenager a:Meg)

Knowledge Technologies

Manolis Koubarakis

158

Annotations

• OWL 2 applications often need ways to associate
additional information with ontologies, entities, and
axioms. To this end, OWL 2 provides for annotations on
ontologies, axioms, and entities.

• Annotations are first-class citizens in OWL 2; their
structure is independent of the underlying syntax and
they are different than comments that a syntax (e.g.,
OWL XML) might allow.

• Annotations have no formal semantics, thus they do not
participate in the meaning of an ontology (under the
OWL 2 direct semantics).

Knowledge Technologies

Manolis Koubarakis

159

Axioms (cont’d)

Knowledge Technologies

Manolis Koubarakis

160

Annotation of Entities and

Anonymous Individuals
• The axiom AnnotationAssertion(AP as av) states

that the annotation subject as is annotated with the
annotation property AP (user defined or built-in) and the
annotation value av.

• as can be an entity (i.e., individual, class or property) or
an anonymous individual.

• Example:

AnnotationAssertion(rdfs:label a:Person

"Represents the set of all people.")

Knowledge Technologies

Manolis Koubarakis

161

Annotations of Axioms, Annotations

and Ontologies

• OWL 2 also provides the construct
Annotation({A} AP v) where AP is an
annotation property (user defined or built-in), v is
a literal, an IRI, or an anonymous individual and
{A} are 0 or more annotations.

• The above construct can be used for
annotations of axioms and ontologies. It can
also be used for annotations of annotations
themselves.

Knowledge Technologies

Manolis Koubarakis

162

Examples

SubClassOf(

Annotation(rdfs:comment "Persons

are humans.") a:Person a:Human)

Knowledge Technologies

Manolis Koubarakis

163

Examples (cont’d)

Prefix(ex:=<http://www.example.com/ontology1#>)

Prefix(owl:=<http://www.w3.org/2002/07/owl#>)

Ontology(<http://www.example.com/ontology1>

 Import(<http://www.example.com/ontology2>)

 Annotation(rdfs:label "An example ontology")

 SubClassOf(ex:Child owl:Thing)

)

Knowledge Technologies

Manolis Koubarakis

164

Annotation Properties

• Various annotation properties can be defined by users
(e.g., an integer ID in the Foundational Model of
Anatomy ontology; see
http://sig.biostr.washington.edu/projects/fm/AboutFM.htm
l).

• To help users in their modeling, OWL 2 also offers the
constructs:
– SubAnnotationPropertyOf(AP1 AP2) states that the

annotation property AP1 is a subproperty of the annotation
property AP2.

– AnnotationPropertyDomain(AP U) states that the domain
of the annotation property AP is the IRI U.

– AnnotationPropertyRange(AP U) states that the range of
the annotation property AP is the IRI U.

http://sig.biostr.washington.edu/projects/fm/AboutFM.html
http://sig.biostr.washington.edu/projects/fm/AboutFM.html

Knowledge Technologies

Manolis Koubarakis

165

Metamodeling

• OWL 2 enables metamodeling by allowing the same IRI I to refer
to more than one type of entity (e.g., an individual and a class). This
is called “punning” in the literature.

• Example:
ClassAssertion(a:Father a:John)

ClassAssertion(a:SocialRole a:Father)

• In the above example, IRI a:Father is first used as a class and
then as an individual.

• The direct model-theoretic semantics of OWL 2 accommodates this
by understanding the class a:Father and the individual a:Father
as two different views on the same IRI, i.e. they are interpreted
semantically as if they were distinct.

Knowledge Technologies

Manolis Koubarakis

166

Semantics

• There are two alternative ways of assigning meaning to
ontologies in OWL 2:
– The direct model-theoretic semantics. This provides a

meaning for OWL 2 in a DL style by understanding OWL 2
constructs as constructs of the DL SROIQ (with the exception of
datatypes and punning that are not included in SROIQ but still
covered by this semantics). See http://www.w3.org/TR/owl2-
direct-semantics/ .

– The RDF-based semantics. This is an extension of the
semantics of RDFS (D-entailment in particular) and is based on
viewing OWL 2 ontologies as RDF graphs. For the exact
relationship of the two semantics, see
http://www.w3.org/TR/owl2-rdf-based-semantics/.

http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/
http://www.w3.org/TR/owl2-rdf-based-semantics/

Knowledge Technologies

Manolis Koubarakis

167

OWL 2 DL and OWL 2 Full

• Informally, the notion "OWL 2 DL" is used to refer to
OWL 2 ontologies interpreted using the direct semantics,
and the notion "OWL 2 Full" is used when considering
the RDF-based semantics.

• Formally, there are certain additional conditions which
must be met by an OWL 2 ontology to qualify as OWL 2
DL.

• See the OWL 2 Structural Specification and Functional-
Style Syntax for details.

Knowledge Technologies

Manolis Koubarakis

168

Examples of Additional Conditions

in OWL 2 DL

• Reserved vocabulary (e.g., owl:Thing) should only be used for
its intended purpose.

• Classes, datatypes and properties (object, datatype and annotation)
need to be declared.

• Strict typing: the sets of IRIs used as object, data, and annotation
properties in O are disjoint and that, similarly, the sets of IRIs used
as classes and datatypes in O are disjoint as well.

• Some global restrictions on axiom closure from SROIQ to ensure
decidability (e.g., only simple properties in certain kinds of axioms).

Knowledge Technologies

Manolis Koubarakis

169

Axiom Closure of an Ontology

• The import closure of an ontology O is a set
containing O and all the ontologies that O
imports.

• The axiom closure of an ontology O is the
smallest set that contains all the axioms from
each ontology O' in the import closure of O with
all anonymous individuals standardized apart
(i.e., the anonymous individuals from different
ontologies in the import closure of O are treated
as being different).

Knowledge Technologies

Manolis Koubarakis

170

Example (not OWL 2 DL!)

Prefix(ex:=<http://www.example.com/ontology1#>)

Prefix(owl:=<http://www.w3.org/2002/07/owl#>)

Ontology(<http://www.example.com/ontology1>

SubObjectPropertyOf(

ObjectPropertyChain(ex:hasFather ex:hasBrother)

 ex:hasUncle)

EquivalentClasses(ex:PersonWithThreeUncles
ObjectExactCardinality(3 ex:hasUncle ex:Person))

)

Note: Property hasUncle is not simple (it is defined by a property chain) so

it cannot be used in cardinality restrictions.

Knowledge Technologies

Manolis Koubarakis

171

OWL 2 DL and OWL 2 Full (cont’d)

• We can think of the difference between OWL 2
DL and OWL 2 Full in two ways:
– OWL 2 DL is a syntactically restricted version of OWL

2 Full. OWL 2 Full is undecidable while OWL 2 DL is
not. There are several production quality reasoners
that cover the entire OWL 2 DL language (e.g., Pellet
and HermiT).

– OWL 2 Full is an extension of RDFS. As such, the
RDF-Based Semantics for OWL 2 Full follows the
RDFS semantics and general syntactic philosophy
(i.e., everything is a triple and the language is fully
reflective).

Knowledge Technologies

Manolis Koubarakis

172

OWL 2 Profiles

• In addition to OWL 2 DL and OWL 2 Full, OWL 2 specifies three
profiles: OWL 2 EL, OWL QL and OWL RL.

• These profiles are designed to be subsets of OWL 2 sufficient for
a variety of applications.

• Computational considerations are a major requirement of these
profiles; they are all much easier to implement with robust scalability
given existing technology.

• There are many subsets of OWL 2 that have good computational
properties. The selected OWL 2 profiles were identified as having
substantial user communities already.

• The OWL 2 Profiles document provides a clear template for
specifying additional profiles.

Knowledge Technologies

Manolis Koubarakis

173

OWL 2 EL

• The OWL 2 EL profile is a subset of OWL 2 that

– is particularly suitable for applications employing ontologies that define very
large numbers of classes and/or properties,

– captures the expressive power used by many such ontologies, and

– for which ontology consistency, class expression subsumption, and
instance checking can be decided in polynomial time.

• Example: OWL 2 EL is sufficient to express the very large biomedical ontology
SNOMED CT. The specialized reasoner ELK can classify all 400,000 classes of this
ontology in 5 seconds using 4 cores (http://www.cs.ox.ac.uk/isg/tools/ELK/).

• The acronym EL comes from the fact that the profile is based on the DL family of
languages EL. See the relevant paper

– Pushing the EL Envelope. Franz Baader, Sebastian Brandt, and Carsten Lutz. In
Proc. of the 19th Joint Int. Conf. on Artificial Intelligence (IJCAI 2005), 2005 .
Available from http://lat.inf.tu-
dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf

http://www.cs.ox.ac.uk/isg/tools/ELK/
http://lat.inf.tu-dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf
http://lat.inf.tu-dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf
http://lat.inf.tu-dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf
http://lat.inf.tu-dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf
http://lat.inf.tu-dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf
http://lat.inf.tu-dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf
http://lat.inf.tu-dresden.de/research/papers/2005/BaaderBrandtLutz-IJCAI-05.pdf

Knowledge Technologies

Manolis Koubarakis

174

OWL 2 EL Specification

• Types of class restrictions allowed:
– existential quantification to a class expression

(ObjectSomeValuesFrom) or a data range
(DataSomeValuesFrom)

– existential quantification to an individual
(ObjectHasValue) or a literal (DataHasValue)

– self-restriction (ObjectHasSelf)

– enumerations involving a single individual
(ObjectOneOf) or a single literal (DataOneOf)

– intersection of classes (ObjectIntersectionOf)
and data ranges (DataIntersectionOf)

Knowledge Technologies

Manolis Koubarakis

175

OWL 2 EL Specification (cont’d)

• Types of axioms allowed:

– class inclusion (SubClassOf)

– class equivalence (EquivalentClasses)

– class disjointness (DisjointClasses)

– object property inclusion (SubObjectPropertyOf)

with or without property chains, and data property
inclusion (SubDataPropertyOf)

– property equivalence
(EquivalentObjectProperties and

EquivalentDataProperties)

Knowledge Technologies

Manolis Koubarakis

176

OWL 2 EL Specification (cont’d)

– transitive object properties (TransitiveObjectProperty)

– reflexive object properties (ReflexiveObjectProperty)

– domain restrictions (ObjectPropertyDomain and
DataPropertyDomain)

– range restrictions (ObjectPropertyRange and
DataPropertyRange)

– assertions (SameIndividual, DifferentIndividuals,
ClassAssertion, ObjectPropertyAssertion,

DataPropertyAssertion,

NegativeObjectPropertyAssertion, and
NegativeDataPropertyAssertion)

– functional data properties (FunctionalDataProperty)

– keys (HasKey)

Knowledge Technologies

Manolis Koubarakis

177

OWL 2 EL Specification (cont’d)

• Constructs not supported:
– universal quantification to a class expression

(ObjectAllValuesFrom) or a data range
(DataAllValuesFrom)

– cardinality restrictions (ObjectMaxCardinality,
ObjectMinCardinality, ObjectExactCardinality,
DataMaxCardinality, DataMinCardinality, and
DataExactCardinality)

– disjunction (ObjectUnionOf, DisjointUnion, and
DataUnionOf)

– class negation (ObjectComplementOf)

– enumerations involving more than one individual (ObjectOneOf
and DataOneOf)

Knowledge Technologies

Manolis Koubarakis

178

OWL 2 EL Specification (cont’d)

– disjoint properties (DisjointObjectProperties
and DisjointDataProperties)

– irreflexive object properties
(IrreflexiveObjectProperty)

– inverse object properties
(InverseObjectProperties)

– functional and inverse-functional object properties
(FunctionalObjectProperty and
InverseFunctionalObjectProperty)

– symmetric object properties
(SymmetricObjectProperty)

– asymmetric object properties
(AsymmetricObjectProperty)

Knowledge Technologies

Manolis Koubarakis

179

OWL 2 QL

• The OWL 2 QL profile is a subset of OWL 2 that provides a useful language for
writing ontologies that have computational properties similar to the ones that one
finds in relational databases.

• In this profile sound and complete query answering can be done with LOGSPACE
computational complexity with respect to the size of the data (assertions), while
providing many of the main features necessary to express conceptual models such
as UML class diagrams and ER diagrams.

• This profile contains the intersection of RDFS and OWL 2 DL.

• This profile is designed so that data (assertions) that is stored in a standard relational
database system can be queried through an ontology via a simple rewriting
mechanism, i.e., by rewriting the query into an SQL query that is then answered by
the RDBMS system, without any changes to the data.

• OWL 2 QL is based on the DL-Lite family of description logics.

• See the OWL 2 Language Profiles document for more details.

Knowledge Technologies

Manolis Koubarakis

180

OWL 2 RL

• The OWL 2 RL profile is aimed at applications that require scalable
reasoning without sacrificing too much expressive power.

• It is designed to accommodate both OWL 2 applications that can trade the
full expressivity of the language for efficiency, and RDF(S) applications that
need some added expressivity from OWL 2.

• This is achieved by defining a syntactic subset of OWL 2 which is
amenable to implementation using rule-based technologies and
presenting a partial axiomatization of the OWL 2 RDF-based semantics
in the form of first-order implications that can be used as the basis for
such an implementation.

• The design of OWL 2 RL was inspired by Description Logic Programs
and pD*.

• See the OWL 2 Language Profiles document for more details.

Knowledge Technologies

Manolis Koubarakis

181

OWL Syntaxes (cont’d)

• The Functional-Style syntax (used so far in these
slides).

• The RDF/XML syntax: this is just RDF/XML, with a
particular translation for the OWL constructs. Here one
can use other popular syntaxes for RDF, e.g., Turtle
syntax.

• The Manchester syntax: this is a frame-based syntax
that is designed to be easier for users to read.

• The OWL XML syntax: this is an XML syntax for OWL
defined by an XML schema.

Knowledge Technologies

Manolis Koubarakis

182

Example

• Jack is a person but not a parent.

Knowledge Technologies

Manolis Koubarakis

183

Functional-Style Syntax

ClassAssertion(

 ObjectIntersectionOf(:Person

 ObjectComplementOf(:Parent))

 :Jack

)

Knowledge Technologies

Manolis Koubarakis

184

RDF/XML Syntax

<rdf:Description rdf:about="Jack">

 <rdf:type>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Class rdf:about="Person"/>

 <owl:Class>

 <owl:complementOf rdf:resource="Parent"/>

 </owl:Class>

 </owl:intersectionOf>

 </owl:Class>

 </rdf:type>

</rdf:Description>

Knowledge Technologies

Manolis Koubarakis

185

Turtle Syntax

:Jack rdf:type [

 rdf:type owl:Class;

 owl:intersectionOf (:Person

 [rdf:type owl:Class;

 owl:complementOf :Parent]

)

] .

Knowledge Technologies

Manolis Koubarakis

186

Manchester Syntax

Individual: Jack

Types: Person and not Parent

Knowledge Technologies

Manolis Koubarakis

187

OWL/XML Syntax

<ClassAssertion>

 <ObjectIntersectionOf>

 <Class IRI="Person"/>

 <ObjectComplementOf>

 <Class IRI="Parent"/>

 </ObjectComplementOf>

 </ObjectIntersectionOf>

 <NamedIndividual IRI="Jack"/>

</ClassAssertion>

Knowledge Technologies

Manolis Koubarakis

188

Readings

• The document http://www.w3.org/TR/2009/REC-owl2-overview-
20091027/ gives an overview of the OWL 2 specification of the W3C
OWL Working Group. In the documents referenced there, you will
find all the information that you may need.

• You should read at least the Primer (http://www.w3.org/TR/owl2-
primer/) and Structural Specification and Functional Style Syntax
(http://www.w3.org/TR/owl2-syntax/) .

• The following survey paper introduces OWL 2, explains its
relationship with DL SROIQ, and discusses various OWL tools and
applications:
– Ian Horrocks and Peter F. Patel-Schneider. KR and Reasoning on the

Semantic Web: OWL. In Handbook of Semantic Web Technologies,
chapter 9. Springer, 2010. Available from
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2010/
HoPa10a.pdf

http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2010/HoPa10a.pdf
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2010/HoPa10a.pdf

Knowledge Technologies

Manolis Koubarakis

189

Readings (cont’d)

• The DL SROIQ on which OWL 2 is based is fully described in the
paper
– The Even More Irresistible SROIQ. Ian Horrocks, Oliver Kutz, and Uli

Sattler. In Proc. of the 10th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR 2006). AAAI Press, 2006. Available
from http://www.cs.manchester.ac.uk/~sattler/publications/sroiq-TR.pdf.

http://www.cs.manchester.ac.uk/~sattler/publications/sroiq-TR.pdf
http://www.cs.manchester.ac.uk/~sattler/publications/sroiq-TR.pdf
http://www.cs.manchester.ac.uk/~sattler/publications/sroiq-TR.pdf

