
The Web Ontology Language OWL2

M. Koubarakis, G. Santipantakis

January 13, 2025

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 1 / 68

Table of Contents

1 The Web Ontology Language (OWL)
OWL Overview
OWL Basics
OWL Syntax Variants
OWL Classes
OWL Properties
OWL Individuals
OWL Datatypes
OWL Class Expressions
Assertions

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 2 / 68

The Web Ontology Language (OWL)

An Ontology is an explicit, formal specification of a shared
conceptualization. Ontologies are formal models that describe a
certain domain and specify the definitions of terms by describing their
relationships with other terms in the ontology.

Web Ontology Language (OWL): a DL-based language to describe
ontologies.

As a DL-based language:

different language profiles based on expressiveness are possible
ontologies comprise a TBox, an RBox and ABox
sound and complete algorithms for the reasoning tasks are available

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 3 / 68

The Web Ontology Language (OWL)

An Ontology is an explicit, formal specification of a shared
conceptualization. Ontologies are formal models that describe a
certain domain and specify the definitions of terms by describing their
relationships with other terms in the ontology.

Web Ontology Language (OWL): a DL-based language to describe
ontologies.

As a DL-based language:

different language profiles based on expressiveness are possible
ontologies comprise a TBox, an RBox and ABox
sound and complete algorithms for the reasoning tasks are available

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 3 / 68

The Web Ontology Language (OWL)

An Ontology is an explicit, formal specification of a shared
conceptualization. Ontologies are formal models that describe a
certain domain and specify the definitions of terms by describing their
relationships with other terms in the ontology.

Web Ontology Language (OWL): a DL-based language to describe
ontologies.

As a DL-based language:

different language profiles based on expressiveness are possible
ontologies comprise a TBox, an RBox and ABox
sound and complete algorithms for the reasoning tasks are available

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 3 / 68

The Web Ontology Language (OWL)

An Ontology is an explicit, formal specification of a shared
conceptualization. Ontologies are formal models that describe a
certain domain and specify the definitions of terms by describing their
relationships with other terms in the ontology.

Web Ontology Language (OWL): a DL-based language to describe
ontologies.

As a DL-based language:

different language profiles based on expressiveness are possible

ontologies comprise a TBox, an RBox and ABox
sound and complete algorithms for the reasoning tasks are available

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 3 / 68

The Web Ontology Language (OWL)

An Ontology is an explicit, formal specification of a shared
conceptualization. Ontologies are formal models that describe a
certain domain and specify the definitions of terms by describing their
relationships with other terms in the ontology.

Web Ontology Language (OWL): a DL-based language to describe
ontologies.

As a DL-based language:

different language profiles based on expressiveness are possible
ontologies comprise a TBox, an RBox and ABox

sound and complete algorithms for the reasoning tasks are available

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 3 / 68

The Web Ontology Language (OWL)

An Ontology is an explicit, formal specification of a shared
conceptualization. Ontologies are formal models that describe a
certain domain and specify the definitions of terms by describing their
relationships with other terms in the ontology.

Web Ontology Language (OWL): a DL-based language to describe
ontologies.

As a DL-based language:

different language profiles based on expressiveness are possible
ontologies comprise a TBox, an RBox and ABox
sound and complete algorithms for the reasoning tasks are available

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 3 / 68

OWL Overview

OWL (SHOIQ(D)) W3C Recommendation (2004)

OWL2 (SROIQ(D)) W3C Recommendation (2009)

an OWL ontology consists of classes, properties and individuals

No Unique Name Assumption:

e.g., :Mary :hasChild :John ; :hasChild :kid1

:John and :kid1 may refer to the same entity

Open World Assumption:

absence of information must not be considered as negative information,
e.g. :Mary :hasChild :John

does not entail that Mary has only one child

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 4 / 68

OWL Overview

OWL (SHOIQ(D)) W3C Recommendation (2004)

OWL2 (SROIQ(D)) W3C Recommendation (2009)

an OWL ontology consists of classes, properties and individuals

No Unique Name Assumption:

e.g., :Mary :hasChild :John ; :hasChild :kid1

:John and :kid1 may refer to the same entity

Open World Assumption:

absence of information must not be considered as negative information,
e.g. :Mary :hasChild :John

does not entail that Mary has only one child

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 4 / 68

OWL Overview

OWL (SHOIQ(D)) W3C Recommendation (2004)

OWL2 (SROIQ(D)) W3C Recommendation (2009)

an OWL ontology consists of classes, properties and individuals

No Unique Name Assumption:

e.g., :Mary :hasChild :John ; :hasChild :kid1

:John and :kid1 may refer to the same entity

Open World Assumption:

absence of information must not be considered as negative information,
e.g. :Mary :hasChild :John

does not entail that Mary has only one child

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 4 / 68

OWL Overview

OWL (SHOIQ(D)) W3C Recommendation (2004)

OWL2 (SROIQ(D)) W3C Recommendation (2009)

an OWL ontology consists of classes, properties and individuals

No Unique Name Assumption:

e.g., :Mary :hasChild :John ; :hasChild :kid1

:John and :kid1 may refer to the same entity

Open World Assumption:

absence of information must not be considered as negative information,
e.g. :Mary :hasChild :John

does not entail that Mary has only one child

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 4 / 68

OWL Overview

OWL (SHOIQ(D)) W3C Recommendation (2004)

OWL2 (SROIQ(D)) W3C Recommendation (2009)

an OWL ontology consists of classes, properties and individuals

No Unique Name Assumption:

e.g., :Mary :hasChild :John ; :hasChild :kid1

:John and :kid1 may refer to the same entity

Open World Assumption:

absence of information must not be considered as negative information,
e.g. :Mary :hasChild :John

does not entail that Mary has only one child

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 4 / 68

OWL Overview (cont’d)

OWL profiles (sublanguages) are syntactic restrictions:

OWL Lite: designed for easy
implementation with a
functional subset of OWL.

OWL DL: designed to support
the existing Description Logic
and provide a language subset
that has desirable computational
properties for reasoning systems.

OWL Full: relaxes some of the
constraints on OWL DL for
maximum expressiveness, but
which violate the constraints of
Description Logic reasoners.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 5 / 68

OWL Overview (cont’d)

OWL2 profiles (sublanguages), each profile is more restrictive than OWL
DL:

OWL 2 EL enables polynomial
time algorithms for all the
standard reasoning tasks

OWL 2 QL enables conjunctive
queries to be answered in
LogSpace using standard
relational database technology

OWL 2 RL enables the
implementation of polynomial
time reasoning algorithms using
rule-extended database
technologies operating directly
on RDF triples

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 6 / 68

OWL 1 is DL based on SHOIN (D)

ALC constructors (⊓,⊔,¬,∀R.C , ∃R.C) and property transitivity (S),

TBox: concept subsumption e.g., C ⊑ D (H)

RBox: property subsumption e.g., R ⊑ S (H)

TBox: enumerated classes (nominals) e.g., {a} (O)

RBox: inverse properties e.g., R− (I)
TBox: cardinality restrictions e.g., ≤ nR,≥ nR (N)

Datatypes (D)

ABox: class and property assertions e.g.,
Student(ST001), hasParent(MARIA,NIKOS), instance equality e.g.,
ST001 = NIKOS , and difference e.g., MARIA ̸= NIKOS

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 7 / 68

OWL 1 is DL based on SHOIN (D)

ALC constructors (⊓,⊔,¬,∀R.C , ∃R.C) and property transitivity (S),
TBox: concept subsumption e.g., C ⊑ D (H)

RBox: property subsumption e.g., R ⊑ S (H)

TBox: enumerated classes (nominals) e.g., {a} (O)

RBox: inverse properties e.g., R− (I)
TBox: cardinality restrictions e.g., ≤ nR,≥ nR (N)

Datatypes (D)

ABox: class and property assertions e.g.,
Student(ST001), hasParent(MARIA,NIKOS), instance equality e.g.,
ST001 = NIKOS , and difference e.g., MARIA ̸= NIKOS

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 7 / 68

OWL 1 is DL based on SHOIN (D)

ALC constructors (⊓,⊔,¬,∀R.C , ∃R.C) and property transitivity (S),
TBox: concept subsumption e.g., C ⊑ D (H)

RBox: property subsumption e.g., R ⊑ S (H)

TBox: enumerated classes (nominals) e.g., {a} (O)

RBox: inverse properties e.g., R− (I)
TBox: cardinality restrictions e.g., ≤ nR,≥ nR (N)

Datatypes (D)

ABox: class and property assertions e.g.,
Student(ST001), hasParent(MARIA,NIKOS), instance equality e.g.,
ST001 = NIKOS , and difference e.g., MARIA ̸= NIKOS

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 7 / 68

OWL 1 is DL based on SHOIN (D)

ALC constructors (⊓,⊔,¬,∀R.C , ∃R.C) and property transitivity (S),
TBox: concept subsumption e.g., C ⊑ D (H)

RBox: property subsumption e.g., R ⊑ S (H)

TBox: enumerated classes (nominals) e.g., {a} (O)

RBox: inverse properties e.g., R− (I)
TBox: cardinality restrictions e.g., ≤ nR,≥ nR (N)

Datatypes (D)

ABox: class and property assertions e.g.,
Student(ST001), hasParent(MARIA,NIKOS), instance equality e.g.,
ST001 = NIKOS , and difference e.g., MARIA ̸= NIKOS

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 7 / 68

OWL 1 is DL based on SHOIN (D)

ALC constructors (⊓,⊔,¬,∀R.C , ∃R.C) and property transitivity (S),
TBox: concept subsumption e.g., C ⊑ D (H)

RBox: property subsumption e.g., R ⊑ S (H)

TBox: enumerated classes (nominals) e.g., {a} (O)

RBox: inverse properties e.g., R− (I)

TBox: cardinality restrictions e.g., ≤ nR,≥ nR (N)

Datatypes (D)

ABox: class and property assertions e.g.,
Student(ST001), hasParent(MARIA,NIKOS), instance equality e.g.,
ST001 = NIKOS , and difference e.g., MARIA ̸= NIKOS

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 7 / 68

OWL 1 is DL based on SHOIN (D)

ALC constructors (⊓,⊔,¬,∀R.C , ∃R.C) and property transitivity (S),
TBox: concept subsumption e.g., C ⊑ D (H)

RBox: property subsumption e.g., R ⊑ S (H)

TBox: enumerated classes (nominals) e.g., {a} (O)

RBox: inverse properties e.g., R− (I)
TBox: cardinality restrictions e.g., ≤ nR,≥ nR (N)

Datatypes (D)

ABox: class and property assertions e.g.,
Student(ST001), hasParent(MARIA,NIKOS), instance equality e.g.,
ST001 = NIKOS , and difference e.g., MARIA ̸= NIKOS

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 7 / 68

OWL 1 is DL based on SHOIN (D)

ALC constructors (⊓,⊔,¬,∀R.C , ∃R.C) and property transitivity (S),
TBox: concept subsumption e.g., C ⊑ D (H)

RBox: property subsumption e.g., R ⊑ S (H)

TBox: enumerated classes (nominals) e.g., {a} (O)

RBox: inverse properties e.g., R− (I)
TBox: cardinality restrictions e.g., ≤ nR,≥ nR (N)

Datatypes (D)

ABox: class and property assertions e.g.,
Student(ST001), hasParent(MARIA,NIKOS), instance equality e.g.,
ST001 = NIKOS , and difference e.g., MARIA ̸= NIKOS

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 7 / 68

OWL 1 is DL based on SHOIN (D)

ALC constructors (⊓,⊔,¬,∀R.C , ∃R.C) and property transitivity (S),
TBox: concept subsumption e.g., C ⊑ D (H)

RBox: property subsumption e.g., R ⊑ S (H)

TBox: enumerated classes (nominals) e.g., {a} (O)

RBox: inverse properties e.g., R− (I)
TBox: cardinality restrictions e.g., ≤ nR,≥ nR (N)

Datatypes (D)

ABox: class and property assertions e.g.,
Student(ST001), hasParent(MARIA,NIKOS), instance equality e.g.,
ST001 = NIKOS , and difference e.g., MARIA ̸= NIKOS

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 7 / 68

OWL 2 is DL based on SROIQ(D)

OWL 2 additional features:

TBox: qualified cardinality restrictions e.g., ≤ nR.C ,≥ nR.C (Q)

TBox: Self ∃S .Self
RBox: General Role Inclusion e.g., R1 ◦ R2 ◦ ... ◦ Rn ⊑ R (R)

RBox: symmetry, reflexivity, irreflexivity, disjunctiveness

ABox: negated property assertions e.g., ¬hasPet(NIKOS ,PLUTO)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 8 / 68

OWL 2 is DL based on SROIQ(D)

OWL 2 additional features:

TBox: qualified cardinality restrictions e.g., ≤ nR.C ,≥ nR.C (Q)

TBox: Self ∃S .Self

RBox: General Role Inclusion e.g., R1 ◦ R2 ◦ ... ◦ Rn ⊑ R (R)

RBox: symmetry, reflexivity, irreflexivity, disjunctiveness

ABox: negated property assertions e.g., ¬hasPet(NIKOS ,PLUTO)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 8 / 68

OWL 2 is DL based on SROIQ(D)

OWL 2 additional features:

TBox: qualified cardinality restrictions e.g., ≤ nR.C ,≥ nR.C (Q)

TBox: Self ∃S .Self
RBox: General Role Inclusion e.g., R1 ◦ R2 ◦ ... ◦ Rn ⊑ R (R)

RBox: symmetry, reflexivity, irreflexivity, disjunctiveness

ABox: negated property assertions e.g., ¬hasPet(NIKOS ,PLUTO)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 8 / 68

OWL 2 is DL based on SROIQ(D)

OWL 2 additional features:

TBox: qualified cardinality restrictions e.g., ≤ nR.C ,≥ nR.C (Q)

TBox: Self ∃S .Self
RBox: General Role Inclusion e.g., R1 ◦ R2 ◦ ... ◦ Rn ⊑ R (R)

RBox: symmetry, reflexivity, irreflexivity, disjunctiveness

ABox: negated property assertions e.g., ¬hasPet(NIKOS ,PLUTO)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 8 / 68

OWL 2 is DL based on SROIQ(D)

OWL 2 additional features:

TBox: qualified cardinality restrictions e.g., ≤ nR.C ,≥ nR.C (Q)

TBox: Self ∃S .Self
RBox: General Role Inclusion e.g., R1 ◦ R2 ◦ ... ◦ Rn ⊑ R (R)

RBox: symmetry, reflexivity, irreflexivity, disjunctiveness

ABox: negated property assertions e.g., ¬hasPet(NIKOS ,PLUTO)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 8 / 68

OWL in a nutshell

Entities, expressions and axioms form the logical part of OWL 2.
They can be given a precise semantics and inferences can be drawn
from them.

Entities, axioms, and ontologies can be annotated e.g., a class can be
given a human-readable rdfs:label, a rdfs:seeAlso reference or
rdf:comment (annotations have no effect on the logical aspects of an
ontology)

The ontology itself also has an IRI, it can be annotated (owl:version,
rdfs:label, rdfs:seeAlso, etc) and reused (owl:import)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 9 / 68

OWL in a nutshell

Entities, expressions and axioms form the logical part of OWL 2.
They can be given a precise semantics and inferences can be drawn
from them.

Entities, axioms, and ontologies can be annotated e.g., a class can be
given a human-readable rdfs:label, a rdfs:seeAlso reference or
rdf:comment (annotations have no effect on the logical aspects of an
ontology)

The ontology itself also has an IRI, it can be annotated (owl:version,
rdfs:label, rdfs:seeAlso, etc) and reused (owl:import)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 9 / 68

OWL in a nutshell

Entities, expressions and axioms form the logical part of OWL 2.
They can be given a precise semantics and inferences can be drawn
from them.

Entities, axioms, and ontologies can be annotated e.g., a class can be
given a human-readable rdfs:label, a rdfs:seeAlso reference or
rdf:comment (annotations have no effect on the logical aspects of an
ontology)

The ontology itself also has an IRI, it can be annotated (owl:version,
rdfs:label, rdfs:seeAlso, etc) and reused (owl:import)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 9 / 68

OWL in a nutshell (cont’d)

OWL 2 ontologies include the following:

classes: representing sets of elements in the domain,

properties: distinguished to ObjectProperty and DataProperty (the
former relates instances to each other, the latter relates instances to
data values),

instances (or individuals) representing entities in the domain.

Expressions: describing complex classes of elements in the domain
(i.e. complex concepts or roles in DL terms).

Axioms are statements that are asserted to be true (e.g., a subclass
axiom)

DL reasoners can be employed to draw inferences from asserted
knowledge

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 10 / 68

OWL in a nutshell (cont’d)

OWL 2 ontologies include the following:

classes: representing sets of elements in the domain,

properties: distinguished to ObjectProperty and DataProperty (the
former relates instances to each other, the latter relates instances to
data values),

instances (or individuals) representing entities in the domain.

Expressions: describing complex classes of elements in the domain
(i.e. complex concepts or roles in DL terms).

Axioms are statements that are asserted to be true (e.g., a subclass
axiom)

DL reasoners can be employed to draw inferences from asserted
knowledge

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 10 / 68

OWL in a nutshell (cont’d)

OWL 2 ontologies include the following:

classes: representing sets of elements in the domain,

properties: distinguished to ObjectProperty and DataProperty (the
former relates instances to each other, the latter relates instances to
data values),

instances (or individuals) representing entities in the domain.

Expressions: describing complex classes of elements in the domain
(i.e. complex concepts or roles in DL terms).

Axioms are statements that are asserted to be true (e.g., a subclass
axiom)

DL reasoners can be employed to draw inferences from asserted
knowledge

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 10 / 68

OWL in a nutshell (cont’d)

OWL 2 ontologies include the following:

classes: representing sets of elements in the domain,

properties: distinguished to ObjectProperty and DataProperty (the
former relates instances to each other, the latter relates instances to
data values),

instances (or individuals) representing entities in the domain.

Expressions: describing complex classes of elements in the domain
(i.e. complex concepts or roles in DL terms).

Axioms are statements that are asserted to be true (e.g., a subclass
axiom)

DL reasoners can be employed to draw inferences from asserted
knowledge

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 10 / 68

OWL in a nutshell (cont’d)

OWL 2 ontologies include the following:

classes: representing sets of elements in the domain,

properties: distinguished to ObjectProperty and DataProperty (the
former relates instances to each other, the latter relates instances to
data values),

instances (or individuals) representing entities in the domain.

Expressions: describing complex classes of elements in the domain
(i.e. complex concepts or roles in DL terms).

Axioms are statements that are asserted to be true (e.g., a subclass
axiom)

DL reasoners can be employed to draw inferences from asserted
knowledge

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 10 / 68

OWL in a nutshell (cont’d)

OWL 2 ontologies include the following:

classes: representing sets of elements in the domain,

properties: distinguished to ObjectProperty and DataProperty (the
former relates instances to each other, the latter relates instances to
data values),

instances (or individuals) representing entities in the domain.

Expressions: describing complex classes of elements in the domain
(i.e. complex concepts or roles in DL terms).

Axioms are statements that are asserted to be true (e.g., a subclass
axiom)

DL reasoners can be employed to draw inferences from asserted
knowledge

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 10 / 68

OWL Syntax Variants

Serializers and Parsers are available for the following syntax variants:

Functional syntax (see also: https://www.w3.org/TR/owl2-primer/)

An extension of existing RDF/XML

An independent XML serialization (OWL/XML)

Manchester syntax, also used in Protege (see also:
https://www.w3.org/TR/owl2-manchester-syntax/)

Turtle

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 11 / 68

OWL Syntax Variants

Serializers and Parsers are available for the following syntax variants:

Functional syntax (see also: https://www.w3.org/TR/owl2-primer/)

An extension of existing RDF/XML

An independent XML serialization (OWL/XML)

Manchester syntax, also used in Protege (see also:
https://www.w3.org/TR/owl2-manchester-syntax/)

Turtle

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 11 / 68

OWL Syntax Variants

Serializers and Parsers are available for the following syntax variants:

Functional syntax (see also: https://www.w3.org/TR/owl2-primer/)

An extension of existing RDF/XML

An independent XML serialization (OWL/XML)

Manchester syntax, also used in Protege (see also:
https://www.w3.org/TR/owl2-manchester-syntax/)

Turtle

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 11 / 68

OWL Syntax Variants

Serializers and Parsers are available for the following syntax variants:

Functional syntax (see also: https://www.w3.org/TR/owl2-primer/)

An extension of existing RDF/XML

An independent XML serialization (OWL/XML)

Manchester syntax, also used in Protege (see also:
https://www.w3.org/TR/owl2-manchester-syntax/)

Turtle

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 11 / 68

OWL Syntax Variants

Serializers and Parsers are available for the following syntax variants:

Functional syntax (see also: https://www.w3.org/TR/owl2-primer/)

An extension of existing RDF/XML

An independent XML serialization (OWL/XML)

Manchester syntax, also used in Protege (see also:
https://www.w3.org/TR/owl2-manchester-syntax/)

Turtle

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 11 / 68

Example (RDF/XML Syntax)

Parent ≡ ∃hasChild .Person
...

<owl:Class rdf:about="http://example.gr#Parent">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="http://example.gr#hasChild"/>

<owl:someValuesFrom rdf:resource="http://example.gr#Person"/>

</owl:Restriction>

</owl:equivalentClass>

</owl:Class>

...

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 12 / 68

Example (OWL/XML Syntax)

Parent ≡ ∃hasChild .Person
...

<Declaration>

<Class IRI="#Parent"/>

</Declaration>

<Declaration>

<Class IRI="#Person"/>

</Declaration>

<Declaration>

<ObjectProperty IRI="#hasChild"/>

</Declaration>

<EquivalentClasses>

<Class IRI="#Parent"/>

<ObjectSomeValuesFrom>

<ObjectProperty IRI="#hasChild"/>

<Class IRI="#Person"/>

</ObjectSomeValuesFrom>

</EquivalentClasses>

...

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 13 / 68

Example (Functional/Manchester Syntax)

Parent ≡ ∃hasChild .Person

Functional Syntax:

Declaration(Class(<http://example.gr#Parent>))

Declaration(Class(<http://example.gr#Person>))

Declaration(ObjectProperty(<http://example.gr#hasChild>))

EquivalentClasses(<http://example.gr#Parent>

ObjectSomeValuesFrom(<http://example.gr#hasChild>

<http://example.gr#Person>))

Manchester Syntax:

ObjectProperty: <http://example.gr#hasChild>

Class: <http://example.gr#Person>

Class: <http://example.gr#Parent>

EquivalentTo:

<http://example.gr#hasChild> some

<http://example.gr#Person>

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 14 / 68

Example (Turtle Syntax)

Parent ≡ ∃hasChild .Person

Turtle Syntax:

:Person rdf:type owl:Class .

:hasChild rdf:type owl:ObjectProperty .

:Parent rdf:type owl:Class ;

owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty :hasChild ;

owl:someValuesFrom :Person

] .

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 15 / 68

OWL Classes

OWL classes represent sets of individuals.
Predefined classes in OWL are:

owl:Thing, which represents the set of all individuals

owl:Nothing, which represents the empty set

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 16 / 68

OWL ObjectProperty

OWL ObjectProperties connect pairs of individuals, e.g.,

:parentOf(:Homer :Bart)

Built-in object properties:

owl:topObjectProperty, which connects all possible pairs of
individuals.

owl:bottomObjectProperty, which does not connect any pair of
individuals.

Object properties can be used to form object property expressions.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 17 / 68

OWL ObjectProperty Expression (Inverse)

An inverse object property expression ObjectInverseOf(P) connects an
individual I1 with I2 if and only if the object property P connects I2 with I1.
Example: if an ontology contains:
ObjectPropertyAssertion(:parentOf :Homer :Bart)

then it also entails:
ObjectPropertyAssertion(ObjectInverseOf(:fatherOf)

:Bart :Homer)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 18 / 68

OWL ObjectProperty Expression (Symmetric/Asymmetric)

In some cases, a property and its inverse coincide, or in other words, the
direction of a property doesn’t matter.
Example: if an ontology contains:
SymmetricObjectProperty(:hasSpouse)

ObjectPropertyAssertion(:hasSpouse :Bart :Lisa)

then it also entails:
ObjectPropertyAssertion(:hasSpouse :Lisa :Bart)

A property can also be asymmetric, if it connects A with B, but it never
connects B with A.
Example:
AsymmetricObjectProperty(:hasChild)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 19 / 68

OWL ObjectProperty Expression (Reflexivity/Irreflexivity)

Reflexive properties relate everything to itself.
Example: Everyone is a relative to him/herself:
ReflexiveObjectProperty(:hasRelative)

Note: this does not necessarily mean that every two individuals which are
related by a reflexive property are identical.
Irreflexive properties model the case where no individual can be related to
itself by such a property.
Example:
IrreflexiveObjectProperty(:parentOf)

Nobody can be his own parent.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 20 / 68

OWL ObjectProperty Expression (Functional)

Some properties relate a subject to at most one object. These properties
are called functional.
Example: If an ontology contains
FunctionalObjectProperty(:hasHusband)

ObjectPropertyAssertion(:hasHusband :Marge :Homer)

ObjectPropertyAssertion(:hasHusband :Marge :HomerSimpson)

it also entails:
SameIndividual(:Homer :HomerSimpson)
Note: this expression does not require every individual to have a husband,
it only states that there can be no more than one.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 21 / 68

OWL ObjectProperty Expression (Inverse Functional)

It is also possible to indicate that the inverse of a given property is
functional.
Example: If an ontology contains
InverseFunctionalObjectProperty(:hasHusband)

ObjectPropertyAssertion(:hasHusband :Marge :Homer)

ObjectPropertyAssertion(:hasHusband :MargeBouvier :Homer)

it also entails:
ObjectPropertyAssertion(owl:sameAs :Marge :MargeBouvier)

This indicates that if two or more individuals are related with the same
individual via an inverse functional property, then these individuals refer to
the same entity in the domain.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 22 / 68

OWL ObjectProperty Expression (Transitive)

A transitive property R interlinks an individual i with j, whenever R relates
i with k, and k with j.
Example: If an ontology contains
TransitiveObjectProperty(:hasAncestor)

ObjectPropertyAssertion(:hasAncestor :Marge :ClancyBouvier)

ObjectPropertyAssertion(:hasAncestor :Lisa :Marge)

it also entails:
ObjectPropertyAssertion(:hasAncestor :Lisa :ClancyBouvier)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 23 / 68

OWL DataProperty

Data properties (e.g., :hasAge) connect individuals with literals.
Built-in properties:

owl:topDataProperty, which connects all possible individuals with
all literals.

owl:bottomDataProperty, which does not connect any individual
with a literal.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 24 / 68

OWL Annotation Properties

Annotation properties can be used to provide an annotation for an
ontology, axiom, or a resource. Users can define their own annotation
properties or use the available built-in annotation properties:

rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy

owl:deprecated, owl:versionInfo, owl:priorVersion,
owl:backwardCompatibleWith, owl:incompatibleWith

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 25 / 68

OWL Individuals

Individuals represent actual objects in the domain. There are two types of
individuals:

Named individuals are given an explicit name (an IRI e.g., :Peter)
that can be used in any ontology to refer to the same object.

Anonymous individuals do not have a global name. They can be
defined using a name (e.g., _:somebody) local to the ontology they
are contained in. They are like blank nodes in RDF.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 26 / 68

OWL Individuals

Individuals represent actual objects in the domain. There are two types of
individuals:

Named individuals are given an explicit name (an IRI e.g., :Peter)
that can be used in any ontology to refer to the same object.

Anonymous individuals do not have a global name. They can be
defined using a name (e.g., _:somebody) local to the ontology they
are contained in. They are like blank nodes in RDF.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 26 / 68

OWL Datatypes

Datatypes are entities that represent sets of data values.

OWL 2 offers a rich set of data types: decimal numbers, integers,
floating point numbers, rationals, reals, strings, binary data, IRIs and
time instants.

In most cases, these data types are taken from XML schema. From
RDF and RDFS, we have rdf:XMLLiteral, rdf:PlainLiteral and
rdfs:Literal.

rdfs:Literal contains all the elements of other data types.

There are also the OWL datatypes owl:real and owl:rational.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 27 / 68

OWL Datatypes

Datatypes are entities that represent sets of data values.

OWL 2 offers a rich set of data types: decimal numbers, integers,
floating point numbers, rationals, reals, strings, binary data, IRIs and
time instants.

In most cases, these data types are taken from XML schema. From
RDF and RDFS, we have rdf:XMLLiteral, rdf:PlainLiteral and
rdfs:Literal.

rdfs:Literal contains all the elements of other data types.

There are also the OWL datatypes owl:real and owl:rational.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 27 / 68

OWL Datatypes

Datatypes are entities that represent sets of data values.

OWL 2 offers a rich set of data types: decimal numbers, integers,
floating point numbers, rationals, reals, strings, binary data, IRIs and
time instants.

In most cases, these data types are taken from XML schema. From
RDF and RDFS, we have rdf:XMLLiteral, rdf:PlainLiteral and
rdfs:Literal.

rdfs:Literal contains all the elements of other data types.

There are also the OWL datatypes owl:real and owl:rational.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 27 / 68

OWL Datatypes

Datatypes are entities that represent sets of data values.

OWL 2 offers a rich set of data types: decimal numbers, integers,
floating point numbers, rationals, reals, strings, binary data, IRIs and
time instants.

In most cases, these data types are taken from XML schema. From
RDF and RDFS, we have rdf:XMLLiteral, rdf:PlainLiteral and
rdfs:Literal.

rdfs:Literal contains all the elements of other data types.

There are also the OWL datatypes owl:real and owl:rational.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 27 / 68

OWL Datatypes (cont’d)

Formally, the data types supported are specified in the OWL 2
datatype map, where each datatype is identified by an IRI and is
defined by the following components:

The value space is the set of values of the datatype. Elements of the
value space are called data values.
The lexical space is a set of strings that can be used to refer to data
values. Each member of the lexical space is called a lexical form, and it
is mapped to a particular data value.
The facet space is a set of pairs of the form (F,v) where F is an IRI
called a constraining facet, and v is an arbitrary data value called the
constraining value. Each such pair is mapped to a subset of the value
space of the datatype.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 28 / 68

OWL Datatypes (cont’d)

Formally, the data types supported are specified in the OWL 2
datatype map, where each datatype is identified by an IRI and is
defined by the following components:

The value space is the set of values of the datatype. Elements of the
value space are called data values.

The lexical space is a set of strings that can be used to refer to data
values. Each member of the lexical space is called a lexical form, and it
is mapped to a particular data value.
The facet space is a set of pairs of the form (F,v) where F is an IRI
called a constraining facet, and v is an arbitrary data value called the
constraining value. Each such pair is mapped to a subset of the value
space of the datatype.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 28 / 68

OWL Datatypes (cont’d)

Formally, the data types supported are specified in the OWL 2
datatype map, where each datatype is identified by an IRI and is
defined by the following components:

The value space is the set of values of the datatype. Elements of the
value space are called data values.
The lexical space is a set of strings that can be used to refer to data
values. Each member of the lexical space is called a lexical form, and it
is mapped to a particular data value.

The facet space is a set of pairs of the form (F,v) where F is an IRI
called a constraining facet, and v is an arbitrary data value called the
constraining value. Each such pair is mapped to a subset of the value
space of the datatype.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 28 / 68

OWL Datatypes (cont’d)

Formally, the data types supported are specified in the OWL 2
datatype map, where each datatype is identified by an IRI and is
defined by the following components:

The value space is the set of values of the datatype. Elements of the
value space are called data values.
The lexical space is a set of strings that can be used to refer to data
values. Each member of the lexical space is called a lexical form, and it
is mapped to a particular data value.
The facet space is a set of pairs of the form (F,v) where F is an IRI
called a constraining facet, and v is an arbitrary data value called the
constraining value. Each such pair is mapped to a subset of the value
space of the datatype.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 28 / 68

OWL Datatypes (Example)

We can define a new datatype for a person’s age by constraining the
datatype integer to values between (inclusively) 0 and 120.

DatatypeDefinition(:personAge

DatatypeRestriction(

xsd:integer

xsd:minInclusive "0"^^xsd:integer

xsd:maxInclusive "120"^^xsd:integer

)

)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 29 / 68

OWL Literals

Literals represent data values such as particular strings or integers. They
are analogous to RDF literals.
Examples:
"1"^^xsd:integer (typed literal)
"Family Guy" (plain literal, an abbreviation for
"Family Guy"^^rdf:PlainLiteral)
"Padre de familia"@es (plain literal with language tag)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 30 / 68

OWL Class Expressions

Class names and property expressions can be used to construct class
expressions.

These are essentially the complex concepts or descriptions that we
can define in DLs.

Class expressions represent sets of individuals by formally specifying
conditions on the individuals’ properties; individuals satisfying these
conditions are said to be instances of the respective class expressions.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 31 / 68

OWL Class Expressions

Class names and property expressions can be used to construct class
expressions.

These are essentially the complex concepts or descriptions that we
can define in DLs.

Class expressions represent sets of individuals by formally specifying
conditions on the individuals’ properties; individuals satisfying these
conditions are said to be instances of the respective class expressions.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 31 / 68

OWL Class Expressions

Class names and property expressions can be used to construct class
expressions.

These are essentially the complex concepts or descriptions that we
can define in DLs.

Class expressions represent sets of individuals by formally specifying
conditions on the individuals’ properties; individuals satisfying these
conditions are said to be instances of the respective class expressions.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 31 / 68

OWL Class Expressions (cont’d)

Class expressions can be formed by:

Applying the standard Boolean connectives to simpler class
expressions or by enumerating the individuals that belong to an
expression.

Placing restrictions on object property expressions.

Placing restrictions on the cardinality of object property expressions.

Placing restrictions on data property expressions.

Placing restrictions on the cardinality of data property expressions.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 32 / 68

OWL Class Expressions (cont’d)

Class expressions can be formed by:

Applying the standard Boolean connectives to simpler class
expressions or by enumerating the individuals that belong to an
expression.

Placing restrictions on object property expressions.

Placing restrictions on the cardinality of object property expressions.

Placing restrictions on data property expressions.

Placing restrictions on the cardinality of data property expressions.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 32 / 68

OWL Class Expressions (cont’d)

Class expressions can be formed by:

Applying the standard Boolean connectives to simpler class
expressions or by enumerating the individuals that belong to an
expression.

Placing restrictions on object property expressions.

Placing restrictions on the cardinality of object property expressions.

Placing restrictions on data property expressions.

Placing restrictions on the cardinality of data property expressions.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 32 / 68

OWL Class Expressions (cont’d)

Class expressions can be formed by:

Applying the standard Boolean connectives to simpler class
expressions or by enumerating the individuals that belong to an
expression.

Placing restrictions on object property expressions.

Placing restrictions on the cardinality of object property expressions.

Placing restrictions on data property expressions.

Placing restrictions on the cardinality of data property expressions.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 32 / 68

OWL Class Expressions (cont’d)

Class expressions can be formed by:

Applying the standard Boolean connectives to simpler class
expressions or by enumerating the individuals that belong to an
expression.

Placing restrictions on object property expressions.

Placing restrictions on the cardinality of object property expressions.

Placing restrictions on data property expressions.

Placing restrictions on the cardinality of data property expressions.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 32 / 68

OWL Class Expressions (cont’d)

An intersection class expression
ObjectIntersectionOf(CE_1 ... CE_n) contains all individuals that
are instances of all class expressions CE_i for 1 ≤ i ≤ n.
Example:
ObjectIntersectionOf(:Dog :CanTalk)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 33 / 68

OWL Class Expressions (cont’d)

A union class expression ObjectUnionOf(CE_1 ... CE_n) contains all
individuals that are instances of at least one class expression CE_i for
1 ≤ i ≤ n.
Example:
ObjectUnionOf(:Man :Woman)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 34 / 68

OWL Class Expressions (cont’d)

A complement class expression ObjectComplementOf(CE) contains all
individuals that are not instances of the class expression CE.
Example:
ObjectComplementOf(:Man)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 35 / 68

OWL Class Expressions (cont’d)

We can define disjoint classes, i.e. those sets that cannot have a common
element.
Example: If an ontology contains:
DisjointClasses(:Man :Woman)

ClassAssertion(:Woman :Marge)

it also entails:
ClassAssertion(ObjectComplementOf(:Man) :Marge)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 36 / 68

OWL Class Expressions (cont’d)

An enumeration of individuals ObjectOneOf(a_1 ... a_n) contains
exactly the individuals a_i with 1 ≤ i ≤ n.
Example:
ObjectOneOf(:Saturday :Sunday)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 37 / 68

Example Inference

From
EquivalentClasses(:GriffinFamilyMember

ObjectOneOf(:Peter :Lois :Stewie :Meg :Chris :Brian))

DifferentIndividuals(:Quagmire :Peter :Lois :Stewie :Meg

:Chris :Brian)

we can infer ClassAssertion(
ObjectComplementOf(:GriffinFamilyMember) :Quagmire)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 38 / 68

Example Inference (cont’d)

From

ClassAssertion(:GriffinFamilyMember :Peter)

ClassAssertion(:GriffinFamilyMember :Lois)

ClassAssertion(:GriffinFamilyMember :Stewie)

ClassAssertion(:GriffinFamilyMember :Meg)

ClassAssertion(:GriffinFamilyMember :Chris)

ClassAssertion(:GriffinFamilyMember :Brian)

DifferentIndividuals(:Quagmire :Peter :Lois :Stewie

:Meg :Chris :Brian)

Can we infer this:
ClassAssertion(

ObjectComplementOf(:GriffinFamilyMember) :Quagmire) ?

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 39 / 68

OWL Class Expressions (cont’d)

An existential class expression ObjectSomeValuesFrom(OPE CE) consists
of an object property expression OPE and a class expression CE, and it
contains all those individuals that are connected by OPE to an individual
that is an instance of CE.
Example:
ObjectSomeValuesFrom(:hasChild :Person)

If OPE is simple, the above class expression is equivalent with the class
expression ObjectMinCardinality(1 OPE CE)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 40 / 68

Example

From

ObjectPropertyAssertion(:hasChild :Peter :Stewie)

ClassAssertion(:Person :Stewie)

we can infer

ClassAssertion(

ObjectSomeValuesFrom(:hasChild :Person) :Peter)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 41 / 68

OWL Class Expressions (cont’d)

A universal class expression ObjectAllValuesFrom(OPE CE) consists of
an object property expression OPE and a class expression CE, and it
contains all those individuals that are connected by OPE only to individuals
that are instances of CE.
Example:
ObjectAllValuesFrom(:fatherOf :Man)

If OPE is simple, the above class expression is equivalent with the class
expression ObjectMaxCardinality(0 OPE ObjectComplementOf(CE))

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 42 / 68

OWL Class Expressions (cont’d)

An individual value class expression ObjectHasValue(OPE a) consists of
an object property expression OPE and an individual a, and it contains all
those individuals that are connected by OPE to a.
Example: If an ontology contains:
EquivalentClasses(:SolarPlanet ObjectHasValue(:orbits :Sun))

ObjectPropertyAssertion(:orbits :Earth :Sun))

it can also entail:
ClassAssertion(:SolarPlanet :Earth)

The above class expression is equivalent to the class expression
ObjectSomeValuesFrom(OPE ObjectOneOf(a)).

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 43 / 68

OWL Class Expressions (cont’d)

A self-restriction ObjectHasSelf(OPE) consists of an object property
expression OPE, and it contains all those individuals that are connected by
OPE to themselves.
Example: if an ontology contains:
EquivalentClasses(:Narcisist ObjectHasSelf(:likes))

ObjectPropertyAssertion(:likes :Peter :Peter)

it also infers:
ClassAssertion(:Narcisist :Peter)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 44 / 68

OWL Class Expressions (cont’d)

Object property cardinality restrictions are distinguished into:

Qualified: apply only to individuals that are connected by the object
property expression and are instances of the qualifying class
expression. (e.g. >3hasChild.Male)

Unqualified: apply to all individuals that are connected by the object
property expression (this is equivalent to the qualified case with the
qualifying class expression equal to owl:Thing) (e.g. >3hasChild).

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 45 / 68

OWL Class Expressions (cont’d)

A minimum cardinality expression ObjectMinCardinality(n OPE CE)

consists of a nonnegative integer n, an object property expression OPE, and
a class expression CE, and it contains all those individuals that are
connected by OPE to at least n different individuals that are instances of
CE. If CE is missing, it is taken to be owl:Thing.
Example:
ObjectMinCardinality(2 :fatherOf :Man)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 46 / 68

Example

From

ObjectPropertyAssertion(:fatherOf :Peter :Stewie)

ObjectPropertyAssertion(:fatherOf :Peter :Chris)

ClassAssertion(:Man :Stewie)

ClassAssertion(:Man :Chris)

DifferentIndividuals(:Chris :Stewie)

we can infer:
ClassAssertion(ObjectMinCardinality(2 :fatherOf :Man) :Peter)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 47 / 68

OWL Class Expressions (cont’d)

A maximum cardinality expression ObjectMaxCardinality(n OPE CE)

consists of a nonnegative integer n, an object property expression OPE, and
a class expression CE, and it contains all those individuals that are
connected by OPE to at most n different individuals that are instances of
CE. If CE is missing, it is taken to be owl:Thing.
Example:
ObjectMaxCardinality(2 :hasPet)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 48 / 68

OWL Class Expressions (cont’d)

An exact cardinality expression ObjectExactCardinality(n OPE CE)

consists of a nonnegative integer n, an object property expression OPE, and
a class expression CE, and it contains all those individuals that are
connected by OPE to exactly n different individuals that are instances of CE.
Example:
ObjectExactCardinality(1 :hasPet :Dog)

The above expression is equivalent to
ObjectIntersectionOf(

ObjectMinCardinality(n OPE CE)

ObjectMaxCardinality(n OPE CE))

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 49 / 68

Data Property restrictions

Data property restrictions are similar to the restrictions on object
property expressions.

The main difference is that the expressions for existential and
universal quantification allow for n-ary data ranges.

Given the syntax for data ranges given earlier, only unary data ranges
are supported.

However, the specification provide the syntactic constructs needed to
have n-ary data ranges e.g., sets of rectangles defined by appropriate
geometric constraints.

The “Data Range Extension: Linear Equations” W3C note proposes an
extension to OWL 2 for defining n-ary data ranges in terms of linear
(in)equations with rational coefficients. See
http://www.w3.org/TR/owl2-dr-linear/ .

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 50 / 68

http://www.w3.org/TR/owl2-dr-linear/

OWL Axioms

A subclass axiom SubClassOf(CE1 CE2) states that the class expression
CE1 is a subclass of the class expression CE2.
Example:
SubClassOf(:Child :Person)

The properties known from RDFS for SubClassOf hold here as well
(Reflexivity, Transitivity)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 51 / 68

OWL Axioms

An equivalent classes axiom EquivalentClasses(CE_1 ... CE_n)

states that all of the class expressions CE_i,1 ≤ i ≤ n, are semantically
equivalent to each other.
Example:
EquivalentClasses(:Boy ObjectIntersectionOf(:Child :Male))

An axiom EquivalentClasses(CE1 CE2) is equivalent to the
conjunction of the following two axioms: SubClassOf(CE1 CE2)

SubClassOf(CE2 CE1)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 52 / 68

OWL Axioms

A disjoint classes axiom DisjointClasses(CE_1 ... CE_n) states that
all of the class expressions CE_i, 1 ≤ i ≤ n, are pairwise disjoint.
Example:
DisjointClasses(:Boy :Girl)

An axiom DisjointClasses(CE1 CE2) is equivalent to the following
axiom:
SubClassOf(CE1 ObjectComplementOf(CE2))

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 53 / 68

OWL Axioms

A disjoint union axiom DisjointUnion(C CE_1 ... CE_n) states that a
class C is a disjoint union of the class expressions CE_i, 1 ≤ i ≤ n, all of
which are pairwise disjoint.
Such axioms are sometimes referred to as covering axioms, as they state
that the extensions of all CE_i exactly cover the extension of C.
Example:
DisjointUnion(:Child :Boy :Girl)

Each such axiom is equivalent to the conjunction of the following two
axioms: EquivalentClasses(C ObjectUnionOf(CE1 ... CEn))

DisjointClasses(CE1 ... CEn)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 54 / 68

Example

From

DisjointUnion(:Child :Boy :Girl)

ClassAssertion(:Child :Stewie)

ClassAssertion(ObjectComplementOf(:Girl) :Stewie)

we can infer
ClassAssertion(:Boy :Stewie)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 55 / 68

OWL Axioms

Object subproperty axioms are analogous to subclass axioms.

The basic form of an object subproperty axiom is
SubObjectPropertyOf(OPE1 OPE2).

This axiom states that the object property expression OPE1 is a
subproperty of the object property expression OPE2 i.e. if an
individual x is connected by OPE1 to an individual y, then x is also
connected by OPE2 to y.

SubObjectPropertyOf is a reflexive and transitive relation.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 56 / 68

OWL Axioms (Property Chain)

If OPE1, ..., OPEn are object properties then
OPE1 ... OPEn is called an object property chain.
The more complex form of object subproperty axioms is
SubObjectPropertyOf(

ObjectPropertyChain(OPE1 ... OPEn) OPE).
This axiom states that, if an individual x1 is connected by a sequence of
object property expressions OPE1, ..., OPEn with an individual xn, then
x1 is also connected with xn by the object property expression OPE.
These axioms are known as complex role inclusions in the DL literature.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 57 / 68

Example

From

SubObjectPropertyOf(

ObjectPropertyChain(:hasMother :hasSister) :hasAunt)

ObjectPropertyAssertion(:hasMother :Stewie :Lois)

ObjectPropertyAssertion(:hasSister :Lois :Carol)

we can infer
ObjectPropertyAssertion(:hasAunt :Stewie :Carol)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 58 / 68

OWL Axioms

An equivalent object properties axiom
EquivalentObjectProperties(OPE_1 ... OPE_n) states that all of
the object property expressions OPE_i, 1 ≤ i ≤ n, are semantically
equivalent to each other.
The axiom EquivalentObjectProperties(OPE1 OPE2) is equivalent to
the following two axioms:
SubObjectPropertyOf(OPE1 OPE2)

SubObjectPropertyOf(OPE2 OPE1)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 59 / 68

OWL Axioms

A disjoint object properties axiom
DisjointObjectProperties(OPE1 ... OPEn) states that all of the
object property expressions OPE_i, 1 ≤ i ≤ n, are pairwise disjoint.
Example:
DisjointObjectProperties(:hasFather :hasMother)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 60 / 68

OWL Axioms

An object property domain axiom ObjectPropertyDomain(OPE CE)

states that the domain of the object property expression OPE is the
class expression CE i.e. if an individual x is connected by OPE with
some other individual, then x is an instance of CE.

An object property range axiom ObjectPropertyRange(OPE CE)

states that the range of the object property expression OPE is the
class expression CE i.e. if some individual is connected by OPE with an
individual x, then x is an instance of CE.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 61 / 68

Assertions

OWL 2 supports a rich set of axioms for stating assertions about
individuals:

Individual equality

Individual inequality

Class assertion

Positive object property assertion

Negative object property assertion

Positive data property assertion

Negative data property assertion

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 62 / 68

Assertions

OWL 2 supports a rich set of axioms for stating assertions about
individuals:

Individual equality

Individual inequality

Class assertion

Positive object property assertion

Negative object property assertion

Positive data property assertion

Negative data property assertion

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 62 / 68

Assertions

OWL 2 supports a rich set of axioms for stating assertions about
individuals:

Individual equality

Individual inequality

Class assertion

Positive object property assertion

Negative object property assertion

Positive data property assertion

Negative data property assertion

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 62 / 68

Assertions

OWL 2 supports a rich set of axioms for stating assertions about
individuals:

Individual equality

Individual inequality

Class assertion

Positive object property assertion

Negative object property assertion

Positive data property assertion

Negative data property assertion

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 62 / 68

Assertions

OWL 2 supports a rich set of axioms for stating assertions about
individuals:

Individual equality

Individual inequality

Class assertion

Positive object property assertion

Negative object property assertion

Positive data property assertion

Negative data property assertion

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 62 / 68

Assertions

OWL 2 supports a rich set of axioms for stating assertions about
individuals:

Individual equality

Individual inequality

Class assertion

Positive object property assertion

Negative object property assertion

Positive data property assertion

Negative data property assertion

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 62 / 68

Assertions

OWL 2 supports a rich set of axioms for stating assertions about
individuals:

Individual equality

Individual inequality

Class assertion

Positive object property assertion

Negative object property assertion

Positive data property assertion

Negative data property assertion

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 62 / 68

Assertions

OWL 2 supports a rich set of axioms for stating assertions about
individuals:

Individual equality

Individual inequality

Class assertion

Positive object property assertion

Negative object property assertion

Positive data property assertion

Negative data property assertion

Assertions are often also called facts. They are part of the ABox in DLs.

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 63 / 68

Assertions

An individual equality axiom SameIndividual(a_1 ... a_n) states that
all of the individuals a_i, 1 ≤ i ≤ n, are equal to each other.
Example:
From SameIndividual(:Meg :Megan)

ObjectPropertyAssertion(:hasBrother :Meg :Stewie)

we can infer:
ObjectPropertyAssertion(:hasBrother :Megan :Stewie)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 64 / 68

Assertions

An individual inequality axiom DifferentIndividuals(a_1 ... a_n)

states that all of the individuals a_i, 1 ≤ i ≤ n, are different from each
other.
Example:
DifferentIndividuals(:Peter :Meg :Chris :Stewie)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 65 / 68

Class Assertion

A class assertion ClassAssertion(CE a) states that the individual a is
an instance of the class expression CE.
Example:
ClassAssertion(:Dog :Brian)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 66 / 68

Object Property Assertion

A positive object property assertion
ObjectPropertyAssertion(OPE a_1 a_2) states that the individual
a_1 is connected by the object property expression OPE to the individual
a_2.
A negative object property assertion
NegativeObjectPropertyAssertion(OPE a_1 a_2) states that the
individual a_1 is not connected by the object property expression OPE to
the individual a_2.
Examples:
ObjectPropertyAssertion(:hasDog :Peter :Brian)

NegativeObjectPropertyAssertion(:hasSon :Peter :Meg)

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 67 / 68

Readings

OWL 2 Web Ontology Language Primer (Second Edition)
https://www.w3.org/TR/owl2-primer/

OWL 2 Web Ontology Language Manchester Syntax (Second Edition)
https://www.w3.org/TR/owl2-manchester-syntax/

Krötzsch, M. (2012). OWL 2 Profiles: An Introduction to
Lightweight Ontology Languages. In: Eiter, T., Krennwallner, T.
(eds) Reasoning Web. Semantic Technologies for Advanced Query
Answering. Reasoning Web 2012. Lecture Notes in Computer
Science, vol 7487. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-33158-9_4

An introduction to OWL 2 and DL SROIQ, which also discusses
various OWL tools/applications: Ian Horrocks and Peter F.
Patel-Schneider. KR and Reasoning on the Semantic Web: OWL. In
Handbook of Semantic Web Technologies, chapter 9. Springer, 2010.
http://www.cs.ox.ac.uk/people/ian.horrocks/

Publications/download/2010/HoPa10a.pdf

M. Koubarakis, G. Santipantakis Knowledge Technologies January 13, 2025 68 / 68

https://www.w3.org/TR/owl2-primer/
https://www.w3.org/TR/owl2-manchester-syntax/
https://doi.org/10.1007/978-3-642-33158-9_4
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2010/HoPa10a.pdf
http://www.cs.ox.ac.uk/people/ian.horrocks/Publications/download/2010/HoPa10a.pdf

	The Web Ontology Language (OWL)
	OWL Overview
	OWL Basics
	OWL Syntax Variants
	OWL Classes
	OWL Properties
	OWL Individuals
	OWL Datatypes
	OWL Class Expressions
	Assertions

