
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Tableau Techniques for DLs and an introduction to
OWL2

M. Koubarakis, G. Santipantakis

December 16, 2024

M. Koubarakis, G. Santipantakis Knowledge Technologies December 16, 2024 1 / 72



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Table of Contents

1 DL - Revision
ALC - Revision
Typical Reasoning Tasks

2 Tableau algorithm
Tableau techniques for Propositional Logic
Tableau techniques for First-Order Logic
ABox satisfiability
Tableau techniques for knowledge base satisfiability

3 Introduction to OWL2

M. Koubarakis, G. Santipantakis Knowledge Technologies December 16, 2024 2 / 72



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

DL - Revision

ALC is the Attribute Language with general Complement.

The C denotes an extension (with complement) of a more restrictive
language AL.
Other possible extensions of DL include:

H: Role hierarchies;
R: Complex role hierarchies;
N : Cardinality restrictions;
Q: Qualified cardinality restrictions;
O: Closed classes;
I: Inverse roles;
D: Datatypes;
...

Often we shorten ALC+ (ALC extended with transitive roles) to just
S for more advanced languages, so e.g. SHOIN is ALC+ + H + O
+ I + N .
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ALC - Revision

Syntax Semantics Terminology
A AI ⊆ ∆I atomic concept
R RI ⊆ ∆I ×∆I atomic role
⊤ ∆I top (universal) concept
⊥ ∅ bottom concept
¬C ∆I \ CI concept complement

C ⊓ D CI ∩ DI concept conjunction
C ⊔ D CI ∪ DI concept disjunction
∀R.C {x | (∀y)((x, y) ∈ RI ⇒ y ∈ CI)} universal restriction
∃R.C {x | (∃y)((x, y) ∈ RI ∧ y ∈ CI)} existential restriction
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ALC - Examples

Person ⊓ ¬Female
Female ⊔ Male
∀hasChild.Person
∃hasChild.Person
∃hasChild.Person ⊓ ∀hasChild.Person
(Female ⊓ ∀hasChild.Person)(ANNA)
hasChild(BOB, ANNA)
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Typical Reasoning Tasks

Concept satisfiability (i.e. K ̸|= C ≡ ⊥ for some concept C)

Subsumption (i.e. K |= C ⊑ D, for some concepts C,D)
Classification (given some concept C, for all D in TBox, determine if
C ⊑ D)
Knowledge base satisfiability (i.e. determine if K has a model)
Instance checking (i.e. K |= C(a), for some concept C and an
instance a)
Answering (DL-)queries (find all a s.t. {a | K |= C(a)})
Realization (given an individual a, find the most specific concept C
s.t. K |= C(a))
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Reduction to Satisfiability

The reasoning problems can be solved by reducing them to the problem of
knowledge base satisfiability:

Concept Satisfiability

K ̸|= C ≡ ⊥ iff there exists an x such that K ∪ {C(x)} is satisfiable

Subsumption

K |= C ⊑ D iff there exists an x s.t. K∪{(C⊓¬D)(x)} is not satisfiable

Instance Checking

K |= C(a) iff K ∪ {¬C(a)} is not satisfiable
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Reasoning Algorithms for DLs

Terminating, complete and efficient algorithms for deciding
satisfiability – and all the other reasoning problems we presented
earlier – are available for various DLs.
Most of these algorithms are based on tableau proof techniques.
The tableau algorithm is a proof algorithm to check the consistency
of a logical formula, by inferring that its negation is a contradiction
(proof by refutation)

For a list of reasoners see also:
http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
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Tableau Proof Techniques

We will give a short introduction of tableau proof techniques for
Propositional logic (PL)
First-order logic (FOL)

before we move to the case of description logics.
What we want to demonstrate is that tableau techniques have been
standard proof techniques in other logics before they were used by DL
researchers. Regarding DLs, there are also close connections to tableau
techniques for modal logics but we will not introduce them here in any
detail.
In the literature, the term semantic tableau is also used.
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Tableau Proof Techniques - PL

Tableau are refutation systems for PL (like resolution). To prove that a
formula P is a tautology (or valid), we start with ¬P and produce a
contradiction.
The procedure for doing this involves expanding ¬P so that inessential
details of its logical structure are cleared away.
In tableau proofs, such an expansion takes the form of a tree, where nodes
are labeled with formulas.
Each branch of this tree should be thought of as representing the
conjunction of the formulas appearing on it, and the tree itself as
representing the disjunction of its branches.
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Uniform Notation for PL

Theorem. (Unique Parsing) Every propositional formula is in exactly one
of the following categories:

1 atomic (propositional symbol, ⊤ or ⊥).
2 ¬X, for a unique propositional formula X.
3 (X ◦ Y) for a unique binary symbol ◦ and unique propositional

formulas X and Y.

M. Koubarakis, G. Santipantakis Knowledge Technologies December 16, 2024 12 / 72



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Uniform Notation for PL (cont’d)

Based on the unique parsing theorem, we can group all propositional
formulas of the forms (X ◦ Y) and ¬(X ◦ Y) into two categories, those that
act conjunctively, which we call α-formulas, and those that act
disjunctively, which we call β-formulas:

α α1 α2
X ∧ Y X Y

¬(X ∨ Y) ¬X ¬Y
¬(X ⊃ Y) X ¬Y

β β1 β2
¬(X ∧ Y) ¬X ¬Y

X ∨ Y X Y
X ⊃ Y ¬X Y

Uniform notation allows us to have a large number of basic connectives,
and still not do unnecessary work in proofs.
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Tableau Expansion Rules

The following tableau expansion rules are used to manipulate trees
(transform a tree into another) in tableau proofs:

¬¬P
P

¬⊤
⊥

¬⊥
⊤

α

α1
α2

β

β1 β2

How are these rules used?
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Example

Let us assume that we want to show that the formula

(P ⊃ (Q ⊃ R)) ⊃ ((P ∨ S) ⊃ ((Q ⊃ R) ∨ S)).

is a tautology. The following tree is a tableau proof of this formula.
Notice that the proof starts with the negation of the given formula to
be shown to be a tautology.
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Closed Tableau

A branch θ of a tableau is called closed if both X and ¬X occur on θ for
some propositional formula X, or if ⊥ occurs on θ.
If A and ¬A occur on θ where A is atomic, or if ⊥ occurs, θ is said to be
atomically closed.
A tableau is (atomically) closed if every branch is (atomically) closed.
A tableau proof of X is a closed tableau for {¬X}.
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Soundness and Completeness

Theorem. (Soundness) If a sentence ϕ of PL has a tableaux proof then ϕ
is a tautology.
Theorem. (Completeness) If a sentence ϕ of PL is a tautology then ϕ has
a tableau proof.
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Example (cont’d)

Notice that all branches of the tableau in this example are closed.
Thus, the tableau is closed and the given formula

(P ⊃ (Q ⊃ R)) ⊃ ((P ∨ S) ⊃ ((Q ⊃ R) ∨ S))

is a tautology.
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Uniform Notation for FOL

The uniform notation we introduced for PL can be extended to FOL. The
additional machinery is that all quantified formulas and their negations are
grouped into two categories, those that act universally, which are called
γ-formulas, and those that act existentially, which are called δ-formulas.
For each variety and for each term t, an instance γ(t) or δ(t) is defined.

γ γ(t)
(∀x)Φ Φ{x/t}
¬(∃x)Φ ¬Φ{x/t}

δ δ(t)
(∃x)Φ Φ{x/t}
¬(∀x)Φ ¬Φ{x/t}
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Tableau Proofs for FOL

In informal proofs, new constant symbols are routinely used.
The formal counterpart is parameters, constant symbols not part of our
original language.
In tableau proofs, we will use sentences of Lpar, the extension of the given
language L by the addition of a countable list of new parameters.
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Tableau Expansion Rules for FOL

In the case of FOL, we have the PL tableau expansion rules plus the
following two:

γ

γ(t)
(for any closed
term t of Lpar)

δ

δ(p)
(for a new parameter

p of Lpar)
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Example

Let us assume that we want to prove that the FOL formula

(∀x)(P(x) ∨ Q(x)) ⊃ ((∃x)P(x) ∨ (∀x)Q(x))

is valid. The following tree is a tableau proof of this formula. The
resulting tableau is closed.
Notice that the proof starts with the negation of the given formula to
be shown to be valid.
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Soundness and Completeness

Theorem. (Soundness) If a FOL sentence ϕ has a tableau proof then ϕ is
valid.
Theorem. (Completeness) If a sentence ϕ of FOL is valid, then ϕ has a
tableau proof.
Because FOL is not decidable, tableau proofs may not always terminate.
The source of this difficulty is the γ rule.
Trivial example: Suppose we have a tableau branch containing both
(∃x)¬P(x) and (∀y)P(y). We might apply the δ-rule to the first formula,
adding ¬P(c), where c is a new parameter. But then using the γ-rule on
the second, we might add one after the other P(t1),P(t2), . . . where
t1, t2, . . . are all distinct closed terms different from c. In this way, we
never produce the obvious closure.
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Deciding Satisfiability in DL Using Tableau

Tableau proofs are decision procedures for solving the problem of
satisfiability in a DL.
If a formula is satisfiable, the procedure will constructively exhibit a
model of the formula.
The basic idea (as in PL and FOL) is to incrementally build such a model
by looking at the formula and decomposing it in a top/down fashion. The
procedure exhaustively looks at all the possibilities.
If a formula is unsatisfiable, the procedure can eventually prove that no
model could be found.
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Tableau Proofs for ALC Concept Satisfiability

Given an ALC concept C, the tableau algorithm for concept satisfiability
tries to construct a finite interpretation I that satisfies C i.e., it contains
an element a such that a ∈ CI .
We follow the paper by Baader and Sattler (2001) given in the readings,
and use an ABox assertion C(a) to encode this.
In some papers of the literature, a constraint system is used to
implement the tableau (the two approaches are equivalent).
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Tableau Proofs: the High-Level Algorithm

1 We start with the ABox assertion C(a).
2 We add formulas to the tableau by applying certain transformation

rules. Transformation rules are either deterministic or
nondeterministic (result in branches).

3 We apply the transformation rules until either a contradiction is
generated in every branch, or there is a branch where no more
rule is applicable.
In the former case C is unsatisfiable. In the latter case, C is satisfiable
and this branch gives a non-empty model of C.
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Negation Normal Form

For the tableau techniques to work, the formula in question has to be
transformed into negation normal form.

Definition. A formula is in negation normal form if negation appears
only in front of atomic concepts.
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Negation Normal Form (cont’d)

Applying the following equivalences, we can transform any ALC formula
into an equivalent one in negation normal form:

¬⊤ ≡ ⊥
¬⊥ ≡ ⊤
¬¬C ≡ C
¬(C ⊓ D) ≡ ¬C ⊔ ¬D
¬(C ⊔ D) ≡ ¬C ⊓ ¬D
¬(∀R.C) ≡ ∃R.¬C
¬(∃R.C) ≡ ∀R.¬C
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Transformation Rules: the AND rule

The transformation rules come straightforwardly from the semantics of
constructors.
If in an arbitrary interpretation I, whose domain contains an arbitrary
element a, we have that a ∈ (C ⊓ D)I , then from the semantics we know
that a should be in the intersection of CI and DI , i.e. it should be in both
CI and DI .
We can use ABox assertions to encode this in a transformation rule as
follows.
If

(C ⊓ D)(a) is in A, but
C(a) and D(a) are not both in A

then
A := A ∪ {C(a),D(a)}
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The OR Rule (or ⊔-rule)

Similarly, we have the following rule.
If

(C ⊔ D)(a) is in A, but
neither C(a) nor D(a) is in A

then
A := A ∪ {C(a)}

or
A := A ∪ {D(a)}

This rule forces us to introduce sets of ABoxes as a formal tool to
represent tableau proofs.
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The SOME rule (or ∃-rule)

From the semantics, we have the following. If in an arbitrary interpretation
I, whose domain contains an arbitrary element a, we have that
a ∈ (∃R.C)I , then there must be an element b (not necessarily distinct
from a) such that (a, b) ∈ RI and b ∈ CI .
We can use ABox assertions to encode this in a transformation rule as
follows. If

(∃R.C)(a) is in A and
there is no individual c such that both R(a, c) and C(c) are in A

then
A := A ∪ {R(a, b),C(b)}

where b is a new individual not occurring in A.
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The FORALL Rule (or ∀-rule)

Similarly, we have the following rule.
If

(∀R.C)(a) is in A
R(a, b) is in A, and
C(b) is not in A

then
A := A ∪ {C(b)}
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Some Definitions

Definition. An ABox is called complete if none of the above
transformation rules applies to it.
While building a tableau proof, we can look for evident contradictions to
see if the tableau is not satisfiable. We call these contradictions clashes.
Definition. An ABox A contains a clash if

{⊥(a)} ⊆ A, or
{C(a), (¬C)(a)} ⊆ A

for some individual a and concept C.
Definition. An ABox is called closed if it contains a clash, and open
otherwise.
Note: ABoxes correspond to branches in a tableau so the definitions can
be given for tableaux too.
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Tableau Proofs: the Algorithm Revisited

1 We start with the ABox assertion C(a).
2 We add formulas to the tableau by applying the previous rules.
3 We apply the rules until either a contradiction is generated in every

branch (all branches are closed ABoxes), or there is a branch where
no contradiction appears and no rule is applicable (this branch is
an open and complete ABox).
In the former case C is unsatisfiable. In the latter case, C is
satisfiable and this branch gives a non-empty model of C.
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Examples

Check satisfiability of the concept

∀hasChild.Male ⊓ ∃hasChild.¬Male

The tableau method will proceed as follows:
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Examples (cont’d)

Check satisfiability of the concept:

∀hasChild.Male ⊓ ∃hasChild.Male
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Examples (cont’d)

Check satisfiability of the concept:

∀hasChild.Male ⊓ ∃hasChild.Male
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Examples (cont’d)

Check satisfiability of the concept:

∀hasChild.Male ⊓ ∃hasChild.Male

The above tableau with one branch (ABox) is complete and open, thus the
given formula is satisfiable.
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Satisfiability of ABoxes

Naturally, we can also check the satisfiability of ABoxes using tableau
techniques.
Example: Consider the ABox consisting of the following formulas:

(Parent ⊓ ∀hasChild.Male)(JOHN)

¬Male(MARY)

hasChild(JOHN, MARY)
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Satisfiability of ABoxes (cont’d)

The tableau technique in this case gives us:
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Satisfiability of ABoxes (cont’d)

The tableau technique in this case gives us:

Thus the ABox is unsatisfiable.
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Soundness of the Tableau Method for ALC

The tableau method does not add unnecessary contradictions.
Deterministic rules always preserve the satisfiability of any ABox
involved in the proof, and nondeterministic rules allow always a choice of
application that preserves satisfiability.
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Termination of the Tableau Method for ALC

Termination can be proved by using the following arguments:
All rules but ∀ are never applied twice on the same ABox assertion.

The ∀-rule is never applied to an individual a more times than the
number of the direct successors of a, which is bounded by the
length of a concept (for a definition of the concept of direct
successors see the formal proof).
Finally, each rule application to a constraint C(a) adds constraints
D(b) such that D is a strict subexpression of C.
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Completeness of the Tableau Method for ALC

If A is a complete and open ABox (i.e., a branch) in a tableau proof of
C(a) then A is satisfiable.
The following is a canonical interpretation I of A that can be obtained
from the tableau:

The domain ∆I of I consists of the individuals occurring in A.
For each atomic concept P, we define PI to be {x| P(x) ∈ A}.
For each atomic role R, we define RI to be {(x, y)| R(x, y) ∈ A}.

Using this interpretation, it is possible to construct an interpretation for C
such that CI is nonempty. In other words, C is satisfiable.
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Example

We have shown that the concept:

∀hasChild.Male ⊓ ∃hasChild.Male

is satisfiable:
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Example (cont’d)

A model I of the Abox has domain ∆I = {a, b} and

MaleI = {b}, hasChildI = {(a, b)}.

The concept
∀hasChild.Male ⊓ ∃hasChild.Male

is satisfiable because

(∀hasChild.Male ⊓ ∃hasChild.Male)I = {a} ̸= ∅
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Tableau Techniques for TBoxes

So far we have used tableau techniques to deal with concept satisfiability
and ABox satisfiability.
The literature gives us tableaux techniques for dealing with TBoxes as
well. So eventually, we can use tableaus to decide whether a knowledge
base is satisfiable or not.
The easiest case for TBoxes is when we have acyclic terminologies.
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Acyclic Terminologies

A TBox is called an acyclic terminology if it is a set of concept
definitions that do not contain multiple or cyclic definitions.
Multiple definitions are terminological axioms of the form

A ≡ B1, . . . ,A ≡ Bn

for distinct concept expressions B1, . . . ,Bn.
Cyclic definitions are terminological axioms of the form

A1 ≡ C1, . . . ,An ≡ Cn

where Ai occurs in Ci−1 (1 < i ≤ n) and A1 occurs in Cn.
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Acyclic Terminologies (cont’d)

If the acyclic terminology T contains a concept definition A ≡ C then A is
called its defined name and C its defining concept.

Reasoning with acyclic terminologies can be reduced to reasoning without
TBoxes by unfolding the definitions: this is achieved by repeatedly
replacing defined names by their defining concepts until no more defined
names exist.
Unfolding might lead to an exponential blow-up in the size of the
produced ABox.
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Example

TBox:

MixedTeam ≡ Team ⊓ ∃hasMember.Male ⊓ ∃hasMember.Female

Male ≡ ¬Female

ABox:
MixedTeam(FC)

(∀hasMember.Male)(FC)

The above knowledge base is unsatisfiable. How can we prove it using
tableau?
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Example (cont’d)

After unfolding the definition of MixedTeam, we have:

(Team ⊓ ∃hasMember.Male ⊓ ∃hasMember.Female)(FC)

(∀hasMember.Male)(FC)

After unfolding the definition of Male, we have:

(Team ⊓ ∃hasMember.¬Female ⊓ ∃hasMember.Female)(FC)

(∀hasMember.¬Female)(FC)
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Example (cont’d)

The closed tableau showing unsatisfiability is as follows:
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Example (cont’d)
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Example (cont’d)
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General TBoxes

General TBoxes include concept definitions and concept inclusions.
Example:

Woman ≡ Person ⊓ Female

Person ⊑ ∃hasParent.Person
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Tableau Techniques for General TBoxes

To construct a tableau proof for general TBoxes, we proceed as follows:
1 Given a of TBox T , we construct a set of concepts T̂ as follows:

Each concept definition is equivalently re-written as two concept
inclusions.
Each concept inclusion C ⊑ D is rewritten as ¬C ⊔ D.

2 We compute the negation normal form nnf(T̂ ) of T̂ as the set of the
negation normal forms of its members.
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Example

T = { Woman ≡ Person ⊓ Female, Person ⊑ ∃hasParent.Person }

T can be equivalently rewritten as follows:

T̂ = { Woman ⊑ Person ⊓ Female, Person ⊓ Female ⊑ Woman,

Person ⊑ ∃hasParent.Person }

Then

T̂ = { ¬Woman ⊔ (Person ⊓ Female), ¬(Person ⊓ Female) ⊔ Woman,

¬Person ⊔ ∃hasParent.Person }
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Example (cont’d)

Then

nnf(T̂ ) = { ¬Woman⊔ (Person⊓ Female), ¬Person⊔¬Female⊔ Woman,

¬Person ⊔ ∃hasParent.Person }
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Rationale

The rationale behind the construction of T̂ is the following.
Given any Tbox T such that T̂ = {C1, . . . ,Cn}, it is easy to see that T is
equivalent to

⊤ ⊑ C1 ⊓ · · · ⊓ Cn.

How do we prove this?
We have to prove that for every interpretation I:

I |= T iff I |= ⊤ ⊑ C

where:
C =

d
(Ai≡Bi)∈T

((Ai ⊔ ¬Bi) ⊓ (¬Ai ⊔ Bi)) ⊓
d

(Ai⊑Bi)∈T
(¬Ai ⊔ Bi)
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The ⊑-rule

We now introduce a new inference rule.
If a is an individual that appears in A and C is a concept in T̂ then

A := A ∪ {C(a)}.
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Example

Let us assume we are given the following knowledge base:

Woman ≡ Person ⊓ Female

Person(ANN), Female(ANN), ¬Woman(ANN)

Can you use tableau to prove that it is unsatisfiable?
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Example of Non Terminating Proof

Let us consider the following knowledge base:

C ⊑ ∃R.C, C(a)

If we apply tableau techniques, we can have a non-terminating proof.
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Example of Non Terminating Proof (cont’d)

1 C(a)
2 (¬C ⊔ ∃R.C)(a) by ⊑
3 (¬C)(a) 4 (∃R.C)(a) by 2, ⊔
4 Clash 5 R(a, b) by 3b, ∃

6 C(b) by 3b, ∃
7 (¬C ⊔ ∃R.C)(b) by ⊑
8 (¬C)(b) 9 (∃R.C)(b) by 7, ⊔

10 Clash 11 . . .

At Step 11, we can continue as in Step 5 by introducing a new individual c
and so on ...
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Blocking

In order to guarantee terminating proofs even in the presence of concept
inclusions, we can introduce the concept of blocking.
Intuition: Blocking prevents application of of the same rule again and
again i.e., when it is clear that the subtree rooted in some node x is similar
to the subtree rooted in some predecessor node y of x.
The tableau expansion rules given previously can then be modified so that
they apply only to individuals a that are not blocked.
In this way, the tableau techniques can be seen to be sound and
complete decision procedures for ALC.
Details of blocking can be found in the papers in the Readings.
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Computational Complexity

Even for a simple DL like ALC, the satisfiability and the consistency
problem (without TBoxes) are PSPACE-complete.
With general TBoxes, the satisfiability and the consistency problem
become EXPTIME-complete.
In practice there are reasoning algorithms (and implemented reasoners)
that do much better than what the above worst-case complexity results
tell us to expect.
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Efficiency of Implemented Reasoners

See the paper
Ian Horrocks. Semantics ⊓ scalability = ⊥? Journal of Zhejiang
University - Science C. 13(4):241-244, 2012.

available from http://www.cs.ox.ac.uk/people/ian.horrocks/
Publications/download/2012/Horr12a.pdf which discusses briefly the
performance of current scalable DL reasoners and contains pointers to
other relevant papers.
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OWL in brief

OWL (Web Ontology Language) is an ontology language with semantics
based on Description Logics, towards an intelligent web of data.

An OWL ontology consists of classes, properties and instances
identified by IRIs.

An OWL ontology can also be identified by an IRI, an OWL ontology
can import other OWL ontologies by their IRI.
OWL is based on DLs and inherits their expressive power:

OWL [SHOIN (D)] is W3C Recommendation since 2004.
OWL2 [SROIQ(D)] is W3C Recommendation since 2009.

OWL makes the Open World Assumption (OWA).
OWL does not make the Unique Name Assumption (UNA).
As in DLs, constructors are used to describe complex classes
(concepts).
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OWL [SHOIN (D)] is W3C Recommendation since 2004.
OWL2 [SROIQ(D)] is W3C Recommendation since 2009.

OWL makes the Open World Assumption (OWA).
OWL does not make the Unique Name Assumption (UNA).
As in DLs, constructors are used to describe complex classes
(concepts).
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OWL Syntax Variants

Various serializations exist for OWL:
Functional syntax (see also: https://www.w3.org/TR/owl2-primer/)

An extension of existing RDF/XML
An independent XML serialization (OWL/XML)
Manchester syntax, also used in Protege (see also:
https://www.w3.org/TR/owl2-manchester-syntax/)
Turtle
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OWL in a nutshell

OWL 2 ontologies include the following:
classes: representing sets of elements in the domain,

properties: distinguished to ObjectProperty and DataProperty (the
former relates instances to each other, the latter relates instances to
data values),
instances (or individuals) representing entities in the domain.
Expressions: describing complex classes of elements in the domain
(i.e. complex concepts or roles in DL terms).
Axioms are statements that are asserted to be true (e.g., a subclass
axiom)
DL reasoners can be employed to draw inferences from axioms
More about OWL in the next lecture.
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Readings

F. Baader. Description Logics. In Reasoning Web: Semantic
Technologies for Information Systems, 5th International Summer
School 2009, volume 5689 of Lecture Notes in Computer Science,
pages 1-39. Springer-Verlag, 2009.
Available from
http://lat.inf.tu-dresden.de/research/papers.html.
F. Baader and U. Sattler. An Overview of Tableau Algorithms for
Description Logics. Studia Logica, 69:5-40, 2001.
Available from
http://www.cs.man.ac.uk/~sattler/ulis-ps.html.
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Readings (cont’d)

Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics. In
Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors,
Handbook of Knowledge Representation. Elsevier, 2007.
Available from http://www.comlab.ox.ac.uk/people/ian.
horrocks/Publications/complete.html#2007
(Optional). Melvin Fitting. First-Order Logic and Automated
Theorem Proving. 2nd edition. Springer, 1996.
This is a good introduction to tableau proofs for PL and FOL.
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