
Tutorial 2

Despina-Athanasia Pantazi
18-11-2024

�SPARQL 1.1
�Aggregates
�Subqueries



SPARQL 1.1

� The newest version of SPARQL is SPARQL 1.1 with support for:

� New query features:

� Aggregate functions

� Subqueries

� Negation 

� Expressions in the SELECT clause

� Property Paths 

� Assignment 

� A short form for CONSTRUCT 

� An expanded set of functions and operators

� Updates
� Federated queries
� …

� See the web page of the SPARQL Working Group for more information: 

http://www.w3.org/2009/sparql/wiki/Main_Page

http://www.w3.org/2009/sparql/wiki/Main_Page


Aggregates

� Aggregate functions can be used to do computations over groups of 
solutions that satisfy certain graph patterns. By default a solution set 
consists of a single group, containing all solutions.

� Grouping is specified using the GROUP BY clause. It specifies the key 
variables to use to partition the solutions into groups.

� The HAVING clause can also be used to constrain grouped solutions in 
the same way FILTER constrains ungrouped ones.

� The following aggregate functions are allowed: COUNT, SUM, MIN, 
MAX, AVG, GROUP_CONCAT, and SAMPLE.



Aggregates

� COUNT: Counts the number of times the specified value is bound to the 
given variable.

� SUM: Adds the specified values.

� MIN, MAX: Returns the minimum/maximum value from the specified 
set of values.

� AVG: Calculates the average value for a numeric expression.

� GROUP_CONCAT: Performs a string concatenation of all of the values 
that are bound to the given variable.

� SAMPLE: Returns an arbitrary value from the specified set of values.



Example: 
Aggregates

� Data:
@prefix : <http://books.example/> . 

:org1 :affiliates :auth1, :auth2 . 
:auth1 :writesBook :book1, :book2 . 
:book1 :price 9 . 
:book2 :price 5 . 
:auth2 :writesBook :book3 . 
:book3 :price 7 . 

:org2 :affiliates :auth3 . 
:auth3 :writesBook :book4 . 
:book4 :price 7 .



Example 
(cont’d)

� Query 1: Find how many authors  are affiliated with each organization. Output 
the  organization id and the amount of the authors per organization.

prefix : <http://books.example/> 

SELECT ?org (COUNT(?auth) as ?count)

WHERE { 

?org :affiliates ?auth .

} 

GROUP BY ?org



Example 
(cont’d)

� Query 1: Find how many authors  are affiliated with each organization. Output 
the  organization id and the amount of the authors per organization.

prefix : <http://books.example/> 

SELECT ?org (COUNT(?auth) as ?count)

WHERE { 

?org :affiliates ?auth .

} 

GROUP BY ?org

� Result:

org count

<http://books.example/org1> 2

<http://books.example/org2> 1



Example 
(cont’d)

� Query 2: Find the  most expensive book of each author.  Output  the author id and 
the price of their most expensive book.

prefix book: <http://books.example/> 

SELECT ?auth (MAX(?price) AS ?maxprice)

WHERE {  

?auth book:writesBook ?book .

?book book:price ?price

} 

GROUP BY ?auth



Example 
(cont’d)

� Query 2: Find the  most expensive book of each author.  Output  the author id and 
the price of their most expensive book.

prefix book: <http://books.example/> 

SELECT ?auth (MAX(?price) AS ?maxprice)

WHERE {  

?auth book:writesBook ?book .

?book book:price ?price

} 

GROUP BY ?auth

Result: auth maxprice

<http://books.example/auth1> 9

<http://books.example/auth2> 7

<http://books.example/auth3> 7



Example 
(cont’d)

� Query 3: Find the  total price of books written by authors affiliated with some 
organization. Output the organization id and total price only if the total  price is 
greater than 10.

SELECT ?org (SUM(?lprice) AS ?totalPrice) 

WHERE { ?org :affiliates ?auth . 

?auth :writesBook ?book . 

?book :price ?lprice . } 

GROUP BY ?org 

HAVING (SUM(?lprice) > 10)



Example 
(cont’d)

� Query 3: Find the  total price of books written by authors affiliated with some 
organization. Output organization id and total price only if the total  price is greater 
than 10.

SELECT ?org (SUM(?lprice) AS ?totalPrice) 

WHERE { ?org :affiliates ?auth . 

?auth :writesBook ?book . 

?book :price ?lprice . } 

GROUP BY ?org 

HAVING (SUM(?lprice) > 10)

� Result:
org totalPrice

<http://books.example/org1> 21



Subqueries

� Subqueries are a way to embed SPARQL queries inside other 
queries to allow the expression of requests that are not possible 
otherwise. 

� Subqueries are useful when combining limits and aggregates 
with other constructs.

� Subqueries are evaluated first and then the outer query is 
applied to their results.

� Only variables projected out of the subquery (i.e., appearing in 
its SELECT clause) will be visible to the outer query.



Example: 
Subqueries

Data:

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix : <http://sales.com/> . 

:sale1 a :Sale ; :company :c1 ; :amount 7500^^xsd:integer ; :year "2011" .
:sale2 a :Sale ; :company :c1 ; :amount 17000^^xsd:integer ; :year "2011" .
:sale3 a :Sale ; :company :c1 ; :amount 5500^^xsd:integer ; :year "2012" .
:sale4 a :Sale ; :company :c1 ; :amount 7000^^xsd:integer ; :year "2012" .
:sale5 a :Sale ; :company :c2 ; :amount 3000^^xsd:integer ; :year "2011" .
:sale6 a :Sale ; :company :c2 ; :amount 4000^^xsd:integer ; :year "2011" .
:sale7 a :Sale ; :company :c2 ; :amount 5000^^xsd:integer ; :year "2012" .

:sale8 a :Sale ; :company :c2 ; :amount 6000^^xsd:integer ; :year "2012" .



Example 
Subqueries

� Query: Find companies that increased their sales from 2011 to 2012 and the amount of 
increase.

PREFIX : <http://sales.com/> 

SELECT ?c ((?total2012 - ?total2011) AS ?increase) 

WHERE {

{ SELECT ?c (SUM(?m) AS ?total2012)

WHERE { ?s a :Sale ; :company ?c ; 

:amount ?m ; :year: "2012" . }

GROUP BY ?c  

} .

{ SELECT ?c (SUM(?m) AS ?total2011)

WHERE { ?s a :Sale ; :company ?c ; 

:amount ?m ; :year: "2011" . }

GROUP BY ?c  

} .

FILTER (?total2012 > ?total2011)

}



Example 
Subqueries

� Results:

c increase

<http://sales.com/c2> "4000"^^<http://www.w3.org/2001/XMLSchema#integer>


