
Dynamic Edge/Cloud Resource Allocation for
Distributed Computation under Semi-Static

Demands

Ippokratis Sartzetakis, Panagiotis Pantazopoulos, Konstantinos V. Katsaros, Vasilis Sourlas, Emmanouel Varvarigos

Abstract—Edge computing is a recent paradigm where the
processing takes place close to the data sources. It therefore
reduces latency and saves bandwidth compared to traditional
cloud computing. The latter can continue to play a support-
ive role. Edge-cloud computing provides benefits in many use
cases including distributed computation algorithms, where the
processing is divided into a number of tasks that are executed in
parallel on different equipment. An important relevant challenge
is to allocate the appropriate resources to process the data that
are continuously generated from user devices. The issue becomes
more complicated when we take into account the variations in
the volume of the generated data as a function of time. In this
paper we present a resource allocation algorithm for distributed
computation with emphasis on machine learning algorithms. We
consider that the resource requirements vary with time in a
semi-static way that exhibits some daily pattern. We distinguish
between periodic (expected) variations that occur during the day,
and sporadic variations due to unexpected events. We propose an
Integer Linear Programming algorithm to allocate the periodic
resource requirements. To handle the non-periodic requirements,
we consider a suitable prediction algorithm coupled with a
reconfiguration algorithm that allocates the predicted required
resources. Our results indicate that our proposal outperforms
traditional allocation algorithms in terms of resource utilization,
monetary cost and achieved accuracy.

Index Terms—cloud and edge computing, distributed comput-
ing, distributed machine learning, resource allocation, prediction,
dynamic.

I. INTRODUCTION/MOTIVATION

The applications and services that process data generated
at Internet of Things (IoT) devices and mobile phones con-
tinuously evolve. The resulting job processing requirements
places significant burden on the edge and cloud resource
management. As a result, significant research effort has been
exerted to develop algorithms to select the resources that serve
the processing and storage demands [1] [2] [3] [4].

Another factor that complicates the management challenge
is the dynamicity and periodicity of the requirements. Internet
traffic volume in general, and the human generated data in
particular, follow a periodic pattern of daily fluctuations due
to the respective human activities patterns. Thus, the resource
requirements of the resulting generated jobs are not constant
but exhibit a semi-static structure. Moreover, there are certain
events (e.g., football matches) that affect the volume of data
generated and processed. These events are to a certain extent
predictable. To this end, a number of previous works have

focused on resource demand prediction and resource allocation
at the edge and cloud [5] [6] [7] [8] [9]. It is an interesting
topic that combines the resource allocation challenge with the
requirement of accurate prediction using artificial intelligence
among others.

A significant sub-category of work addressing the offloading
challenge is related to the problem of resource allocation for
distributed computation algorithms over a continuous time
horizon. In this case, a number of devices at the edge continu-
ously produce (large amounts of) data that are offloaded at the
edge and cloud resources. The processing of the algorithm is
divided into a number of tasks that are executed distributedly
on different equipment. In our previous work [10] we specifi-
cally studied resource allocation algorithms to solve the afore-
mentioned challenge. In this paper we extend our previous
work by considering the dynamicity and partial periodicity of
the resource requirements. More specifically, we assume that
the resource requirements are to a certain amount periodical
(known or estimated) during the day. For example, consider a
distributed ML training scenario in an Internet of Vehicles
setting. The daily vehicle traffic volume is periodical in a
large extent. We adopt a semi-static model, where the day is
divided in a number of sub-periods during which the resource
assignments are close to constant, except for some random
fluctuations. We plan in advance the assignment of resources
to the demands exhibiting a periodic pattern. Additionally, we
consider that certain events during the day significantly alter
the planned periodic allocations. For example, a major event
that results in mass people gatherings, typically disrupts among
others the vehicle traffic volume. We consider that these events
are estimated with some accuracy using a suitable prediction
algorithm as we will discuss in the following sections. We
present a suitable algorithm that takes as input the predicted
requirements, and adjusts the current resource allocation to
accommodate the altered demands.

To the best of our knowledge the combination of a planning
and a prediction algorithm for the allocation of network
resources has not been considered before at least in the specific
context of distributed computation algorithms. We present
interesting insights on the interplay of various parameters, such
as the trade-off between accuracy and monetary cost under
the aforementioned scenario. We compare our approach to
the alternative protocol of incremental updates in the resource

assignment to meet the current demands. A scenario where the
demands are highly dynamic can be a topic of future work.

II. RELATED WORK

This work is generally related to the topic of computation
offloading. More specifically it is related to the topic of
resource allocation for distributed computation with prediction
of the resource requirements. Computation offloading and
Mobile Edge Computing [1] [2] [3] [4] is a vast research
area. The challenge is to decide about the locations where
a given set of tasks will be executed and to allocate the
related resources. In some cases, the execution of a task can
be divided and be partially offloaded. A special subcategory of
computation offloading is distributed computation [11], where
the jobs comprising a certain task are executed in parallel
and in many distributed locations. A major application of
distributed computation is distributed machine learning (DML)
[12] [13]. There are different variations/architectures of DML,
such as the parameter server(s) (where certain servers are
used to average the model’s weights and send the updated
values to the computing nodes) and all-reduce where the
coordination is distributed. A number of works have focused
on the allocation of resources for DML. In our previous
work [10], we developed resource allocation algorithms and
examined interactions between accuracy, monetary cost and
delay. Other approaches include the (computation and stor-
age) resource allocation to maximize the distributed learning
throughput [14] and the development of scheduling algorithms
to minimize the completion time [15]. The aforementioned
research generally does not consider the dynamic (periodic
and non-periodic) nature of the tasks. A number of works
have considered predicting the demands to more efficiently
allocate the appropriate resources [5] [6] [7] [8] [9] in the
context of computation offloading. Typically, an (artificial
intelligence) algorithm is used to estimate the resources in a
given future time interval. Then a related algorithm allocates
the resources for that interval based on the received input. In
a similar direction, in this work we significantly expand our
previous work [10] in the context of distributed computation.
We consider both periodic and non-periodic variations of
the data volume generated by the user devices that feed the
distributed algorithm. We employ a traffic predictor to estimate
the unexpected changes in requirements. We then demonstrate
the advantages of our approach over other approaches.

III. PROBLEM STATEMENT

We consider a number of devices at the edge that con-
tinuously produce data. The data processing is performed
at the edge network close to the devices, and at a more
distant cloud. The edge network includes a set of nodes
N with finite capacity that can be used by the ML tasks.
The cloud network has infinite resources. A set of devices
make for an algorithmic job j that processes their data. The
processing of job j is divided into a set of distributed ML
tasks Tj = {tj1, tj2, ..., tje} that are executed in parallel at
respective worker nodes. There is a time window Γ in which

the devices generate and send the data for processing, and a
subsequent time window where the data are processed. Each
ML task needs certain computation and network and possibly
aggregation (in the case of parameter servers) resources during
each time window. We assume that the vector of resource
requirements remains constant throughout certain periods dur-
ing a 24h daily cycle due to known periodic variations. For
example, we can assume that there are three 8-hour periods
during which the requirements remain constant.

Fig. 1. The abstract architecture considered.

We denote: Rpjea = [Gpjea, Bpjea,Θpjea] where G, B,
and Θ are parameters that reflect the amount of processing
(in, e.g., Floating Point Operations - FLOP), number of bits
communicated to the nodes and processing for weight aggre-
gating purposes that each sample requires for the specific time
period p, the ML task e of job (application) j and for a specific
required computation accuracy a. Computation accuracy is a
parameter that can be traded-off against resource requirements,
when the resources are limited.

Additionally, we consider that during the day we can have
temporary fluctuations in the resource requirements. These
fluctuations could be due to major events that disrupt the
normal city traffic or that attract too many people to a certain
location. We denote with Rpjea

∗ the brief increase of the
resource requirements that has to be met, where the indices p,
e, j and a are as defined above.

To allocate the appropriate resources for the aforementioned
scenarios, we employ three main algorithms:

• An Integer Linear Programming (ILP) planning algo-
rithm. This algorithm is responsible for the resource
allocation of the periodic requirements Rpjea.

• A traffic predictor that estimates temporary increases
Rpjea

∗ in resource requirements.
• A reconfiguration algorithm that reconfigures the resource

allocation according to the predictor’s output.

IV. RESOURCE ALLOCATION ALGORITHMS

A. ILP Algorithm

In this subsection we present the ILP algorithm. The goal of
this resource allocation algorithm is to reserve the appropriate
resources for the tasks, including the specific edge node where

TABLE I
NOTATION

Symbol Description
J Set of jobs
Tj Set of tasks of job j
λje Production rate of task je in samples/sec j
N Set of node of edge network

RG
n , RB

n , RΘ
n

Set of processing, b/w, aggregation resources
of edge node n

CG
E , Cbw

E , CG
C , Cbw

C

Processing and b/w costs at the edge
and cloud respectively

δc Propagation delay of cloud
∆j Acceptable prop. delay of job j
W Weight to control optimization objective
A Set of possible accuracies of ML jobs
aj An accuracy of a job j ranging from 0 to 1

amin
j The minimum acceptable accuracy of a job j

ξpjean
Binary variable equal to 1 if task

je is served at node n, period p, accuracy a

ξpjeac
Binary variable equal to 1 if task

je is served at period p, accuracy a
k The total monetary cost to serve all jobs

S
A set of jobs that must not migrate locations

from one period to another

PC
A set of all possible combinations of

successive periods p, p’

mje
pp′

The migration cost of each task je from a
period p to a period p′

each task will be processed), while minimizing certain objec-
tives and satisfying all the constraints. A special parameter
(migration cost) is used to control whether or not tasks can
change execution location from one period to another. To avoid
the related transferring (migration) overhead, tasks should be
executed at a fixed place.

Inputs:
N,RG

n , R
B
n , R

Θ
n , J, Tj , C

G
E , Cbw

E , CG
C , Cbw

C , δc,∆j ,W,
A,Aj , λj

Variables:
ξpjean , ξpjeac , k, a,mje

pp′

The symbolism in binary variable ξpjeqan means that there
is a different variable for every different time period p, node
n, job j, task e, and for every different accuracy level α. The
symbol k represents the total monetary cost to serve all jobs. It
is aimed to be minimized at the objective. Symbol a represents
the mean accuracy of all the tasks to be served. It is aimed to
be maximized at the objective.

Objective:
We have a multi-criterion optimization problem, as the

objective is to minimize the total cost to serve the jobs,
minimize the migration cost (tasks moving from one location
to another) and maximize the accuracy.

The relative importance of each individual objective (that
transforms each objective in a monetary cost, for example) is
controlled by three respective weights w1, w2, w3 with w1 +
w2 + w3 = 1. The cost of each job depends on the amount
of processing and b/w and whether it is served at the edge or
the cloud:

min
(
w1k − w2a+ w3

∑
mje

pp′

)
(1)

Subject to:
• The cost to serve all jobs consists of the sum of the

edge and cloud bandwidth (b/w) plus the edge and cloud
processing cost for all the task jobs, for all the accuracy
options and for all the periods:

k =
∑
j

∑
tje

∑
a

∑
p

(
∑
n

ξpjean λje(C
bw
E Bpjea+

CG
EGpjea) + ξpjeac λje(C

bw
C Bpjea + CG

CGpjea)) (2)

• The mean accuracy of all tasks is defined as:

a =
∑
j

∑
tje

(
∑
n

ξpjean αj + ξpjeac αj) (3)

• Each task of a job should be served once with one
accuracy option, at the edge or at the cloud
∀j,∀tje∀p : ∑

n∈N

∑
a

ξpjean +
∑
a

ξpjeac = 1 (4)

• Edge capacity constraints:

∀n ∈ N :
∑
j

∑
tje

∑
a

∑
p

ξpjean Gpjeaλje ≤ RG
n (5)

∀n ∈ N :
∑
j

∑
tje

∑
a

∑
p

ξpjean Bpjeaλje ≤ RB
n (6)

∀n ∈ N :
∑
j

∑
tje

∑
a

∑
p

ξpjean Θpjeaλje ≤ RΘ
n (7)

• Cloud delay constraints for relevant jobs:

∀ji,∀tje,∀p : ξpjeac δj ≤ ∆c (8)

• The minimum required accuracy should be respected:
∀j,∀tje,∀p :∑

n∈N

∑
a

ξpjean αj +
∑
a

ξpjeac αj ≥ αmin
j (9)

• Migration cost: the cost when a task moves from one
location to the other. Variable mcjepp′ increases in value
if a job stays in the same place in subsequent periods.

∀j,∀tje /∈ S, ∀a,∀p, p′ ∈ PC : mje
pp′ >= ξpjean − ξp

′jea
n

(10)

∀j,∀tje /∈ S, ∀a,∀p, p′ ∈ PC : mje
pp′ >= ξp

′jea
n − ξpjean

(11)
The solution of the algorithm is the binary values of all the

variables. For example, when p = 1, n = 1, j = 1, e = 1, q =
1, a = 1, and ξpjean = 1 then the first task of the first job is
served at the first node of the edge network using the first GPU
model, and the first choice of the available accuracy options.
Even though the ILP algorithms are generally computationally

intensive, the specific formulation can provide promptly a
solution in realistic scenarios as we will demonstrate in the
simulation section. Moreover, certain heuristic algorithms as
shown in our previous work [10] can be used to accelerate the
execution time.

B. Traffic prediction algorithm

The traffic predictor takes as input some previously ob-
served data of either the sample production rate λje or the
required resources per task Rpjea. Without having to be
specific, as we are not interested in the details of the specific
algorithm used, we assume that we employ some ML or
other algorithm to predict the required resources, providing
as output the predicted vector of required resources during
future time steps λjeR

pjea
∗1 , λjeR

pjea
∗2 . The goal of a predictor

is to find and fit a function to the available past data in order
to estimate future data. An essential part of the problem is
to select (mainly through trial and error) the suitable time
estimation period (or equivalent) amount of data required
to have accurate enough predictions. In our case we are
interested in very short term prediction. The input could be
three or four time steps, with one time step corresponding
to 15 minutes, and the output could be given for two or
three time steps. There is a large number of previous works
related to this subject ranging from autoregression algorithms
to specific ML and neural network architectures [16] [17]
[18]. Autoregression uses a regression model that combines
a number of historical values to estimate future values. One
suitable model could be (weighted) linear regression. SVMs
as well as neural networks (e.g. Long short-term memory or
convolutional neural networks) have the ability to fit more
complex functions to the data. An example architecture in the
case of a predictor based on Convolutional Neural networks
consists of a convolutional hidden layer and a pooling layer.
Then a flatten layer is used to feed the subsequent dense
fully connected layer that provides the output. In our case any
algorithm that provides an accurate output for a small number
of future time steps can be used to estimate the resource
requirements. The prediction is given to the heuristic algorithm
responsible for the reconfiguration of the network.

C. Heuristic resource allocation algorithm

The heuristic reconfiguration algorithm takes as input the
estimated resource requirements for each task, and examines
one task at a time. If the estimated demands cannot be
served by the allocated resources, then the algorithm considers
reconfiguring the appropriate resources. The algorithm first
checks whether there are adequate free resources at the original
location of each task that can satisfy the new requirements. If
there are, then it allocates the appropriate resources. If not,
there are two options: either move the entire task to a new
location that can satisfy the requirements, or keep unchanged
the previous configuration. All the decisions depend on the
respective acceptable reconfiguration cost and the Service
Level Agreement (SLA) constraints. More specifically, the
reconfiguration cost can be defined as the number or the

percentage increase of the processing resources, the additional
monetary cost and the location of the possible reconfigurated
task. Regarding the SLA, certain tasks could require they
should not change location so that their execution will not
be interrupted. In other cases the most appropriate decision
could be to always match their requested resources.

After the requirements have returned to their normal planned
values, the algorithm releases the additional resources. If the
task has changed location, the algorithm preserves the new
location (unless there is another policy) so that future increases
can be easily accommodated. Detailed complexity analysis of
the ILP and heuristics is ommitted due to space limitations,
but a relevant discussion can be found in [10].

V. SIMULATIONS

In this section we present the results of a number of simu-
lation experiments than can be an application of a distributed
ML image training scenario. We assumed a 10-node edge
network with finite resources. Each edge node has 5 racks,
1 rack has 10 servers, and 1 server has 4 low cost and 2
higher cost GPUs, for a total of 200 low cost and 100 higher
cost GPUs per node. Each edge node has 10 Tbps incoming
bandwidth and 6000 CPU physical cores (that could corre-
spond to approximately 100 CPUs). We also assumed a cloud
network with infinite resources. Without loss of generality, we
considered a scenario A consisting of a total of 400 training
image recognition ML jobs and a scenario B consisting of
600 jobs. The size Bj of each data sample (i.e., image in these
experiments) of a job j is chosen uniformly from the following
set of values: [0.4, 0.8, 1.2, 1.6, 2, 2.4] MBs / sample. The
available GPU models q were NVIDIA DGX-1 with 1 (low
cost) or 8 (higher cost) GPU V100 16G. The respective cost
of these GPUs at the cloud is $2.08/hour and $16.7/hour [19]
(p3.2xlarge or p3.16xlarge). The b/w cost to transfer data to
the cloud is 0.01/GB [19]. The required b/w of each task tje
is derived by multiplying the generation rate lje of samples/sec
by the size Bj in MBs/sample and by the duration of the time
window Γ in seconds. This figure equals to the amount of
data that have to be transferred within one period. Similarly
to our previous work [10], we considered that the edge’s b/w
costs are approximately 0.1 times those of the cloud’s (as the
data has to be transferred over shorter distances), and the edge
processing costs are 1.5 times the cloud processing costs (as
edge resources are more costly to host and operate). Each
of the 100 training jobs consists of either 3, 4,. . . , 7 ML
image recognition tasks, uniformly distributed. The sum of
the sample production rates of the devices providing data to
task tje is 15 samples/sec. We consider that the duration of
the training period is Γ = 30 seconds, yielding Sje = 450
total samples processed in each period. We also assume that
each ML task could be served with two different accuracies
A = agood, alow. The number of NVIDIA GPU units Upjeqa

required per period, per task and per time window Γ, is
calculated as in [10] based on the number of samples Sje of
each task tje processed per time window and the accuracy
aj . The computational performance Piaq of 1 GPU V100

16G unit for image recognition training according to [20] is
Piaq = 166 or 566 samples/sec for single-precision floating-
point math – FP32 or mixed precision accuracy respectively.
The performance of a resource type q consisting of 8 GPU
V100 units is Piaq = 1210 or 4160 samples/sec, respectively.
We assumed 100 number of epochs. Similar results can be
drawn for different epochs and processing costs as explained
in [10]. We consider 3 periods within a day for which we will

Fig. 2. Accuracy vs monetary cost comparison (Scenario A)

use the ILP to plan the allocation of resources. Based on [22],
we assume that traffic volume ratios for the respective periods
correspond to: 0.25, 1, 0.5. So, the second period volume is
four times bigger than the first period, and the third period
volume is twice than that of the first period. We assume that
these ratios translate to respective ratios for the number of ML
tasks. The simulations were executed in Python in a quad-core
CPU. The running time of the algorithm for these parameters
was approximately 2 seconds.

Regarding the unexpected fluctuations, we assume certain
events can increase the normal traffic of the second period by
20% percent which is a realistic estimate [22]. We assumed
that a traffic predictor as in [18] is used to estimate the
differences. We compare to an alternative algorithm, where
there is no planning to serve the demands over the three
periods (named ”incremental”) and to predict the unexpected
fluctuations. Instead, this algorithm serves (greedily) each
demand one-by-one at the edge or the cloud by trying to
minimize its individual cost objective. Whenever there is an
increase at the demands, the algorithm serves one-by-one the
related demands. Another alternative (named ”one-period”)
assumes one planning period where the requirements of the
most demanding period are planned in advance (as in [10]).
The rest of the requirements are again served one-by-one by
the aforementioned incremental algorithm.

In Figs. 2 and 3 we compare the accuracy vs monetary
cost of our proposal compared to the alternatives for scenarios
A and B, respectively. For simplicity we assumed only one
weight W , for the monetary cost optimization, while the
accuracy weight equals to 1 − W and there is no migration.
For this set of values, we plot the resulting mean accuracy of

all the jobs and their total monetary cost. The choice of the
exact values of W depends on the parameters of the problem.
For larger or smaller instances, different set of values may be
required to acquire the respective accuracy to monetary cost
relationship. For example, for smaller amount of jobs the total
monetary cost could be smaller. Therefore, a larger value of
W may be necessary to have the same accuracy. Generally,

Fig. 3. Accuracy vs monetary cost comparison (Scenario B)

using this figure, the trade-off between accuracy and monetary
cost can be deduced for a given set of parameters and jobs.

We observe that the proposed algorithm achieves the best
accuracy coupled with the lowest monetary cost in both
scenarios. For 80% accuracy, the related costs in scenario
A are $2, $2.27 and $2.6 for the proposed, one-period and
traditional algorithm respectively. So, the ILP algorithm can
serve the tasks with the same accuracy, but at 9.5% and 21.7%
lower cost respectively. Moreover, for roughly the same cost
($2.75) the proposed algorithm achieves 87.5% mean accuracy,
compared to the 84.9% and 82.7% of the other algorithms.
The reason that the algorithms that employ (even one period)
planning perform better, is that they have a complete view of
all the demands at the beginning of the allocation. Therefore,
they can make optimized placing decisions by taking into
account the best overall objective cost. In contrast, the heuristic
algorithms that serve one by one the tasks take into account
the individual objective cost of each task, which could lead to
sub-optimal total objective cost. The proposed algorithm uses
planning for all three periods, so it has the best performance
among the examined algorithms. In the case of the best
accuracies, the difference in monetary costs are less prominent
(1.8% and 4.36% lower cost than the one-period and the
incremental algorithms, respectively). The reason for this is
that the best accuracy requires the most expensive allocation
decisions. This leaves little room for cost improvements by the
placement optimization of the jobs. In scenario B, the savings
of our proposal are somewhat larger, by approximately 2%.
The reason is that the additional number of jobs create more
allocation possibilities, and more opportunities for the plan-
ning and the subsequent reconfiguration algorithm to better

allocate the resources. In conclusion, the proposed algorithm
provides benefits under a variety of loads.

In Figs. 4 and 5, we assumed a common target accuracy of
80% for all the compared algorithms. The objective is to serve
the jobs at the lowest possible monetary cost. We examine the
GPU utilization of the three algorithms. We notice that the
proposed algorithm in scenario A requires 12.6% and 6.4%
less GPU units to achieve the same results as the traditional
incremental and the one-period algorithms respectively. Again,
in scenario B the savings are slightly higher for the same
aforementioned reasons. These results also translate to less
required energy of the resources to produce the same output.
An energy model as the one in [23] can be used to acquire
the respective results and can be the topic of a future work.

Fig. 4. GPU unit utilization comparison (Scenario A)

VI. CONCLUSIONS

In this work we investigated the problem of allocating
resources for distributed computation applications in the con-
text of (non) periodic demands. We presented a planning
algorithm that serves the periodic semi-static demands. We
also proposed a traffic predictor and a reconfiguration al-
gorithm that serves the unexpected demands. We performed
a number of simulation experiments. The results show that
our proposal has a number of advantages when compared
to the examined alternatives: a reconfiguration algorithm to
serve one-by-one each demand, or a one period planning
coupled with a reconfiguration algorithm to serve one-by-one
the fluctuations. More specifically, our proposal can achieve
approximately 20% and 10% reduction in monetary costs over
the first and second alternative respectively.

REFERENCES

[1] P. Mach, Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” IEEE Comm. Surv. and Tutor., 19(3), 2017.

[2] F. Saeik, et al., “Task offloading in Edge and Cloud Computing: A survey
on mathematical, artificial intelligence and control theory solutions,”
Computer Networks, 195, 2021.

[3] I. Sarrigiannis, et al., “Cost-Aware Placement and Enhanced Lifecycle
Management of Service Function Chains in a Multidomain 5G Archi-
tecture,” IEEE Trans. on Network and Serv. Management, 19(4), 2022.

Fig. 5. GPU unit utilization comparison (Scenario B)

[4] T. M. Ayenew, et al., “Demand-Aware Cooperative Content Caching in
5G/6G Networks With MEC-Enabled Edges,” IEEE Networking Letters,
4(3), 2022.

[5] W. C. Chien, et al., “Dynamic resource prediction and allocation in C-
RAN with edge artificial intelligence,” IEEE Transactions on Industrial
Informatics, 15(7), 2019.

[6] B. Bao, et al., “Resource allocation with edge-cloud collaborative traffic
prediction in integrated radio and optical networks,” IEEE Access, 11,
2023.

[7] X. Chen, et al., “Resource allocation for cloud-based software services
using prediction-enabled feedback control with reinforcement learning,”
IEEE Transactions on Cloud Computing, 10(2), 2020.

[8] M. Chen, et al., “Intelligent traffic adaptive resource allocation for
edge computing-based 5G networks,” IEEE transactions on cognitive
communications and networking, 6(2), 2019.

[9] L. A. Grieco, et al., “Ad-hoc, mobile, and wireless networks,” Proceedings
of the 19th international conference on ad-hoc networks and wireless,
ADHOC-NOW, 2020.

[10] I. Sartzetakis, et al., “Edge/Cloud Infinite-time Horizon Resource Al-
location for Distributed Machine Learning and General Tasks,” IEEE
Transactions on Network and Service Management, 21(1), 2024.

[11] D. Bertsekas, J. Tsitsiklis, “Parallel and distributed computation: numer-
ical methods,” Athena Scientific, 2015.

[12] J. Dean, et al., “Large scale distributed deep networks,” in NIPS, 2012.
[13] T. Ben-Nun, T. Hoefler, “Demystifying Parallel and Distributed Deep

Learning: An In-depth Concurrency Analysis,” ACM Comput. Surv. 52,
4, Article 65, 2019.

[14] M. Chen, et al., “Joint Data Collection and Resource Allocation for
Distributed Machine Learning at the Edge,” IEEE Transactions on Mobile
Computing, 21(8), 2020.

[15] R. Zhou, et al., “Online Scheduling Algorithm for Heterogeneous
Distributed Machine Learning Jobs,” IEEE Transactions on Cloud Com-
puting, 11(2), 2023.

[16] A. S. Weigend, “Time series prediction: forecasting the future and
understanding the past,” Routledge, 2018.

[17] N. I. Sapankevych, S. Ravi, “Time series prediction using support vector
machines: a survey,” IEEE Computational Intellig. Mag., 4(2), 2009.

[18] Y. Hua, et al., “Deep learning with long short-term memory for time
series prediction,” IEEE Comm. Mag., 57(6), 114-119, 2019.

[19] “Amazon ec2 pricing,” available online:
https://aws.amazon.com/ec2/instance-types/p3/

[20] “Nvidia resnext performance,” available online:
https://ngc.nvidia.com/catalog/resources/nvidia:resnext for tensorflow/
performance

[21] P. Mattson, et al., “MLPerf Training Benchmark,” ArXiv
abs/1910.01500, 2020.

[22] S. Batterman, et al., “Temporal variation of traffic on highways and
the development of accurate temporal allocation factors for air pollution
analyses,” Atmospheric environment 107, 2015.

[23] G. Drainakis, et al., “On the Distribution of ML Workloads to the
Network Edge and Beyond,” in IEEE INFOCOM, 2021.

