J.W. Lioyd

Foundations of
Logic Programming

Second. Extended Edition

Springer-Verlag
Berlin Heidelberg New York

Chapter 1
PRELIMINARIES

This chapter prescnts the basic concepts and results which are needed for the
theoretical foundations of logic programming. Afser a brief introduction to Jogic
programining, we discuss first order theories, intetpretations and models,

unification, and fixpoints.

§1. INTRODUCTION

Logic programming began in the early 1970's as a direct vutgrowth of ecarlier
work in automatic theorem proving and artificial inteiligence. Constructing
amtomated deduction systems is, of course, central to the aim of achieving antificial
intelligence. Building on work of Herbrand [44] in 1930, there was much activity
in theorem proving in the early 1960's by Prawitz [84], Gilmore [39], Davis,
Putnam [26] and others. This effort culminated in 1965 with the publication of the
landmark paper by Robinson [88], which introduced the resolution rule,
Resolution is an inference rule which is particularly well-suited to automation on a

computer,

The credit for the introduction of logic programming goes mainly to Kowalski
{48) and Colmerauer [22], although Green {40] and Hayes [43] should be
mentioned in this regard. In 1972, Kowalski and Colmerauer were led to the
fundamental idea that logic can be used as a programming language. The
acronym PROLOG (PROgramming in LOGic) was conceived, and the first
PROLOG interpreter [22] was implemented in the langnage ALGOL-W by
Roussel, at Marseille in 1972, ([8] and [89] describe thc.impmve_d and more
influential version written in FORTRAN.) The PLANNER system of Hewitt [45]

can be regarded as a predecessor of PROLOG.

2 - _ Chapter 1, Preliminaries

The idea that first order logic, or at least substantial subsets of it, could be
used as a programming language was revolutionary, because, until 1972, logic had
only ever been used as a specification or declarative language in computer science.
However, what [48] shows is that logic has a procedural interpretation, which
makes it very effective as a programming language. Brieﬁy, a program clause
A(—Bl,...,. is regarded as a procedure definition. I (——C Ck is a goal, then
cach C, is regarded as a procedure call. A program is run by giving it an initial
goal. f the current goal is (—Cl,...,Ck, a step in the compulation involves unifying
some C. with the head A of a program clause A«-B 1" "’Bn and thus reducing the
current goal to the goal (—(Cl'...(, l'Bl' WB_, C_p+1""‘ck}9' where 8 is the
unifying substitution. Unification thus het.omes a uniform mechanism for parameter
passing, data selection and data construction. The compulation terminates when
the empty goal is produced. '

One of the main ideas of logic programming, which is due 1o Kowalski [49],
[50], is that an algorithm consists of two disjuint components, the logic and the
control. The logic is the statement of whar the problem is that has to be solved.
The control is the staternent of how it is to be solved. Generally speaking, a logic
programming system should provide ways for the programmer to specify each of
these components. However, separating these two components brings a number of
benefits, not least of which is the possibiiity of the programmer only having to
specify the logic component of an algerithm and feaving the control to be
exercised solely by the logic programming system itself. In other words, an ideal
of logic programming is purely declarative programming. Unfortunately, this has
not yct been achieved with current logic programming systems.

Most current logic programming systems are resolution theorem provers.

However, logic programming systems need not necessarily be based on resolution.

They can be non-clausal systems with many inference rules [11], [41], [42]. This
account only discusses logic programming systems based on resolution and
concentrates particularly on the PROLOG systems which are currently availablc.

There are two major, and rather different, classes of Jogic programming
languages currently available. The first we shall call “‘system’’ languages and the
second “'application’’ languages. These terms are mot meant to be precise, but

only to capture the flavour of the two classes of languages.

§1. Infroduction : 3

For “‘system’’ languages, the emphasis is on AND-paralielism, don’t-care
non-detenminism and definite programs (that is, no negation). Ia these languages,
accordmg to tie fte process interpretation of logic, a goal «B i___Bx;;q regarded as a
system of concurrent processes A qtep in the compu_;a_tlon is the redumuruJL a_

‘process to a w:tem of pllnccwes (lhc ones lhal occur in the body of the clause that

matr_hcd the call). Shared vanables act as communication channels between
There are now several '‘system’® languages available, including

*PARLOG [18], concurrent PROLOG (93] and GHC [106]. These languages are

malnlz intended for operatmg system 1pp]lcw]m t~onented progrmnmlrlg

[94]. For these languages, the control is still very much given by the progranwuer.

Also these languages arc widely regarded as being closer to the machine level.

“‘Application’’ languages can be regarded as general-purpose programming
languages with a wide range of applications, Here the emphasis is on OR-
parallelism, don’t-know non-determinism and (wnrestricted) programs (that is, the
body of a program statement is an arbitrary formula). Languages in this class
include Quintus PROLOG [10}, micto-PROLOG [20] and NU-PROLOG {104].
For these languages, the automation of the control component for certain kinds of
applications has already largely been achicved. However, there are still many
problems to be solved before these languages will be able to support a sufficiently
declarative style of programming over a wide range of applications.

"Apphcauon” languages are_better suited 1o deductive database svstems and_

expert sys'term Accordlng to the database interpretation_of logic, a _logic program
is regarded as a dalabase {35), 136}, (37}, (38). We thus _obtain a ~a very natural and
po;verful gcnerahsanon of relational databases. The latter correspond [0 logic

programs consisting solely of ground unit clauses. The concept of logic as a

uniform fanguage for data, programs, querics, views and integrity constraints has

great theoretical and practical power.

The distinction between these two classes of languages is, of course, by no
means clearcut, For example, non-trivial problem-solving applications have been
implemented in GHC. Also, the coroutining facilities of NU-PROLOG make il
suitable as a system programming language. Nevertheless, it is useful to make the
distinction. It also helps to clatify some of the debates in logic programming,
whose source can be traced back to the ‘application™ versus “‘system’’ views of

the pasticipants.

4 Chapter 1. Preliminaries

The emergence of these two kinds of logic ﬁrogramming languages has
complicated the already substantial task of building parallel logic machines.

Because of the differing hardware requirements of the two classes of languages, it

scems that a difficult choice bas t¢ be made. This choice is between building a
predominantly AND-parallel machine to directly support a “‘system’’ programming
language or building a predominantly OR-parallel machine to directly support &n
“‘application’” programning language.

There is cumrently substantial effort being invested in the first approach;
certainly, the Japanese fifth generation project [71} is headed this way. The
advantage of this approach is that the hardware requirements for an AND-paralicl

language, such as GHC, seem less demanding than those required for an OR--
parallel language. However, the success of a logic machine wltimately rests on the

power and expressiveness of its application languages. Thus this approach requires
some method of compiling the application languages into the lower level system
language. '

In summary, logic provides a single formalism for apparently diverse parts of
computer science. It provides us with general-purpose, problem-solving languages,
concurrent languages suitable for operating systems and also a foundation for
deductive database systems and expert systems. This range of application together
with the simplicity, elegance and unifying effect of logic programming assures it of
an important and influential future. Lopgical inference is about to become the

fundamental unit of computation.

§2. FIRST ORDER THEORIES

£

This section introduces the syntax of well-formed formuias of a first order
theory. While all the requisite concepts from first order logic will be discussed
informally in this and subsequent sections, it would be helpful for the reader vto
have some wider background on logic. We suggest reading the first few chapters‘of
[141, [33], [64], [69] or |99}

First order logic has two aspects: syntax and semantics. The syntactic aspect is
concerncd with well-formed formulas admitted by the grammar of a formal
language, as well as deeper proof-theoretic issucs, The semantics is concerned with
the meanings attached tn the well-formed formulas and the symbols they contain.

§2. First Order Theories 5

We postpone the discussion of semantics to the next section,

A first order theory consists of an_alphabet, a first_order language. a set of }

the well-formed formulas of the theory. The axioms an: a designated subset of

well-formed formulas. The axioms and rules of inference.are used to derive the

theorems of the theory. We now proceed to define alphabets and first order

axioms and a_set_of inference rules 1691, [991. The ﬁ:st order language consists of f
_axioms and

langnages.

Definition An alphabet consists of seven classes of symbols:
(a) variables '
(b) constants
(c} function symbols
(d) predicate symbols
(c) connectives
(f) quantificrs
(g) punctuation symbols.

Classes (e) to (g) are the same for every atphabet, while classes (a)} Lo (dy vary
from alphabet to alphabet. For any alphabet, only ciasses (b) and (c) may be
empty. We adopt some informal notational conventions for these classes.
Variables will normally be denoted by the letters v, v, w, X, ¥ and z (possibly
subscripted). Constants will normally be denoted by the letters a, b and ¢ (possibly

_ subscripted). Function symbois of various arities > 0 will normally be denoted by

the letters f, g and h (possibly subscripted). Predicate symbols of various arities 2
0 will nommally be denoted by the letters p, q and r (possibly subscripted).
Occasionally, it will be convenient not to apply these conventions too rigorously.
In such a case, possible confusion will be avoided by the context. '}'he connectives
are ~, A, v, — and >, while the quantifiers are 3 and V. Finally, the punctuation
symbols are “("’, *)’" and *,”". To avoid having formulas cluttered with brackets,
we adopt the following precedence hierarchy, with the highest precedence at the

top:

6 Chapter 1. Preliminaries

Next we turn to the definition of the first order language given by an alphabet.

Definition A term is defined inductively as follows:

(a) A variable i; 2 terim,
“{h) A constant is a term.
{c) If f is an n-ary function symbal and U5l AFE tErms, then f(ll,...,tn) is a term.

Definition A (well-formed) formula is defined inductively as follows:
(a) If p is an n-ary predicate symbol and bty AfC terms, then p(tl,...,tn) is a

formuia (called an atemic formula or, more §imply, an atom).]
(b) IT F and G are fonnulas, then so are (~F}, (FAG), (FvQ), (F—G) and (Fe(),
(c) If F is a formuta and x is a variable, then (Vx F) and {(3x F) are furmulas,

It will often be convenient to write the formula (F—G) as (G&F).

Definition The first order language given by an alphabet consists of the st of
all formulas constructed from the symbols of the alphabet.

Example (vx @y (p(x.y)—q(x))), ~(3x {p(x.a)aq(f(x)))) and
(Vx {(p{x.g(x))e—(Q(x)A(-T(x))))) are formulas. By dropping pairs of brackets when
no confusion is possible and using the above precedence convention, we can write
these formulas more simply as Vx3y (p(x,y)—q(x}), ~3x {(p(x,)Aq(f(x)}) and
Vx (p(x,g(x—g(x)a~1(x)). We will simplify formulas in this way wherever

possible.

The informal semantics of the quantifiers and connectives is as follows. ~ is
negation, A is conjunction (and), v is disjunction (or), — is implication and > is
equivalence. Also, 3 is the existential quantifier, so that *'Jx’" means “‘there exists
an x'", while V¥ is the univchrsalv quantifier, so that **Vx'' means ““for all X", Thus
the informal semantics of Vk (p(x,8(x)} + g(x)a~1(x)) is ““for cvery x, if g{x) is
true and 1(x} is false, then p(x,g(x)) is true”.

Definition The scope of ¥x (resp. 3x) in Vx F (resp. 3x F} is F. A bound
occurrence of a variable in a formula is an occurrence immediately following a

quantifier or an occurrence within the scope of a quantifier, which has the same

variable immediately after the quantifier. Any other occurrence of a variable is

free.

Example In the formula 3x p{x,y)ag(x), the fitst two occurrences of x are
bound, while the third occurrence is free, since the scope of Ix is p(xy). In

§2. First Order Theories

Ix (p(x,y)rqix)), all occurrences of x are bound, since the scope of Ix is
plx.y)nq(x). ‘

Definition A closed formula is a formula with no free cccurrences of any
variable.

Example ¥ydx (p(x,y)ag(x)) is .closcd. However, 3x (p(x,y)Aq(x)) is not

closed, since there is a free occurrence of the variable y.

Definition I F is a formula, then V(F) denotes the universal ciosure of F,

_which is the closed formula obtained by adding a universal quantifier [or every

variable having a free occutrence in F. Similacly, I(F) denotes the existential
closure of F, which is obtained by adding an existential quantifier for every

variable having a free occurrence in F.

Example If F is p(x,y)Aq(x), then. ¥(F) is Vx¥y (p(x,y)Aq{x)). while 3(F) Is

33y (px,yINgR)).
In chapters 4 and 5, it will be uscful 1o have available the concept of an atom
peeurring positively ot ncgatively in a formula. .
Definition An atom A accurs positively in A.

If atom A occurs positively (fesp., negatively) in a formula W, then A occurs
positively (resp., negatively} in 3x W and ¥x W and WAV and WvV and

WeV,
If atom A occurs posilively (resp., negatively) in a formula W, ther A occirs

negatively (resp., positively) in ~W- and VeW.
Next we introduce an important class of formulas called clauses.

Definition A fiferal is an atom or the negation of an atom. A positive literal is.

an atom. A negative literal is the negation of an atom.

Definition A clause is a formula of the form
' Vxl..,qu (Liv...vL)

. m .
where each [is a literal and x....x_ are all the variables occurring in L v..vL .

Example The following are clauses
’ VxVyVz (px,2)v-q(x.y)v-1(y.2))
Vx¥y (~p(x.y)vi(f(x,y).2))

8 ' Chapter 1. Preliminaries

Because clauses are so common in Jogic programming, it will be convenient 1o,

adopt a_special clausal notation. Throughout, we will denote.the_clause.

Vxp-xg (ApvevA v-Rivev-B)
where Al""'Ak'Bl“"’Bn are atoxn‘s_arlci__;l__,__._i._,is_arc alf the van'gl)les occum'_ng_i_n

these atoms, by ,
ApreAgBye By |

Thus, in the clausal notation, ail variables are assumed to be universally guantified,

the conunas in the antecedent BI""'Bn denote conjunction and the commas in the

consequent AI""’Ak denote disjunction. These conventions are justified becanse

' \Vxl..,‘v'xs (Alv,..yAkv—Blv...v~Bn)

is equivalent to

Vxl...sz »(Alv...vAke—B q A...ABH)

To illustrate the applicatioﬁ of the various concepts in this chapter 1o logic
programuming, we now define definite programs and definite goals. -

Definition A definite program clause is a clavse of the form

_ A<~—Bl....,Bn
which contains precisely one atom (viz. AY in 1is consequent. A is called the head

and B,,...B is called the body of the program clause.

Definition A unir clause is a clause of the form
» A
that is, a definite program clause with an empty body.

The informal semaatics of !\(—Bl,...,Bn is “‘for each assignment of each

variable, if Bl,..’.,Bn are all true, then A is true”’. Thus, if n>0, a program clause is -

conditional, On the other hand, a unit clause A« is unconditional, Its informal
semantics is ‘‘for each assignment of each variable, A is true”.

Definition A definite program is a finitc set of definite program clauses.

Definition In & definite program, the set of all program clauses with the same
predicate symbol p in the head is called the definition of p.

Example The following program, called slowsort, sorts a list of non-negative

integers into a list in which the elements are in increasing order. It is a very -

inefficient sorting program! However, we will find it mosi useful for illustrating
various aspects of the theory.

o]

§2. First Order Theories

In this program, non-negative integers are represented using a constant 0 and a
unary function symbol f. The intended meaning of 0 is zero and f is the successor
function,‘ We define the powers of { by induction: fn(x)ﬂ and an(x):f({”(x)).
Then the non-negative intcger n is represented hy the term £%0). Tn fact, it will
sometimes be convenient simply to denote 1(0) by n.

Lists are represented using a bimary function symbol “*7 (the cons function
written infix) and the constant nil representing the empty lst. Thus the list
[i7, 22, 6, 5] would be represented hy 17.(22.(6.(5.nil))). We make the usual right
associaﬁvily convention and write this more simply as 17.22.6.5.nil.

SLOWSORT PROGRAM '

sort(x,y) « sorted(y}), perm(x,y}

sorted(nil) «

sorted(x.nil} «

sorted(x.y.z) - x<y, sorted(y.z)

perminil,nil} &

perm(x.y,u.v) « delete(ux.y.7), perma(z.v}

delete(x,x.y.y) «)

delete(x,y.z,y.w) « delete(x,z,w}

0sx «

- f(x3Sf(y) & x<y) . .

Stowsort contains definitions of five predicate symbols, sort, sorted, perm,
delete and S (written infix). The informal semaatics of the definition of sort is *“if
x and y are list‘s, y is a permutation of x and y is sorted, then y is the sorted
version of x''. This is clearly a correct top-lgvel description of a sorting program.
Similarly, the first clause in the definition of sorted states that '‘the empty list is
sorted”’. The intended meaning of the predicate symbol delete is that delere(x.y,z)
should hold if z is the list obtained by deleting the element x from the list y. The
above definition for delete contains obviously comect statements about the delete

predicate.
Definition A definite goal is a clause of the form

<~—B1....,Bn .
that is, a clause which has an empty conscquent. Eacil?_Bi (i:l,...,n)_ is called a

If ¥y &€ the variables of the poal
4—~B1,...,B n

10 v - Chapter 1. Preliminaries

then this clausal notation is shorthand for

Vyl...\‘fyr (~B1v...v-Bn)
or, cquivalently,

. ~3yl...3yr (BIA...ABH)

Example To run slowsort, we give it'a goal such as
= sort(17.22.6.5.nil,y)
This i§ understood as a request to find the list y, which is the sorted version of
17.22.6.5.xil. ‘

Definition The empty clause, denated o, is the clause with empty consequent
and empty antecedent. This clause is to be understood as a contradiction.

Definifion A Horn clause is a clause which is either a definite program clause
or a definite poal.

§3. INTERPRETATIONS AND MODELS

The declarative semantics of a logic program is given by the usual (model-
theoretic) semantics of formulas in first order logic. This section discusses
interpretations and models, concentrating particularly on the important class of
Herbrand interpretations.

Before we give the main definitions, some motivation is appropriate. In order
to be able to discuss the truth or falsity of a formula, it is necessary to attach some
meaning to each of the symbols in the formula first. The various quantifiers and
connectives have fixed meanings, but the meanings attached to the constants,
function symbols and predicate symbols can ‘vary, éﬂ_i}mgxprctation simply
consists of - some domain of discourse over which the variables ﬂngcm

assignment to cach constant of an element of the domain, the assignment to each

function symbol of a mapping on the domain and the assignment to each predicate

sy'mbol of a rclation on the domain. An interpretation thus specifies a meaning for
each symbol in the formula. We are particularly intercsted in interpretations for

which the formula expresses a truc statement in that intcrpretation, Such_an
interpretation is called a model of the formula, Normally there is some

distinguished interpretation, called the intended imcrpxg@“[_;'(lrg_,_n_‘gfiy_qp gives t_hg__
Naturally, the intended interpretation of a

pnnmpal meaning of mc _symbols.

§3. Interpretalions and Models 1

formula should be a mode[of the fm-mulft

First arder logic provides methods for deducing the thcorems n‘r a theorv.
These can be characterised (by Gudel's completeness. theorem [69), [997) as the
formulas which are logical consequences of the axioms of the theory, that is, they
ate true in every interpretation which is a model of each of the axioms of the
theory. In particular, each theorem is true in the jntended interpretation of the
theory. The logic programming systems in which we are interested use the

resolution rule as the only inference rule.

Supposc we want to prove that the formula

3}'1...3)'r B lA.../\Bn)
is a logical consequence of a program P. Now resolution theorem provers arc
refutation systems. That is, the negatmn of the formula to be proved is added to
the axioms and a contradiction is derived. If we ncgate the formula we want to
prove, we abtain the goal

» (—BI,

Working top-down from this goal, the system derives successive goals. If the
empty clause is eventually derived, then a contradiction has been obtained and later
results assure us that

3yy- 3y, (B AB)
is indeed a logical consequence of P.

From a theorem proving point of view, the only interest is to demonsirate

- Jogical consequence. However, from a programming point of view, we are much

more interesied in the bindings that are made for the variables yy,...¥, because

these give us the owput from the running of the program. In fact, the ideal view

of a logic programming system is that it is a black box for computing bmdmgs and
our only interest is in its input-output behaviour. The internal workings of the
'system should be invisible to the programmer. Unfortunately, this situation is not
true, to various extents, with cutrent PROLOG systems. Many programs can only
be understood in a procedural (i.e. vperational) manner, because of the way they

use cuts and other non-logical features.

Returning to the slowsort program, from a theorem proving point of view, we

can regard the goal <sort(17.22.6.5.nily} as a request 10 prove that
35 sort(17.22.6.5,niL,y) is a logical conscguence of the program. In fact, we are
much more interested that the proof is constructive and provldes us with a specific

12) Chapter 1. Preliminaries

.

y which makes sort(17.22.6.5.nil,y) true in the intended interpretation.
We now give the definitions of pre-interpretation, interpretation and model.

Definition A pre-interpretation of a first order language L consists of the
following:)
(a) A non-cropty set D, called the domain of the pre-interpretation.
(b) For each constant in L, the assignment of an element in D.
(c) For each n-ary function symbol in L, the assignment of a thapping from D"
D. i

Definition An mterpremnon Lof afirst o arder rder_language L_gonsxsm&um__
interpretation J with domain D of L together with the following:

E?Iff_c_l] n-ary predicate symbol in L, the assignment of & mapping from D" into
{true, false] (or, equivalently, a relation on D).
We say 1 is based on 1.

Definition Let J be a pre-interpretation of a first order language L. A variable
assignment (wrt J) is an assignment to each variable in L of an clement in the
domain of J,

Definition Let J be a pre-intcrprctatioh with domain D of a first order
language L and let V be a variable assignment. The ferm assignment (wrt J and V)
of the terms in L is defined as follows: v
(a) Each variable is given its assighment according to V.

(b) Each constant is given its assignment according to J.
{c) “If;‘t'l',...'t;)arc the term assignments of typt, and f' is the assignment of the i
n-ary funciion symbol f, then f'(t'l,...,t;,)eD is the term assignment of f(t;,....t,). {

Definition Let J be a pte-interpretation of a first order language L, V a
varable assignment wrt J, and A an atom. Suppose A is plty..t) and dy,.d in)
the domain of J are the term assignments of tnly, WL J and V. We caJI /,
Ayy =Pldy,.d,) the Joinsiance of A wrt V. Let [Aly = [Apy ¢ V is a variabie i
assignment wrt J }. We call each element of [A]J a J-instance of A. We also call l
each p(dl, ,dn) a J-instance.

l |

| Definition Let I be an interpretation with domain D of a first order language L]
! and let V be a variable assignment, Then a formula in L can be given a xrwh |

J- value, true or false, (wrr [and V) as follows:

3
}
|
i
i
i
}
1

k

§3. interpretations and Models 13

(a) If the formula is an atom p(tl,...,tn), then the truth value is obtained b_yF

calcuiating the value of p'(t'l,....!;j), where p' is the mapping assigned to p by I and
tl,....t;1 are the term assignments of Lty WIL 1 and V.

{b) If the formula has the form ~F, FAG, FvG, F5G or FG, then the truth
value of the formula is given by the following table:

F -~ G ~F FAG FvG F—=G FeG

true. true false true true true true

true false faise false true © false. - false
false true true false true tue | false
false false true false false true true

(c) I{ the formula has the form 3x F, then the truth value of the formula is true

" if there exists deD such that F has truth value true wrt 1 and V(x/d), where V(x/d)

isv except that x is assigned d; otherwise, its truth value is false.

(d) If the formula has the form Vx F, then the truth value of the formula is ;

| true if, for all deD, we havc that F bhas truth value true wrt 1 and V(x/d),

| otherwise, its truth value is false,

Clearly the truth value of a closed formula does not depend on the variable
assignment, Conscqucntly, we can speak unambiguously of the truth value of a

closed formula wrt to an interpretation, If the truth value of a closed formula wit

to an interpretation is true (resp., false), we say the formula is true (resp,. false)
wrl to the interpretation.

Definition Let 1 be an interpretation for a first order language L and let W be
a formula in L.
 We say W is sarisflable in I if (W) is true wrt L

We say W is vafid in 1 if V(W) is true wit I

We say W is unsatisfiable in 1 if J(W) is false wrt L.

We say W is nonvalid in 1 if V(W) is false wrt L

Definition Let I be an interpretation of a first order languagc L and let Fbea
closed formula of L. Then I is a model for F if F is true wrt 1.

Example Consider the formula ¥x3y p{x,y} and the foliowing interpretation L

. Let the domain D be the non-negative integers and let p be assigned the relation <.

Then 1 is a model of the formula, as is easily seen. In I, the formula expresses the
true statement that “‘for every non-negative integer, there exists a non-negative

1
1
i

14) - Chapter 1, Preliminaries

. integer which is strictly larger than :l On the other hand, J is not & model of the

o —— e

formula 3yvx P(X:))

The axioms of a first order theory are a designated subsct of closed formulas
in the language of the theory. For example, the first order theories i in which we are

most interested have the clauses of a program as their axioms.

model for T is ar_l_,_l,r_n_cml:c_t_agon_f_qr_ L which is a_model .[Q[_cach.ﬂxan_Q[_ T.
It T has a model, we say T is consistent.

The concept of a model of a closzd formula can easily be extended to a modcl
of a set of closed formulas,

Pefinition [et § be a set of closed formulas of a first order language L and fet
I be an interpretation of L. We say [is a moadel for § if 1 is a model for each
formuia of S.

Note that, if S = {Fl,...,Fn} is a finite set of closed formulas, then T is a model
for § iff T is a model for Flr\.../\Fn. '

Deftnition Let S be a set of closed formulas of a first order language L.
Y{g say S is satisfiable if L has an interpretation which is a model for S.
We say 8 is valid if every interpretation of L js 2 model for S.

We say § is unsatisfiable if no_interpretation of L is 2 model for S,

We say S is nonvalid if L has an interpretation which is not a model for S.

Now we can give the definition of the important concept of logical

consequence.

" Definition Let S bc a sct_of closed formulas and F be a closed | fon'nu]a of a
first_onder]anguage L. We say F is a logical consequence of S if, for every

interpretation 1 of L, I is a model for S implies that I is a modet for F.

Note that if § = {Fl,....Fn] is a finite set of closed formulas, then F is a
logical consequence of 5 iff Fya...AF —F is valid.

Proposilion 3.1 Lcl S bc ‘a set of closed formulas apd F be a closed formula
of a first order lauguag 'I‘hen T is a logical consequence of of S rff S (-F)is
umansﬁab]e

§3. Interpretations and Modals 15

Prool Supposc that F is a logical consequence of S. - Let [be an interpretalion
of L and suppose 1 is 2 model for 8. Then | is also a model for F. Hence I is not a
madel for § © (~F). Thus § v {-~F) is unsatisfiable. '

Converscly, suppose S W {~F} is unsatisfiable. Let 1 be any mterprctahon of
L. Suppose I is a model for §. Since S U (~F) is unsatisfiable, ‘1 cannot be a
mode} for —F. Thus [is a model for F and so F is a logical consequence of 5. ¥

Example Let § = {p(r), Yx(p(x)—q(x))} and F be q(a). We show that I is a
logical consequence of 8. Let I be any model for S. Thus p(a) is true wrt 1. Since
Yx(p(x}—q(x)) is true wrt I, so is p(a)->q(a). Hence g(a) is true wrt L

Applying these definitions to programs, we see that when we give a goal G to

the system, with program P loaded, we are asking the system to show that the set !

of clauses P U {G) is unsatisfiable. In fact, if G is the goal f—Bl.,..,Bn with
variables ¥y ...y, then propusition 3.1 states that showing P\ {G) unsatisfiable is
exactly the same as showing that Syl...Byr (B a-AB) is a logical consequence of

p.

Thus the basic problem is that of determining the unsatisfiability, or otherwise,
of P U {G}, where P is a program and G is a goal. According to the definition,
this implies showing every interpretation of P L (G] is not a model. Needless to
say, this seerns to be a formidable problem. However, it turns out that there is a
much smaller and more convenient class of interpretations, which are all that need
to be investigated to show unsatisfiability. These are the so-calied Herbrand

interpretations, which we now proceed to study.

Definition A ground term is a term not containing variables. Similarly, a

ground atom is an atom not containing variables.

Definition Let L be a first order language. The Herbrand universe U for I

is the set of all ground terms, which can be formed out of the constants and
function symbols.appearing in L. (In the case that L has no constants, we add -

some constant, say, &, to form ground terms.)

Example Consider the program
pix) « q(f{x).g(x)
r{y)
which has an underlying first order language L b’mexi on the predlmte symbols p, q
and r and the function symbols f and g. Then the Herbrand universe for L is

16 ‘ Chapter 1. Preliminaries

{a, f(a), g(a), f(f(a)), f(gfa)), g(f{a)), g(g(é))..-.}.

Definition Let L be a first order language. The Herbrand base By for L is the

set of all ground atoms which can be formed by using predicate cymbole from L
with ground terms from the Herbrand universe as arguments.

Example For the previous example, the Hecbrand base for L is
{p(a), qla.a), r(a), p(f(a)), ple(a)), q(af(@), qif(a).a),...}.

Definition Let L be a first order language. The Herbrand pre-interpretation
for L is the pre-interpretation given by the following:
(a) The domain of the pre-interpretation is the Herbrand universe U
(b) Constants in L are assigned themselves in UL'
{c) I { is an n-ary function symbol in L, then the mapping from (UL)Linio v
defined by (tl. Wl) - f(tl, oty } is assigned to f, -

An Herbrand interpretation for L is any interpretation bach on the Herbrand

pre- ml.crpretauon for L.

Since, for Herbrand mlerpretauom the asclgnmcm to constants and function
symbols is fixed, it is possible to identify an Herbrand intespretation with a subset
of the Herbrand base.. For any Herbrand interpretation, the corresponding subset of
thc Herbrand base is the set_of __;li ground atotns which are true wrt the
interpretation. _Conversely, _g}zcn an arbitrary subset of the Herbrand base, there is
a comesponding Herbrand interpretation defined by specifying that the mapping
assigned to a predicate symbol maps some arguments to ‘‘true’ precisely when the
atom made up of the predicate_symbol with the same arguments is in the given
subsct. This identification of an Herbrand interpretation as a subset of the
Tlerbrand base will be made throughout. More generally, each interpretation based
on an arbitrary pre-interpretation J can be identified with a subset of I-instances, in

a similar way.

Definition Let L be a first order language and S a sct of closed formulas of L.

An Herbrand model for S is an Herbrand interpretation for L which is a medel for ‘

S.

It will often be convenient to refer, by abuse of language, to an interpretation
of a set S of formulas rather than the underlying first order language from which
the formulas come. Normally, we assume that the underlying first order language
is defined by the constants, function symbols and predicate symbols appearing in

§3. Interpretations and Madels 17

S. With this understanding, we can now refer to the Herbrand universe Ug and
Herbrand base B,; of S and also refer to Herbrand interpretations of S as subsets of

the Tlerbrand base of S, In particular, the set of formulas will often be a program

P, so that we will refer to the Herbrand universe UP and Herbrand base Bp of P.

Example We¢ now illustrate these concepts with the slowsort program. This

program can be regarded as the set of axioms of a first order theory. The language:

of this theory is given by the constants 0 and nil, function symbels f and **."" and
predicate symbols sort, perm, sorted, delete and <. The only inference rule is the
resolution rule. The intended interpretation is an Herbrand interpretation. An atom
sort(lm) is in the intended interpretation iff each.of I and m is either nit or is a list
of terms of the form fk(()) and m is the sorted version of 1. The other predicate
symbols have the obvious assignments. The intended “interpretation is indecd a
model for the program and hence a model for the associated theory.

Next we show that in order to prove unsatisfiability of a set of clauses, it

suffices to consider only Herbrand interpretations.

Proposition 3.2 Let § be a sct of clauses and suppose S has a model Then S
has an Herbrand model. . : ,

Proof Let I be an interpretation of S. We define an Herbrand interpretation U
of § as follows:
= [p(tl,...,tn)EBS : p(tl....,tn) is true wrt I).
It is straightforward to show that if 1 is a model, then I' is also a model, W

Proposition 3.3 Let S be a set of clanses, Then S is unsatisfiable iff § has no

Herbrand models.

Proof If § is satisfiabie, then proposition 3.2 shows that it has an Herbrand
model. B

It is important to understand that neither_proposition 3.2 nor 3.3 holds if we
drop the restriction that S be a set of clauses. In other words, if S is a set of
arbitrary closed formulas, it is not generally possibie to show § is unsatisfiable hy

' restricting attention to Herbrand interpretations.

Example Let S be {p(a), x —p(x)). Note that the second formula in Sisnota
clause. We claim that S has a model. It suffices to let D be the set (0, 1), assign 0

. to a and assign to p the mapping which maps () to true and I to falsc. Clearly this

18 . . Chapler 1. Preliminaries

givcé a model for S.

However, S does not model.
interpretations for S are & (the empty set) and {p(a)). But nezither of these is a
model for S.

have an Herbrand The only Herbrand

1

The point is worth emphasising. Much of the theory of logﬁ programming is
concerned only with clauses and for this Herbrand interpretations suffice.
However, non-clausal formuias do arise naturally (particularly in chapters 3, 4 and
5). For this part of the theory, we will be forced to consider arbitrary

interpretations.

There are various normal forms for formulas. One, which we will find uscful,
is prenex conjunctive normal form.

Definition A formula is in prenex conjunctive normal form if it has the form
QxI...ka ((L]‘ lv"'Vlel)A'"'f‘a‘nlv"'Vl‘nmn» '

where each Q is an existential or universal quantifier and each Lij is a literal.

The next proposition shows that each formula has an *‘equivalent’’ formula,

which is in prenex conjunctive narmal form.

Definition We say two formulas W and V are logically equivalent if
V(WeaV) is valid,

" In vther words, two formulas are logically oquwalent if Lhcy have the same
truth va.lucs wrt any interpretation and variable assignment. :

Proposition 3.4 For each formula W, there is a formula V, logically equivalent
to W, such that V is jn prenex conjunctive normal form.

-

Proof The proof is left as an exercise. (See problem 5.) B

When we discuss deductive database systems in chapter 5, we will basc the
theoretical developments on a typed first order theory, The intitive idea of a
typcd thcory (ﬂISD called a many-sorted theory [33}Ls that there arc scveral sorts

generahsanon of the 11'|eones we have consndercd N¢ far which only aliow a single
domnain. For example, in a database context, there may be several domains of
interest, such as the domain of customer names, the domain of supplier cities, and

50 on. For semantic integrity reasons, it is important to allow only queries and

/

mapping from Dxlx...xD,[

§3. Interpretations and Models 19

database clauses which respect the typing restrictions.

In addition to the components of a fiest order theory, a fyped first order theory
has a finitc set, whose elements are called nypes.

letiers, such as © and ©. The alphabet of the typed first order theory contains |
variables, constants, function symbols. predicate symbols and quantifiers, each of ;

Types are denoted by CGreek |

'

I

which is typed. Variables and constants have types such as T. Predicate symbols |

have types of the form TPXT, and function symbols have types of the form
Ty X XT T, If f has type TyXoXT 9T, We say f has range 1ype 1. For each type
T, there is a universal quantificr V‘r and an existential guantifier 31:. ‘

Definition A term of type T is defined inductively as follows:
(a) A variable of type T is a term of type €.
(b) A constant of type T is a tert of 1ype 1.
(c) If f is an n-ary function symbol of type TP XT, =T and-ti is a term of type T
(i=1,...,n), then f(ll,....in) is a term of type t.

- Definition A syped (well-formed) formula is defined inductively as follows:

‘(a) If p is an n-ary predicate symbol of type 7). Xt and 4 is a term of type T,

(i=1,...,n), then p(tl, St)15 a typed atomic formula

(b).If F and G are !}ped formulas, then so are ~F, FAG, Fv(3, F9G and F«=G.

(c) If F is a typed formula and x is a variable of type T, then V x Fand 3 & F are
lyped formulas.

Definition The typed first order language given by an alphabet consists of the
set of all typed formylas constructed from the symbols of the alphabet,

We will find it more convenient to use the notation ¥x/t F in place of V,rx F.
Similarly, we will use the notation Jx/t F in place of :J x F. We et Y(F) denote
the typed universal closure of the formula T and IO dcnctt the typed existential
closure. These are obtained by prefixing F with quantifiers of appropriate types.

Definition A pre-interpresation of a typed first order language L consists of

the following:
i (a) For each type 7, & non-empty sct D, calied the domain of sype © of the pre-

o interpretation.

(b) For each consiant of type T in L, the assignment ol an ciement in D,
(c) For each mn-ary function symbol of type T X XT, 21T in L, the assignment of a
o DTA

n

'f

20 i ~ Chapter 1. Preliminaries

Definition An interpretation I of a typed first order language L consists of 2
pre-intespretation J with domains {DT} of L together with the following:
For each n-ary predicate symbol of type t;x..xT in L, the assignment of a
mapping from D x.>D, into {true, false) (or, equivalently, a relation on
e n
D,'lx.,.thn). :

We say 1 is based on J.

It is smrightforward to define the concepts of variable assignment, term
assighment, truth value, model, logical conscquence, and so on, for a typed first

order theory. We leave the details to the reader. Generally speaking, the

development of the theary of first order logic can be carried through with only the
most trivial changes for typed first order logic. “We shall exploit this fact in
chapter 5, where we shall use typed versions of results from earlier chapters.

The other fact that we will need ahout typed logics is that there is a
transformation of typed formulas into (type-free) formulas, which shows that the
apparent exwra generality provided by typed logics is illusory [33]. This

transformation allows one to reduce the proof of a theorem in a typed logic to a |

corresponding theorem in a {type-free) logic. We shall use this transformation
process as one stage of the query evaluation process for deductive database

“systems in chapter 5.

§4. UNIFICATION

Earlier we stated that the main purpose of a logic programming system is to
compute bindings. These bindings are computed by unification, In this section, we
* present a detailed discussion of unifiers and the unification aigorithm.

Definition A substitution 8 is a finite set of the form {v;/...v ty }, whcre
each v is a variable, each 4 is a term distinct from v, and the vanables V¥

are dlst'mct. Each element vllt] is called a binding for vy @ is called a graund .

substitution if the 1; are all ground terms. 8 is called a var:‘qble-pure substitution if

the t; are all variables.

Definition An expression is cither a term, a literal or a conjunction ot
disjunction of literals. A simple expression is either a term or an atom.

!
z
]
|
¢
$
4
|

§4. Unitication » 21

Definition Let 6 = [vlltl....,vnhn] be a substitution and I be an cxpression.
Then EO, the insrance of E by 8, is the expression obtained from E hy
simultaneously replacing each occurrence of the variable v, in E by the term t;
(i=1,...,n). If EO is ground, then EO is called a gmund mstance of E.

Example Let E = p(x,y.f(a)) and 0 = [x/b, y/x}. Then E@ = 'p(b,x,f(a)).‘

IfS=(E..E}isa finite set of expressions and 8 is a substitution, then 38
denotes the set (E 8 LB 9}

Definition Let 8 = (ullsl, ol /s) and o = [\1/11, WV /t } be substitutions.
Then the composition 65 of 6 and © is the substitution obtamed !'mm the set
‘ (ul/slcr, - J< a, ‘1/‘1‘ ¥l /t)
by deleting any binding u. /S' G for whlch u, (=50 and dcienng any buxdmg v /l for
which VJE{ul. ,,um}.

Example Let 8 = {x/f(y), y/z) and 0 = (x/a, 9/, @y]. Then B0 = [/,
/y}. -

Definition The substitution given by the cmpty set is called the idensity

substitution.

We depote the identity substitution by €. Note that Ee = E, for. all expressions
E. The elementary properties of substitutions are contained in the following
proposition. ‘

Proposition 4.1 Let 6, o and y be substitutions. Then
(a) Oe = @ = 0.
(h) (Ee)o E(80), for aIi expressions E,
(©) (00)Y = B(oY).

Proof (a) This follows immediately from the definition of &.

(b) Clearly it suffices to prove the result when E is a varable, say, x. et
0= {uyfsp,mp /s b and 6 = (v, v i) T X (U,] U (Ve), then
(x8)a = x = x(Ba). If xe{u u } say x=w, then (x)o =s5,0 = x(0m). If
x={vi, "V }\(ul, ,u }, say x—v. then (x8)r = 1. = x(60).

(r.) Clearly it eufﬁccs to show that if x is a variable, then x((Bo)y) = x(0(oT)).

In fact, x((80)Y) = (x(80))y = (x0)0)Y = (xB)OY) = x(B(oV), by (b). B

22) Chapter 1, Prelirminarias

Proposition 4.1(a) shows that € acts as a left and right identity for composition.
The definition of composition of substitutions was made precisely to obtain (b).
Note that (c) shows that we can omit parentheses when writing a composition

i} 1 "’On of substitutions.

- Example Let B=[x/f(y), y/z} and o={xfa, Z/b}. Then 60 = {x/[(y}, y/b, 2/b}.
Let E = p(x,y,g(z)). Then EO = p(l(y)zg(z) and (B8)o = p(f(y)b,g)). Also
E(80) = p(f(y),b,5(b)) = (E@)o. .)

Definition Let E and F be expressions. We say E and F are variants i{ there

" exist substitutions © and ¢ such that E=F8 and F=E¢. We also say E is a varian{ .

of F or Fis a vanant of E.

Example p{f(x,y),g(z),a} is a variant of p(f(y,x),g(u),a). However, p(x.x) is not
a variant of p(x,y).

Definition Let E be an expression and V be the set of variables occurring in E.
A renaming substitution for E is a variable-pure substitution {x,/y ,...x fy 1 such

that [xl,...,x“] Z VY, the y; are distinct and (V \ {xl.....xn]) | {yl,...,yn} =

Proposition 4.2 Let E and F be expressions which are variants. Then there
exist substitutions 8 and o such that E=F@ and F=Eo, where § is a renaming
substitution for F and ¢ is a renaming substitution for E.

Proof Since E and F are variants, there exist substitutions 9] énd I such that
E:-FGI and F=Ecrl, Let V be the set of variables occurring in E and et ¢ be the
substitution obtained from) by deleting all bindings of the fonm x/t, where x¢V.
Ciearly F=Eo. Furthermore, E=F81=EUGI- and it follows that ¢ must be a

renaming substitution for E. W

" We will be particularly. interested in substitutions which unify a set of
expressions, that is, make cach cxpression in the set syntactically identical. The
concept of unification goes back to Herbrand [44] in 1930, It was rediscovered in
1963 by Robinson {88 and exploited in the resolution rule, where it was used to
reduce the combinatorial cxplosidn of the search space. We restrict atieation fo
(non-empty) finite sets of simple expressions, which is all that we require. Recall
that a simple expression is a term or an atom. '

Definition Let S be a finite set of simple expressions. A substitution 6 is_
called & unifier for S if S is a singleton. A unifier 6 for § is called a most

S

t
é;.
H
i
i

§4. Urification =) o . 23

general unifier (mgu) for § if, for each unifier ¢ of S, there exists a substitution y_
such thar o=y,)

Example {p(f(x),2), p(y,f(w))] is not unifiable, because the second arguments
cannot be unified. '

Example (p(f(x),z), p(y,a)} is unifiable, since ¢ = {y/f(a), x/a, z/a} is a
unifier. A most gencral unifier is 8 = [y/f(x), 2/a}. Note that ¢ = 8{x/a}.

It follows from the definition of an mgu that if 8 and o are both mgu's of
(Ei"“'p‘n }, then EIB is a varant of Elo'. Proposition 4.2 then shows that }’,10‘ can
be obtatned from LT19 simply by renaming variables. In fact, problem 7 shows that

mgu’s are unique modulo renaming.

‘We next present an algorithm, cailed the unification andrithm, which takes a

. finite set of simple expressions as input and outputs_an_mgu if the set is unifiable.

Otherwise, it reports the fact that the set is not unifiable. The intvitive idea behind
the unification algorithm is as follows. Suppose_ we want 1o unify two simple
expressions. Imagine two pointers, one at the leftmost symbol' of cach of the two
expressions. The pointers are moved together to the right until they point to
different symbols. An attempt is made to unify the two subexpressions starting
with these symbols by making a substitution. If the attempt is successful, the
process is continved with the two expressions obtained by applying the
substitution. If not, the expressions are not unifiable. If the poinfcrs eventually
reach the ends of the two expressions, the composition pf all the substitutions

made is an mgu of the two expressions.

Definition Let S be o finite set of simple expressions. The disagreament set of

5 is defined as follows. Locate the leftmost symbol position at which not all

cxpressions in S have the same symbol and extract from each expression in S the
subexpression beginning at that symbol position. The set of all such subexpressions
is the disagreement set. '

Example Let § = [p(f(x).h(y).2), p(f(x).,z,a}, p(f(i],h‘(y),b)]. Then the
disa‘gmerhenl set is [h(y). z}.)

We now prescnt the unification algorithm. In this algorithm, § denotes 2 finite

‘set of simple cxpressions.

24 ’ Chapter 1. Pretiminaries

UNIEICATION ALGORITHM

1L Putk=0and op=e.

2. 1f Sop is a singleton, then stop, oy is an mgu of S. Otherwise, find the
disagreement sctl Dk of Sck

3. I there exist v and t in Dy such that v is a variahle that dves not occur in t,
then put G, | = Uk[v/t}. increment k and go to 2. Otherwise, stop; S is not

unifiabie.

The unification algorithm as presented above is non-detenministic to the extent
that there may be several choices for v and t in step 3. However, as we remarked
carlier, the application of any two mgu's produced by the algorithm leads to
expressions which differ only by a change of variable names. It is clear that the
algorithm terminates because S ‘contains only finitely many variables and each

apphumon of step 3 climinates one variable.

Example Let S = {p(f(a) e(x)), p(y¥)).
(a) Oy =¢& ‘
() Dy = (f(a), y}, 0y = {y/f(a}} and 56, = {pf(a),g(x)), p(f(a) f(=))].
) D1 = {g(x), f(a)]. Thus S is not unifiable.

Example Let § = {p(a,x,h{g{z))), p(zh(y).h(y)].
(a) Gy = E.
(b} D = a2z}, o, = {z/a} and So; = [p(axh(g@M), p@h{y).h(N.
© D = (x, h(y)}, 0, = {#/a, x/h(y)] and So, = (p(ahiy).h(g@)), plh(y), h{y)}.
(@ Dz‘ (v, B@)}, 0 = {z/a, ¥/h(g(a), y/g(a)] and Sog = {p(a. h(g(a»h(g(«)))i
Thus S is unifiable and o, is an mgu,

In step 3 of the unification algorithm, a check is. made to. see whether v occurs
*in t. This is called thé occur check. The next example illustrates the use of the
accur check.

Example Let § = (p(r.0). p(.5))
(a) G =E.
® Dy =[xyl,00= {x/y} and S0 = {p(y,y) pGy. f(}')))
© Dy ={y. fiy)}. Since y.occurs in f(y), S is not unifiable.

Next we prove that the inification algorithm does indeed find an mgu of a
unifiable set of simple cxprvcssions. This result first appeared in [88].

™)
921

§4. Unification

Theorem 4.3 (Unification Theorem)
Let S be a finite set of simple expressions. If 8§ is unifiable, then the

unification algorithm terrninates and gives an mgu for 8. If S is not unifiable, then

the unification algorithm terminates and reports this fact.

Proof We have already noted that the unification algorithm always. terminates.
It suffices to show that if § is unifiable, then the algorithm finds an-mgn. Tn fact,
if § is not unifiable, then the algorithm cannot terminate at step 2 and, since it
does terminate, it must terminate at step 3. Thus it does report the fact that § js
not unifiable.

Assume then that S is nnifiable and let 8 be any unificr for S. We prove first
that, for k=0, if Gy is the substitution given in the kth iteration of the algorithm,
then there cxists a substitution v such that 8 = O Ny

Suppose first that k=0, Then we can put T = 0, since 0 = 6. Next suppose,
for some k20, there exists ¥y such that 6 = oy ;. If So is a singleton, then the

“algorithm terminates at step 2. Hence we can confine attention 10 the case when

SO’ is not a singleton. We want to show that lhc algorithm will produce a further
substuuuon Sy el and that there exists a substitution Y+ 1 such that 8 = S Tkat

Since SUk is not a singleton, the algorithm will determine the disagreement set
Dy of Sok and go to step 3. Since 0 = Sy Ve and @ unifies S, it follows that v
unifies Dk Thus Dk
Then v cannot occur in t because Y = W We can suppose that {v/t} is mrlhed
the substitution chosen at step 3. Thus o) 4 = Gk{v/t}. .

We now define Yeal = yk\{v/wk}. If Ve has a binding for v, then

Y = VD YU Ny

must contain a variable, say, v. Let t be any other term in I,

= {V/Wk} Ik (since vy, = thy)
= {v/tYk+1] YY) “(since v does not eccur in t)
[v/t]'y'k+1 (by the definition of composition).

ir Y - does not bave a binding for v, then Ties1 = Yo cach element of Dy 15 A
variable and % = [v/t}'yk+1 Thus 9 OV = Gk[V/t]YkM = Oppyfisr &
required.

Now we can complete the proof If S is unifiable, then we have shown that the
algorithm must terminate at step 2 and, if it terminates at the kth jteration, then
0= Y for some 7. Since o) is a unifier of S, this equa]uy shows that it is

indeed rn mgu for 5. B

26 ' ' _ Chapter 1. Preliminaries

The unification algorithm which we have presented can be very inefficient. In
the worst case, its Tunning time can be an exponential function of the length of the
input. Consider the following example, which is taken from ({9]. [Let
S = {pxpreX), Pflf(xo.xo),-..;f(xn_l,xn_l))}. Then 0, = {x|/fxq.%g)) and Soy =
(p(f(xU,xO),xz,...,xn), p(r(x()'xo)‘f(f(KO‘xO)'f(XO'*O))'f(xTxZ)"-"‘f(xn~1'xn~l))}' The
next substitution is 0’2‘ = {:gl/f(xo,xo}, x2/f(f(x0.x0), f(xo.xo))}, and so on. Note
that the second atom in Scn has 2k_4 occurrences of f in its kth argument
{(1<k<n). In particular, its last argument has 2"1 occurrences of £, Now recall
that step 3 of the unification aigorithm has the occur check. The performance of
this check just for the last substitution will thus require exponential time. In fact,
printing o also requires exponential time. This example shows that no unification
algorithm which explicitly presents the {final) unifier can be linear. ‘

Much more efficient unification algorithms than the one presénted above are
known. For example, [67] and [80] give lincar algorithms (see also {68]). In [80],

linearity is achieved by the use of a carefully chosen data structure for representing’

expressions and avoiding the explicit presentation of the unifier, which is instead
presented as & compasition of constituent substitutions. Despite its linearity, this
algorithm is not employed in PROLOG systems. Instead, most use essentially the
unification algorithm presented earlier in this section, but with the expensive occur
check umitted! From a theoretical viewpoint, ;h.is is a disaster because it destroys
the soundness of SLD-resolution, We discuss this matter further in §7. ‘

§5. FIXPOINTS

Associated with every definite program is a monotonic mapping which plays a
very important role in the theory. This section introduces the requisitc concepts and
results concerning monotonic mappings and their fixpoints.

Definition Let S be a set. A relation R on S is a subset of SxS. .
We usually use infix notation writing (x,y)eR as xRy.

Definition A relation R on a set S is a partial order if the following
conditions are satisfied:
(2) xRx, for all xe§. .
(b} xRy and yRx imply x=y, for all x,yeS§.

§5. Fixpoints ' . : 27

(c) xRy and yRz imply xRz, for all x,y.z=8§.

' Example Let S be a set and 25 be the set of all subsets of S. Then set
inclusion, , is easily seen to be a partial order on. 2

We adopt the standard notation and use < to denote a partial order. Thus we
have (a) x<x, (b) xSy and y<x imply x=y and (c) xSy and y<z imply x<z, for all

X,y,2£8.

Definition Let S be a set with a partial order <. Then 2<S§ is an upper bound
of a subset X of § if x<a, for all xeX, Similarly, be$ is a lower bound of X if

b<x, for all xeX.

Deﬁnition Let S be a set with a partial order <. Then ae§ is the leass upper
bound of a subset X of § if a is an upper bound of X and, for all upper bounds a’
of X, we ‘have a<a'. Similarly, be§ is the grearest lower hound of a subset X of S
if b is a lower bound of X and, for all lower bounds b’ of X, we have b'<h.

The lcgst upper bound of X is unique, if it exists, and is denoted by Iub(X).
Simitarly, the greatest lower bound of X is unique, if it exists, and is denoted by
gIb(X).

Definition A partially ordered set L is a_complete latiice if lub(X) and glb{X)
exist for every subset X of L. S

We let T denote the top element luE(L) and L denote the botrom clement

glb(L} of the complcte lattice L.

Example In the previous example, ZS under < is a compiete lattice. In fact,
the least upper bound of a collection of subsets of S is their union and the greatest

jower bound is their intersection. The top element is § and the bottom element is
@.

Definifion Let L be a complete lattice and T : LU be a mapping. We say T

is monotonic if T(x)ST(y), whenever <y.

Definition Let L be a complete lattice and X gL, Wesay X is directed if
every finite subsct of X has an upper bound in X. '
: an uppet

Definition Let L be a complete lattice ahd T : Lo be 2 mapping. We say T
is continuots if TAub(X)) = lub{T(X)), for every directed subset X of L.

28 .o ’ ‘Chapter 1. Preliminaries
By taking X = (x,y), we see that cvery confinuous mapping is monotonic.
However, the converse is not true. (See problem 12.) '

Qur interest in these definitions arises from the fact that for a definite program
P, the collection of all Herbrand interpretations forms a complete lattice in a

natural way and also because there is a continuous mapping associated with P

defined on this lattice. Next we study fixpoints of mappings defincd on iattices.

Definition Let L be a compiete lattice and T : L—L be a mapping. We say ‘

aeL is the least fixpoint of T if a is a fixpoint (that is, T(a)=a) and for all fixpoints
b of T, we have ash. Similarly, we define greatest flxpoint,

The next result is a weak form of a theorem due to Tarski [103], which
generalises an earlier result due to Knaster and Tarski. For an interesting accourt

of the history of propositions 5.1, 5.3 and 5.4, see [55].

Proposition 5.1 Let L be a complete Jattice and T : L—L be monotonic. Then -

Thas a least fixpoint, Up(T), and a greatest fixpoint, gfp(T). Furthermore, Ifp(T) =
glb{x: T(x)=x} = glb{x: T(x)<x} and gfp(T) = lub{x: T(x)=x} = lub{x : x<T(:)}.

Proof Put G = {x : 'l‘(x)Sx] and g = gIb(G). We show that geG. Now g<x,
for all xeG, so that by the monotonicity of T, we have T(g)<T(x), for all xeG.
Thus T(g)<x, for all xeG, and so T(g)<g, by the definition of glb. Hence geG.

Next we show that g is a fixpaint of T. It remains to show that g<T(g). Now
r(g)<g implies T(T(gH<T(g) lmphcs T(g)eG. Hence g<T(g), so that g is a
fixpoint of T. '

"Now put g = glb{x : T(x)=x). Since g is a fixpoint, we have g'<g. On the
other hand, {x : T(x)=x) < {x : T(x)$x) and so g<g'. Thus we have g=g' and the
proof is complete for 1fp¢T).

The proof for gfpr) is similar, W

Proposition 5.2 Let I be a complete lattice and T : L—L be monotonic.
Suppose asL and a<T(x). Then there exists a fixpoint a° of T such that a<a’.
Similarly, if bel and T(b)<b, then there exists a fixpoint b’ of T such that b'sb.

Proof By proposition 5.1, it suffices to put.a’=gfp(T) and b'=Ip(T). K

We will also require the concept of ordinal powers of T. First we recall some
elementary properties of ordinal numbers, which we will refer to more simply as
ordinals. Tntuitively, the ordinals are what we use to count with. The first ordinal 0

e e YT ———

e e LT

S

e

§5. Fixpoints ‘ B S L P R P PR
is delined 10 be & Then we define [= (@] {0}, 2= (B, (&)Y =10, 1]
3= {@, (&}, {3, (B))] = (0, 1, 2}, and so on. These are the finite ordinals, the
non-negative integers. The first infinite ordinal is @ = (0, 1, 2,..), thg set of all
non-negative integers. We adopt the convention of denoting finite ordinals by
roman letters n, m,..., while arbitrary ordinals will be denoted by Greek letters «,
B,-... We can speufy an ordering < on the_t:gllfcuon of all"ordinals by | defmnﬂ

05<D if ueﬁ For cxamplc, n<o, for all finite ordinals n. We ‘We will normdlly write

new rather than n<w. If @ 1s an ordmal the successor of oo is the ordma] o+l =

succe::or ora'znal l‘or example, 1 =0+1, 2 = 1+1 3 = 2+1, and so.on If @ is a

successor ordinal, say o = fi+1, we denote by o—1. An ordinal o is said to be a

limit ordinal if it is not the successor of any ordinal. The smallest limit ordinal
(apart from 0) is @. After w'comes w+1 = @ L {w}, 0+2 = {w+1)+], w+3, and so
on. The next limit ordinal is w2, which is the set consisling of all n, where new,
and all w+n, where new. Then come w2+], ®2+2,...,003, w3+1,...04,...0n,.. .

We will also require the principle of transfinite induction, which is as follows.
Let P(ct) be a property of ordinals. Assume that for all ordinals B, if P(y) holds for
all y<p, then P(P) holds, Then P(ct) hoids for all ordinals o.

Now we can give the definition of the ordinal powers of T.

Definition Let L be a complete lattice and T : L—L be monotonic. Then we

. define

0= 1

TTa = T(TT(a-1)), if & is a successor ordinal
tta = 1ub{TTR : Peat), if cis a fimic ordinal

T0=T :

Tlo = T(Tl{e=1)). if & is a successor ordinat

Tlo = glb{TLP : Pea), if o is a Jimit ordinal

Next we give a well-known characterisation of Hp(T) and gfp(T) in terms of

ordinal powers of T.

Proposition 5.3 Let L be a complete lattice and T :LoL be monotonic.
Then, for any ordinal o, TTa < 1p(T) and Tia = gfp(T). Furthermore, there exist

ordinals By and B, such that ¥, 2 Bi implies TTy, = 1fp(T) and 7, 2 B, implies
Ty, = gip(T). _ .

30 : Chapter 1. Preliminaries

Proof The proof for Hp(T) foliows from (a) and (e) below. The bmofs of (a),
{b) and (c) use transfinite induction.
(2) For all &, TTow < Mp(T): o
If o is a fimit ordinal, then TTa = lb{TTP : B<ee} < IEp(T), by the induction
hypothesis. 1f @ is a successor ordinal, then TTa = T(TT(a-1) <
T(lfp(T)) = Hp(T), by the induction hypothesis, the monotonicity of T and the
fixpoint property. :
(b) For all &, TTax < TT(o+1):

If o'is a successor urdimal, then TTe = T(TT(a—1)) € T(TTa) = TT(a+1), v

using the induction hypothesis and the monotonicity of T. If o is a limit
ordinal, then TTa = lub{TTP : P<or} < b{TT(P+1) : B<ar) < T(lub(TTP :
feo)) = TT(a+1), iusing the induction hypothesis and monotonicity of T.

(c) For all B, a<P implics TTe < TTD:
If B is & limit ordinal, then TTo < Wub(TTy : v<B) = TTP. If B is a successor
ordinal, then o < B-I and so TTa € TT(P-1) s TTP, using the induction
hypothesis and (b). ’

(d) For alt B, if o<B and TTa = TTP, then TTa = p(T):
Now TTa < TT(as1) € TTB, by (c). Bence TTa = TT(e+1) = 1(TTer) and so
TTor is a fixpoint, Furthermore, TTa = Hp(T), by (a).

(e) There exists-f such thaty2 § 1mphe§ TTy = Ifp(T):
Jet o be the least ordinal of cardinality greater than the cardinality of L.
Suppose that TT8 # 15(T), for all §<a. Define h:—L by h(8) = TT8. Then,
by (d), h is injective, which contradicts the chaice of o Thus TR = ifp(T), for
sotne ﬂ<(x, and the result follows [rom {(a) and (c).

The proof for gfp(T) is similar. K

; lhc least o such that TTu = fin(T) is called the closire ordinal of T. The next

we M 3
‘ {,U.Mﬂ { msu}l which is wsually #uributed te Kleene, shows thal under the stronger
uM‘“\ assumption that T is cnmmunus._@_}';_gvc_]_gsplq.g{(_ilnaj of Tis € m.

125 1 -Tlw.

Proof By propusmon 5.3, it suft' ices to show that TTw is a fixpoini. Note that
{TTh : new} is directed, since T is monotonic. Thus T(TT(D) = 'l(lub{TTn :
new}) = lub{T(TTn) : new) = TTew, using the coatinuity of T. |]

Problems for Chapter 1 31
The analogue of proposition 5.4 for gfp(T) does not hold, that is, gfIl(TJ may
not be equal to Tlw. A counterexample is given in the next section.

PROBLEMS FOR CHAFPTER 1

1. Consider the interpretation I

Domain is the nor-negative integers

‘s is assigned the successor function x — x+1

a is assigned 0

b is assigned 1

p is assigned the relation {(x,y) : x>¥]

g is assigned the relation {x : x>0}

r is assigned the relation {(x.y) : x divides y]
For each of the following closed formulas, detenmine the truth value of lhe formula
wit I:

(a) Yx3yp(xy)

(0) 3xVyp(r.y)

(c) pis(a),b)

{d) Vx(g{x)—p(x.a))

(e) Yxp(s(x).x}

() Vx Vy(r(x,y)=~p(x,y))

(2) Yx3@y p(x,y) v r(s(b),5(x)) — q(x))

2. Determine whether the foliowing formmulas are valid or not:
(a) ¥x Iy plx,y) = 3y Vxpix.y)
(b) 3y Vxp(x,y) — ¥xIyplx.y)

3. Consider the formula

(Yxpinx) A VXVYVZ (PR IAMY I PE.Z)] A TXVY [PX,YIVP(, X)) =2 FyVaplyx)
(a) Show that every iﬁtcrpretution with a finite domain is a model.

{b) Find an interpretation which is not a wodel.

4. Complete the proof of proposition 3.2.

5. Let W be a formula. Suppose that each guantifier in W has a distinct variable

32 . Chapter 1. Preliminaries

following it and no variable in W is both bound and free. (This can he achieved
by renaming bound variables in W, if necessary.) Prove that W can be transformed
to a logically equivalent formula in prenex conjunctive normal form (called a
prenex conjuncrive normal form of W) by means of the following transformations:
(a) Replace

all occurrences of Fe~G by Fv-G

all occurrences of Fe=»G by (Fv- G)A(~FVG)
(b) Replace

~VxF by Ix~F

~3xF by Vx~F

~(Fv(3) by ~-FA-G

~(FAG) by ~Fv-G

—F by F
until each occurrence of ~ imrﬁedialciy precedes an atom,
{c) Replace

IxFvG by Ix(FvG)

Fv3xG by Ix(FvG)

vx[vG by Vx(FvG)

Fv¥xG by Vx(FvG)

IxFAG by Ix(FAG)

FA3xG by Ix(FAG)

VxFAG by Vx(FAG)

FAVXG by Vx(FAQG)
until all guantifiers are at the front of the formula.
(d) Replace '

(FAG)VH by (FVH)A(GVH)

Fv(GAH) by (FvG)a(FvH)
unti] the formula is in prehex corijunctive normal form.

6. Let W be a closed formula. Prove that there exists a formula V, which is a

conjunction of clauses, such that W ig unsatisfiable iff V is unsatigfiable.

7. Suppose 91 and 92 are substitutions and there exist substitutions oy and o,y such
that 01 = 9201 and 02 = 910‘2. Show that there exists a variable-pure substitution
Y such that 0, = B,y. ' . ’

S R

33

Problems for Chapter 1

8. A substitution 0 is idemporens if © = 66, Let 0 = {xlltl,,..,xn/tn} and suppose V
is the set of vaciables occurring in terms in “1“"":1]' Show that 0 is idcmpotent

iff {xl,...,xn} NV =0

9. Prove that each mgu produced by the unification algorithm is idempotent.

10. Let 8 be a unifier of a finite sct § of simple expressions. Prove that © is an
mgu and is idempotent iff, for every unifier o of §, we have o = fc.

11. For cach of the following sets of simple expressions, determine whether mgu’s
exist or not and find them when they exist: -

(a) {ptf(y),w.g(z)), plr.uw)]

(b) (p(Ey), w5z}, plv.u))

@ {pax.fgyN) pzhlz.w).{(#))

12. Find a compictc lattice L and a mapping T : L—oL such that T is monotonic

but not continuous.

13. Let L be a complete lattice and T : L—L be monotonic.
(2) Suppose acL and a<T(a). Define
'I‘O(a) =2
Ta) = TeT" L)), if o is a successor ordinal
T%a) = lnh{TP(a) : Beat), if e is a limit ordinal,
Prove that there exists an ordinal B such that Tﬁ(a) ic-a fixpoint of T and aS'I'B(a).
(b) Suppose bel. and T(b)<b. Define
) = b
Ta(b) 'T'(TCl (b)), if o is a successor ordinal -
1« (b) = gb[T (b) : B<ax), if ¢ is a limit ordinal.

- Prove that there exists an ordinal y such that T'Y(b) is a fixpoint of T and ’I'Y(!J)<b

;
5
¢
‘
4
i
{
i

R

wt i v e

Chapter 2
DEFINITE PROGRAMS

This chapter is concemed with the declarative and procedural semantics of
definite programs. First, we introduce the concept of .the jeast Herbrand mode] of

a definite program and prove various important properties of such modeis. Next,

we define correct answers, whic which provide a _declarative description of the desired

output from from_a program. an _;i_a_gnal. The procedural counterpart of a correct answer
is a compulcd answer, which is defined using SI.D-resolution. We prove that

every computed answer is correct and that every correct answer is an inistance of a
computed answer. ‘This establishes the soundness and complcTeness of SLD-
resolution, that is, shows that SLD-tesolution preduces only and all correct
answers. Other important results established are the independence of the
computation rule and the fact that any computable function can be computed by a.
definite program. Two pragmatic aspects of FROLOG implementations are also
discussed. These are the omission of the occur check from the unification

algorithm and the control facility, cut.

§6, DECLARATIYE SEMANTICS

This section introduces the least Herbrand model of a definite program. This

particular model plays a central role in the theory. We show that the least
Herbrand model is precisely the set of ground atoms which are logical

chamctensauon of the lenst Herbrand model. Fma]ly. we define the key concept of

correct answer,

First, let us recall some definitions given in the previous chapter.

36 » ' Chapter 2. Definite Pragrams

Definition A definite program clause is a clause of the form
A(—BI, o
which mmams precisely one atom (viz. A) in m Lonsequent A is called the head
and Bl' . :s ca.llcd the hody of the program clause.,

Definition A deﬁnirs progmm is a finite set of definite program clauses.

Definition A definite goal is a clause of the form
{—Bl, "
that is, a clnuse which has an empty conscqucm

In later chapters, we will consider more generﬂ‘progmms, in which the body

of a program clause can be a conjunction of literals or even an arbitrary formula.

Later we will also consider more general goals. The theory of definite programs is
simpler than the theory of these more general classes of programs because definite
programs do not allow negations in the body of a clause. This means we can avoid
the theoretical and practical difficulties of handling negated subgoals. Definite
programs thus provide an excellent starting pdint for the development of the
theory,

Proposition 6.1 (Model Intersection Property) .
Let P be a dcfmne program and {M} je] | be a non-empty set of Herbrand
models for P. Thcn ﬁ M is an Herbrand model for P

Proof Clearly ﬁiE[Mi is an Herbrand inlcrpretation for P. It is straightforward
to show that hiFIMi is a model for P. (See problem 1.) &

Since every definite program P has B as an Herbrand model, the set of all
Herbrand models for P is non-empty. 'I‘hus the 1ntcr9cctmn of all Herbrand models
for P is agam a model callcd ihe !easr Herbrand mode! for P. We denote this
model by M,

model by Mp

The intended interpretation of a definite program P can, of course, be differcnt

from MP' However, there are very strong reasons for regarding My, a5 the natural

interpretation of a program. Certainly, it is usual for the pmgranmcr to_have in

mind the “‘frec’’ interpretation of the constants and function symbols in the

iff AeMp,. W

Lo g g

TP RN $ 4 AT RS Y e,

pmgram ngcn by an Hcrbrand | interpretation. Furthermore, the ngxt theorem sho__§_
that the atoms in MP am _precisely those that are logu.al conseguences_of_the

program. This result is due 1o van érndcn and Kowalski [107].

g

S LT T e e e

§6. Declarative Semantics a7

]

{

Theorem 6.2 Let P be a definite program. Then MP = [AEBP : A is a logical

Ny

consequence of P}. i B

Proof We have that
A is a logical consequence of P
iff P (~A} is unsatisfiabie, by proposition 3l
iff P U [~A} bas no Herbrand modeis, by proposition 3.3
iff —A is false wrt all Herbrand models of P becarive. Pohes at fecwt ove Herbmd

NN YE S
iff A is true wrt all Herbrand models of P m&hww\mmm% .
i w-\,r\}\/&/‘\m WW\W /

e

We wish to obtain avg'%chmctcrisatiog of Mp, using fixpoint concepts. For
this we need to associate a complete lattice with every definite program.

Let P be a definite program. Then '2 ", ‘which is the set o_f all Hcybnnd
mterpretauons of P, is a l:omplete iatuee under the parnal ordcr of set inclusion
<. The top element of this lattice is BP and the bottom element is . The least
upper bound of any set of Herbrand intetpretations is the Herbrand interpretation

which is the union of all the Herbrand interpretations in the set. The greatest

lower bound is the intersection.

Definition Let P be a definite prugram. The mapping Tp @ 2 Br 5 2PP s
defined as follows. Let 1 be an Herbrand interpretation. Then TP(I) =
{AeB <—A1, " |s a gmund mstanu: v[a c]ausc in P and {AI’ —.A) <l I}

tAcBp - A€

Clearly Tp is monotonic. Tp pmvxdet the link between the, dcclaratlve and

procedura} semanncs _of P, This deﬁmtlon was first given in [107).

Example Consider the program P
PN P { o p i,

g(a) « p(x)
Put 1, = By, I, = T,(0)) and Iy =@. Then Tp(p) = (q@)} v [p(f) : 1€Up).

Tp(Ly) = {q(@)] U {p(EW) : (€U} and Tp(ly) = @

Proponsition 63 Let P be a definite program. Then the mapping TT’_ is

continuous.

Proof Let X be a directed. subsct of 2 P P. Note first that (Al, A g; Tub(X)
iff {AI, ,A] 1, for some IeX. (See problcm 3.} In order to show T 1<
conumlous wc have to show TP(Iub(X)) =)ub('rP(X)), for cach directed subst'.t X

38)) ' Chapter 2. Definite Programs

Now we have that

AeTp(lub(X)) . .

ifr AFAI.""'An is a ground instance of a clause in P and {A‘....,An) < Iub(X)

iff A«—Al,....An is a ground instance of a clause in P and (Al....,An} < I, for
some leX ¢)

iff AETP(I), for some leX

iff AElub(TP(X)).]

Herbrand interpretations which are models can be characterised in terms of TP' ‘

v Proposition 6.4 Let P be a definite program and 1 be an Herbrand
interpretation of P. Then [is a model for P iff Tp < L '

Proof 1 is a model for P iff for each ground instance A(-—Al,..,,An of each

clause in P, we have [Al,...,An} & limplies Ael iff TP(I) <L R

Now we come to the first majur result of the theory. This theorem, which is
due to van Emden and Kowalski [107], provides a fixpoint characterisation of tie
least Herbrand model of a definite program.

P~ T ———

Theorem 6.5 (Fixpoint Characterisation of the Igast Herbrand Mcadeb '
| Let P be a definite program. Then M, = Ifp(T,) = TFﬂ.o.

Proof Mp = gIb{I : I is an Herbrand model for P} Wo shag b L(f\‘“'l

7
J
=glb[1: TP(I} 1), by proposition 6.4 e empty <ok
_ - { Ml Emply e
!fp(TP), by propesition 5.1 (T
1 e -
= TPT(o, by propositions 5.4 and 6.3. W } et ftente

"u‘g(et ?c_'l' M?

However, it can happen that Efp(Ty) # Tpiu).

Example Consider th& program P
pf(x)) < p(x)
q(a) - p(x)

Let us now tum 1o the definition of a correct answer. This is. a central concept
in logic programming and provides much of the focus for the theoretical
developments.

§6. Declarative Semantics 39
Definition Let P be a definite program and G a definite goal. An answer for
P U (G] is 2 substitution for variabies of G.

It is understood that the answer does not necessarily contain a binding for
every variable in 5. In particular, if G has no variables the only possible answer is
the identity substitution, '

Definition Let P be a definitc program, G a definite goal A ,....A, and § an
answer for P U [G]. We say that § is a correct answer for P U {G] if

) v((A]AA..AAk)B) is a logical consequence of P.

Using proposition 3.1, we sec that O is -a comect answer iff
Py {~‘V({A1A...AAk)9)} is unsatisfiable. The above definition of correct answer
does indeed capture the intuitive meaning of this concept. It provides a declarative
description of the desired output from a definite program and goal. Much of this
chapter will be concemed with showing the equivalence between this declarative
concept and the comesponding procedural one, which is defined by the refutation

procedure used by the system.

As well as returning substitutions, a logic programming system may also return
the answer “‘no’’. We say the answer ‘‘no”" is correct if P {G) i5 satisfiable.

Theorem 6.2 and the definition of correct answer suggest that we inay be able
to strengthen theorem 6.2 by showing that an answer 8 is correct iff
V{(AIA...AAK)B} is true wrt the least Herbrand mode! of the program.
Unfortunately, the result does not hold in this gencrality, as the following example

shows.

Example Censider the program P

p(a) < ‘ .
Let G be the goal «~p(x) and & be the identity substitution. Then My = {p(a)) and
50 VX p(x)0 is true in Mp,. Lowever, § is not a correct answer, since Vx p(x}0 is

not a fogical consequence of P.
The reason for the problem here ig that ~Vx p{x) is not a clause and hence we

cannot testrict attention to Herbrand interpretalions when attempting to establish
the unsatisfiability of {p(a)&} w {~¥x p(x}}. However. il we make a restriction .

on B, we do obtain a result which generalises theorem 6.2.

40 . Chapter 2. Definite Programs

Theorem 6.6 Let P be a definite program and G a definite goal f—-Alv....,Ak.
Suppose 8 is an answer for P W (G} such that (A]A‘..AAkJO is ground. ‘lThen the
‘following are equivalent:

(8} 8 is comrect.
() (AIA...AAk)e is true wrt every Herbrand model of P, -
(c) (AIA...AAk)G is true wrt the least Herbrand model of P,

Proof Obvidusly, it suffices to show that (c) implies (a). Now
(AIA...AAk)G is true wrt the least Herbrand model of P
implies (AIA...AAk)B is true wrt all Herbrand modeis of P
implies ~(A A.AAL)B is false wit all Herbrand models of P
implies P U [~(A1A..,AAk)9] has no Herbrand models
implies P & !-—(AIA...AAk)B] has no models, by proposition 3.3. N

§7. SOUNDNESS OF SLD-RESOLUTION

In this section, the procedural semantics of definite programs is introduced.
Computed answers are defined and the soundness of SLD-resolution is established.

The implications of omitting the occur check from the unification algorithm are

also discussed. Although all the‘requisite results concerning SLD-resolution will
be discussed in this and subsequent sections, it would be helpful for the reader to
have a wider perspective on automatic theorem proving. We suggest conwl{mg [9],
{14], [64] or [66].

‘ There are many tefutation procedures based on the resolution inference rule,
" which are refinements of the original procedure of Robinson [88]. The refutation
procedure of interest here was first described by Kowaliski [48]. Tt wag called
SLD-resolution in [4). (The term LUSH-resoiution has also been used [46].) SLD-
resolution stands for SL-resolution for Definite clauses. SL stands for Linear
resolution with Selection function. SL-resolution, which is due to Kowalski and
Kuehner [53), is a direct descendant of the model elimination procedure of
:Loveland [65]. In this and the next two sections, we will be concerned with SLD-
refutations, In §10, we will study SLD-refutation procedures. '

~ Definition Let G be «Ajaf_ iy and € be A¢=By,..B o Then G is
derived from G and C using mgu € if the following conditivns hold:
(a) Am is an atom, called the selecred alom, in G.

§7. Soundness of SLD-Resolutlon 41

(b} © is an mgu ofA and A.

(c) G' is the goal (—(Al, . m—-l‘BI’ . qu+1’ " k)B.

In rcsolunon terminology, G' is called a resotfent of G and C.

Definition Let P be a definite program and G & definite goal. An SLD-
derivation of P U (G} consists of a (finite or infinite) sequence GOWG GI‘ of
goals, 8 sequence Cl' CZ’ of vanants\)f program clauses of P and & sequence 91,
8,.... of mgu’s such that each G; ¢ is derived from G, and Cypq using 8, ;.

Each Ci is a suitable variant of the corresponding program clause so that Ci
does not have any variables which already appear in the derivation up to Gi—l'
‘Ihis can be achieved, for example, by subscripting variables in G by @ and
varigbles in Ci by i. This process of renaming variables is called standardising the

C

variables apart. It is necessary, otherwise, for example, we would not be able to
unify p(x) and p{f(x)) in ep(x) and p{f(x))e. Each program clause vaciant Cj,

. is called an inpur clause of the derivation.

2 N

Definition An SLD-refwsation of P U [G} is a finite SLD-derivation of
F U {G} which has the empty clause 0 as the last goal in the derivation. If Gn= o,

- we say the refutation has fength n.

Throughout this chapter, a ‘‘derivation’ will always mean an SLD.derivation
and a "'refutation’’ will always mean an SLD-refutation. We can picture SLD-

derivations as in Figure 1.

It will be conveuient in some of the results 1o have a slightly more general

concept available.

Definition An rtrestricted SLD-refutation is an SLD-refutation, except that we
drop the requirement that the substitutions Bi be most general unifiers. They are
only required to be unifiers.

SLD-derivations mey be finite or infinite. A finite SLD-derivation may be
successful or failed. A successful SLD-derivation is one that ends in the empty
clause. In other words, a successful derivation is just a refutation, A failed SLD-
derivation is one that ends in a non-empty goal with the propeny that the sclected
atomn in this goal does not unify with the head of any program clause. Later we
shall see examples of successful, failed and infinite derivations (scc Figure 2 and

Figure 3).

42 ' . " ' Chapter 2. Definite Programs

1 "
/

Fig. 1. An SLD-derivation

Definifion Let P be a defiuite program. The success set of P is the set of all
AEBP such that P U [¢A) has an SLD-refutation.

The success set is the procedural counterpart of the least Herbrand model. We
shall sce later that the success set of P is in fact equal to the least Herbrand model

§7. Soundness of SLD-Rasolution 43

-of P. Sumilarly, we have thc proccdural coumcrpart of a correct answer.

- Dcfimhon Let P be a dcl'muc program and (" a definite goal A mmputr'd

} answer 8 for P (G} is the substitution o&amed by restricting the composition

91...9n to the variables of G, where 9!"“’611 is the sequence of mgu’s used in an
SLD refutaion of P (G, L .

Example If P is the slowsort program and G is the goal ¢-sort(17.22.6.5.nil,v},
then {y/5.6.17.22.nil) is & computed answer, '

The first soundness result is that computed answers are correct. In the form

below this result is due to Clark {16})
o - “\.

L

Theorem 7.1 (Soundness of SLIY-Resolution)
Let P be a definite program and '3 a definite goal. Then every romputed
answer for P U {G] is a correct answer for P U [G}.

Proof let G be the goal {—A k and 91. ..,Bn be tﬁe ‘sequence of
mgu’s used in a refutation of P U [(G}). We have to show that
V((AIA AAk)el .0) is a logical consequence of P 'I_'h_eﬁ_{g_sﬂf_”ii_pmved .l.’l
mducuon on the lcngth of the refutil_t_xg_rL

Supposc—ﬁ?s'th that n=1. This means that G is a goal of the form ‘_Al' the
program has & unit clause of the form A« and A 9 = Ael Since A B « is an
instance of a unit clause of P, it follows that V(Alel) is a logical consequcnce of
r L ‘

Next suppose that the result holds for computed answers which come from
refutations of length n-1. Suppbse 91""’911 is the sequence of mgu’s used in a
refutation of P U {G} of length n. Let A(—BI,...,B (q20) be the {irst input clause
and Am the selected atom of G. By the induction hypothesis,
V((A A AA ABlA ABqAAm+1A AAk)G .8) is a logical consequence of P.
Thus, if @0, V((E A...AB)9 -8,) is a logical consequence of P. Consequently,
V(A 8,..8)), wh:ch is lhe same as Y(AB,..8), is a Jogical consequence of P.

Hencc V((AIA AAk)Gl Gn) is a logical consequence of P. W

——

Corollary 7.2 Let P be a definite program and G a definite goal. Suppose
there exists an SLD-refutation of P u {(G). Then P U (G) is unsatisfiable.

Proof Let G be the goal (—AI,...,Ak. By theorem 7.1, the combuted answer
coming from the refutation is correct. Thus V((AIA...AAK)B). is a _ ftogical

44 Ghapter 2. Definlie Programis

. consequence of P. It follows lha(P (G} is unsa-tisﬁable. |

Corollary 7.3 The success set of a definite program is contained in its Ieael
Hetbrand model.

Proof Let the program be P, let AEBP and suppose P [¢-A) has a
refutation. By theorem 7.1, A is a logical consequence of P. Thus A is in the least
Herbrand model of P. B

It is possible to strengthen corollary 7.3, We can show that if AEBP and
PU [¢A) has a refutation of length n, then AeTPTn This rcsult is due to Apt
and van Emden 4],

If A is an atom, we put [A] = A" €Bp ¢ A'=A8, for some substitution 6},
Thus [A] is the set of all ground instances of A, Equnvajcnlly, [A] is [A]J. where J
is the Herbrand pre-interpretation.

Theorem 7.4 Let P be u definite program and G a definite goal <—Ai, A
Suppose that P U (G} has an SLD- refutation of length n and 91, .8 is the
sequence of mgu’s of the SLD-refutation. Then we havc that
u};lmjel...en] cTptn.

_ Proof The result is proved by induction on the length of the refutation.
Suppose first that n=1. Then G is 2 goal of the form ¢— Al' the program has a unit
clause of the form A« and A 8] = A8, Clca.rly, [Al TPTI and 50
A8 < TpTL

Next suppuse the result is true for rcfutatlons of length n—1 and consider a
refutanon of P U {G} of length n, Let A, be an atom of G. Suppose first that A,
is not the selected atom of G, Then A. 9[is an atom of GI’ the second goal of the
refutation. The induction -hypothesis 1mp1|eq that [A 9 Gn] cT T(n 1) and
TpT-1) < TPTn by the.monotonicity of T,

Now suppose that A js the selected atom of G. Let BG—BI, B_ (q20) be the
first input clause. Then A, 91 is an instance of B. If q=0, we have [B} ¢ T T1.
Thus NGB ClAB T CIBICT, Tl o TpTn. 1f ¢>0, by the mducuon
hypothesis, [B;6,..8, | = T T(n—l), forl =1,. ,q By the definition of Tp, we have
that [A,8)...6] ;; Tp . l

Next we tumn to the problem of the vocur check. As we mentioned earlicr, the
occur check in the unification algorithmn is very expensive and most PROLOG

—

§7. Soundness of SLD-Resolution 45
systens leave it out for the pragmatic reason that it is only very rarely required.

While this is certainly true, its omission can cause serious difficulties,
Fr

Examble Consider the program

test ¢ p(x,x}

p(x.f(x)} «
Given the goal etest, a PROLOG system without the occur check will answer
“‘yes” {equivalently, £ is a correct answer)! This answer is quite wrong because
test is not a logical consequence of the program. The problem arises because,
without the occur check, the unification algorithm of the PROLOG systém will

mistakenly unify p(x,x) and p(y,).

o Thus wc_ ;' that the lack of occur check—;as‘dcsn'oyed one of the pnnuplﬂs)
on wh1ch Iog1c progra.mtmng is based the soundnzss of SLD rcsoluuon f

Example Consider the program

test & p(x,x)

P f(x)) € p(x,x)
This time a PROLOG system without the occur check will go into an infinite loup
in the unification algorithm because it will attempt to use a ‘‘circular” hmdmg
made in the second step of the computation.

These examples illustrate what can go wrong. We can distinguish two cases.
The first case is when a circular binding is constructed in a “‘unification™, but this
binding is never used again. The first example. illustratés this. The second case
happens when an attempt is made to use a previously constructed circular binding
in a step of the computation or in printing out an answer. The second example
illustrates this. The first case is more insidious because there may be no indication

that an error bas occurred.

While these examples may appear artificial, it is imporiant to appreciate that
we can easily have such behaviour in practical programs. The most conunonly
encountered sitnation where this can occur is when programming with difference
lists [21]). A dif[emncé list is a termm of :he form x-y, where ~ is a binary function
(written infix). x-y represents the difference between the two lists x and y. For.
example, 34.56. Ivl.x—x represents the list [34, 56, 12]. Similarly, x—x represents the

empty list,

46 ')) Chapter 2. Dafinite Programs

Let us say two difference lists x~y and z—w are compatible if y=z. Then
compatible difference lists can be concatenated in constant’ time using the
following definition which comes from [21]

concat(x-y,y—7,X-z) ¢
For example, we can concatenate 12.34.67.45.x—x and 36.89. y~y in one step to
abtain 12.34.67.45.36.80.z—z. This is clearly a very useful technique. Howaver, it
is also dangerous in the absence of the occur check.

Example Consider the program

test « concat(u—u,v—-v,a.w—w)

concat(x-y,y-z,x—z) 4
Given the goal etest, 8 PROLQG system without the occur check will answer
“‘yes”’. In other words, it thinks that the concatenation of the empty list with the
empty list is the list {a]!

Programs which use the difference list technique normally do not have an
explicit concat predicate. Instead the concatenation is done tmplicitly. For
example, the following clause is taken from such a version of quicksort {93].

Example Consider the program

gsort(nil,x—x) « v
Given the goal «ysori(pil,a.y-y), a PROLOG system without the occur check will
succeed on the goal (however, it will have a problem printing .out its "answer"',
which contains the circutar binding y/ay).

1t is possible to minimise the danger of an occur check problem by using a
certain programming methodology. The idea is to * protcct programs which could
cause problems by introducing an appropriate top-lcvel predicate to restrict uses of

the program to those which ‘are known to be sound. This means that there must be

some mechanism for forcing all calls 1o the program to go through this top-level

predicate. However, with this method, the onus is still on the programmer and it
“thus remains suspect. A better jdea [82] is to have a preprocessor which is able to
- identify which clauses may cause problems and add checking code to these clauses
{or perhaps invoke the full unification algorithm when these clauses are used).

§8. Complateness of SL.D-Resohtion 47

§8. COMPLETENESS OF SLD-RESOLUTION

The major result of this section is the cgmpleteness of SLD-resolution, We

begin with two very useful leoamas.

Lemma 8.1 (Mgu Lemma)

Let P be a definite program and G a definite goal. Suppose that P u [G] has
an unrestricted SLD-refutation. Then P U [} has an SLD-refutation of the same
length such that, if 81, ,9 are the unifiers from the unrestricted SLD-refutation
and ﬁ' 9 are the mgu’s from the SLD-refutation, then there exists & subsmuuon

'yquch!hatﬁ 9 -9 3‘(

Proof The proof is by induction on the length of the unrestricted refutation.
Suppose first that n=1, Thus Pt {G} has an unrestricted refutation G0=G, G1= a
with input clause C; and uniﬁer'el Suppose 9'1 is an mgu of the atom in G and

' the head of the unit clause C;. Then B = 917, for some 7. Furthermore, P U (G}
“has a refutation Gg=G, Gy=0o with 1nput clause C; and mgu 81

Now suppose the result hoids for n—1. Suppose P w {G} has an unrestricted
refutation Gy=G, G,...,G =0 of length n with input clauses Cy,...,C and unifiers
1, ,9 There exists an mgu 91 for the seiected atom in G and thc head of 'C1
sach that Bl 1p for some p. Thus P (G) has an unrestricted refutation
(‘0—(‘ (‘1 G‘2 G = with input clauses Cl* ,C and unifiers Bl, 062. 91. .6 i
where G = Glp By the induction i;ypo:hem PuU [(r } has a rcfulallon
G Gz, ,G =0 with mgu's 92, .9}1 snch that p8,..8 = 8' g Y. for some Y.
’I‘hm rPu [G} hM a refutation (xO—G G =0 wﬂh mgu’s 81, ,6 such that
9...9n—91p9 Gweleyl i

Lemma 8.2 (Lifting Lemma)

Let P be a definite progrem, G a dcﬁmlc gual and © a substitution. Suppose
there exists an SLD-refutation of P {GB). Then there exists an SLD-refutation
of P u {G} of the same length such that, if 9,,...,On are the mgu_’s'from the SLD-
refutation of P u {GB} and 8'1,..._.9'“ as the mgu’s from the SLD-refutation of
P u {G), then therc exists a substitution v such that 991...Bn = 9'1...9;_17.

" Proof Suppose the first input clanse for the refutztion of P L (G8) is Cy, the
first mpu is 91 and Gl is the goal which results from the first step. We may =
assume @ does not act on any veriabies of Cl. Now 88, is a unifier for the head

of C1 and the atom in G which corresponds to the selected atom in GB. The resull

49 -

48 Chapter 2. Definite Pmgrams o §9. independence of the Computation Rule
of r:so]vmg G and C1 using 991 is exactly G1 Thus we obtain an unrestricted Howcv‘cr. we can prove that every correct answer is an instance of a computed
refutation of P U {G}, which looks exactly like the given refutation of P u (G}, ; answer. ' ‘

except the original goal is different, of coarse, and the first unifier is 69 Now

T R . .
Lemmn/., 8.5 Let P be a definite program and A an atom. Suppose that Y(A) is
“apply the mgu lemma. I o2

4 logical consequence of P. Then there exists an SLD-refutation of P L (¢A)

'Ihe first completeness result gives the converse to corollary 7.3. This sesult is with the identity substitution as the computed answer.
‘-f‘lu‘e to Apt and van Emden [41.) - — N Proof Suppose A has variables X fpmeRpe Let LTE. be distinct constants not
Theorem 8.3 The success set of a dcﬁmtc program is equal to its jeast \ - appearing in P or A and let B be the substitution {xlfal, wXpfa '1'1153{\ it is clear
Herbrand model - e / = } that A is a logical consequence of P. Smce A8 is ground theore_rE_ 8 AE‘_‘-sﬁgﬂls_l_hﬂg
T , o ' Pu [(-—-AB] bas a refutation. Since the a, do not appear in P’ or A, by replacing a,
Proof Let the program be P. By corollary 7.3, it suffices to show that the by x (1 - ,n_) in i}us refutation, we obtam a refutation of P U {«-A} with 1he

least Herbrand model of P is contained in the success set of P, Suppose A is in

tdentlty substitution as the computed answer. B
the]cat.t Herbrand model of P. By thcorem 6.5, AeT, Tn, for some new., We

prove by induction on n that AeTpTn jmplies that P u [*—A} has a refutation and Now we are in a position to prove the major completeness result. This result -
hence A is in the success set, is due to (,lark [16]. . e
Su se ﬁfSt that n"l- 'Theﬂ AET Tl means d at A 15 & grou d 1ns[ancc Of a . T T T T T e e - ———— - \
unit Cl:::; of P. Clearly, P U {¢-A) h 2 refutati; l grou [Theorein 8.6 (Cmnpleteness of SI.D-Resolution) |
f ‘ oo Iet P be a definile program and G a definite goal. For every correct answer 8 |

Now suppose that the result holds for n—1. Let AeTp To. By the deﬁnmon of

‘ th ts a computed answer o for PU {G) and a subsmuhon ¥
Tp, there exists & ground instance of a clause B&B,,. ,Bk such that A=BO and for P U [G], there exists P oy

such that 8 = ay.

{B40...B, 8) < TpT(n-1), for some 8. By the induction hypothesis. P U {+B,8) N B Y e e

has a refutation, for i=1,...k. Because cach B;8 is ground, these refutations can be | Proof Supposs G is the goal Ao .Ak Stace 8 s correct,
combined into & refutation of P V(B BIB). Thus Py {A) has an _ V((A{A.AADB) is a logical consequence of P. By lemmd. 85}1.hcrc exists #
unrestricted refutation and we can appiy the mgu femma to obtain a refutation of ' refutation o P U {«A.8} such that the computed answer is the identity, for
PU{<A]l. X - f~ y ' ‘ i=],...k. We can comblinc these refutations into a refutation of P U {GB)} such

that the computed suswer is the identity.
Suppoge the sequence of mpu’s of the refutation of P u {GB] is By
Theorem 84 LctPbea dcﬁmle program and G a definite goal. Suppose that Then GGBI 8,=GO. By the- 11:ftmg lemm'l, there exists a refutationt of P U {(,]

P U {G] is unsatisfiable. Then there exists an SLD-refutation of P L (G). with mgu’s 6" o ,g such that. 80 - g, = g @ 'Y for some substitution ¥, Let ©
be 9] Gn resmcteq.[to the variables in G. Thcn 0 = oy, where ¥ is an appropriate

The next completeness reselt was first provcd by Hill {46}. Sce also [4].

Proof Let G be the goal <—AI, ’Ak Since P U [G} is unsatisfiable, G is
false wrt M . Hence some ground instance GO of G is false wrt Mp. Thus
A 9. LA 9} [t M By theorem 8.3, there is a refutation for P u {(—A 8}, for

1—1 k. Smce each A0 is ground, we can combine these refutations into a _ §9, INDEPENDENCE OF THE COMPUTATION RULE
refutation for P U {G8). Finally, we apply the lifting lomma. R ‘ :

L r
restiction of 7. ¥

In this section, we introduce the concept of a computation rule, which is used
Next we turn attention to correct answers. I is not possibie to prove the exact 1 o select stome in an SLD-derivation. We show that, for any choice of

converse of theorem 7.1 because comp uted answers are always “most general”". computation rule, if Pu {G] is unsatisfiable, we can always find a refutation

