
J. W Lloyd

Foundations of
Logic Programmin:o o <

Second. Extended Edition

Springer-Verlag
Berlin Heidelberg New York

Chapter 1

PRELIMINARIES

This chapter presents the basic concepts and results which are needed for the

theoretical foundations of logic programming. Afler a brief introduction to logic

programming, we discuss first order theories, interpretations and models,

unification, and fixpoinfs.

fil. INTRODUCTION

Logic programming began in the early 1970's as a direct outgrowth of earlier

work in automatic theorem proving and artificial intelligence. Constructing

automated deduction systems is, of course, central to the aim of achieving artificial

intelligence. Building on work of Herbrand [44] in 1930, there was much activity

in theorem proving in the early 1960's by Prawitz 184], Gilmtire [39], Davis,

Putnam [26] and others. This effort culminated in 1965 with the publication of the

landmark paper by Robinson [88], which introduced the resolution rule,

Resolution is an inference rule which is particularly well-suited to automation on a

computer.

Tiie credit for the introduction of logic programming goes mainly to Kowalski

[48j and Colmerauer [22], although Green [40] and Hayes [43J should be

mentioned in this regard. In 1972, Kowalski and Colmerauer were led to the

fundamental idea that logic can be used as a programming language.. The

acronym PROLOG (PROgramming in LOGic) was conceived, and the first

PROLOG interpreter [22] was implemented in the language ALGOL-W by

Roussel, at Marseille in 1972. ([8] and [89] describe the improved and more

influential version written in FORTRAN.) The PLANNER system of Hewitt [45]

can be regarded as a predecessor of PROLOG.

2 Chapter 1. Preliminaries

'Hie idea that first order logic, or at least substantial subsets of it, could be

used as a programming language was revolutionary, because, until 1972, logic had

only ever been used as a specification or declarative language in computer science.

However, what [48] shows is that logic has a procedural interpretation, which

makes it very effective as a programming language. Briefly, a program clause

A«-B,,...,R is regarded as a procedure definition. If <-C]f...,C, is a goal, then

each C. is regarded as a procedure call. A program is run by giving it an initial

goal. If (he current goal is *-C,,...,G , a step in the compulation involves unifying

some C with the head A of a program clause A*—B,,...,B and Urns reducing the

current goal to the goal <-(Cj,...,C. I,B I Bn,C. j,...,Ck)9, where 9 is the

unifying substitution. Unification thus becomes a uniform mechanism for parameter

passing, data selection and data construction. The computation lertninates when

the empty goal is produced.

One of the main ideas of logic programming, which is due to Kowalski [491,

[50J, is that an algorithm consists of two disjoint components, the logic and the

control. The logic is the statement of what the problem is that has to be solved.

Tiie control is the statement of how it is to be solved. Generally speaking, a logic

programming system should provide ways for the programmer to specify each of

these components. However, separating these two components brings a number of

benefits, not least of which is the possibility of the programmer only having to

specify the logic component of an algorithm and leaving the control to be

exercised solely by the logic programming system itself. In other words, an ideal

of logic programming is purely declarative programming. Unfortunately, this has

not yet been achieved with current logic programming systems.

Most current logic programming systems are resolution theorem provers.

However, logic programming systems need not necessarily be based on resolulion.

They can be non-clausal systems with many inference rules [11], [41], [42]. This

account only discusses logic programming systems based on resolution and

concentrates particularly on the PROLOG systems which are currently available.

There are two major, and rather different, classes of logic programming

languages currently available. The first we shall call "system" languages and the

second "application" languages. These terms are not meant to be precise, but

only to capture the'flavour of the two classes of languages.

§1. Introduction 3

For "system" languages, the emphasis is on AND-paralielism, dou't-care

non-determinism and definite programs (that is, no negation). In these languages,

according to the process interpretation of logic, a goal <— T3. B is regarded^ as_a_

system of concurrent processes. A step in the compuudon_i_s_jhe_jed_ucjayru.ol a_

process to a system of processes (the ones thai occur in the bpdy_pf the__ciause_lhat

matched the call). Shared variables act as comrnunicatip_n_ channels between

processes. There are now several "system" languages available, including

'PARLOCFnSl, concurrent PROLOG [93] and GHC [106]. These languages are

mainly _ intendedfbr operating system applications and object -oriented programming

[94]. For these languages, the control is still very much given by the programmer.

Also these languages arc widely regarded as being closer to the machine level.

"Application" languages can be regarded as genera! -purpose programming

languages with a wide range of applications. Here ihe emphasis is on OR-

parallelism, don't-know non-determinism and (unrestricted) programs (that is, the

body of a program statement is an arbitrary formula). Languages in this class

include Quinlus PROLOG [10], micro-PROLOG [20] and NU-FROLOG |104].

For these languages, .the automation of the control component for certain kinds of

applications has already largely been achieved. However, there are still many

problems to be solved before these languages will be able to support a sufficiently

declarative style of programming over a wide range of applications.

"Application" languages are better suited to deductive L djl_ab^e_iv_s_ig.ms_and_

expert systems. According to the database ('

is regarded as a databaseJ35j. [36J.JJ7], [38]L We thus_obtain_a_yer^ natural and_

powerful generalisation of relational databases. The_ latter^ correspond LO_ logic

programs consisting solely of ground unit clauses. The concept of logic as a

uniform language for data, programs, queries, views and integrity constraints has

great theoretical and practical power.

The distinction between these two classes of languages is, of course, by no

means clcarcut. For example, non-trivial problem-solving applications have been

implemented in GHC. Also, the coroutining facilities of NU-PROLOG make it

suitable as a system programming language. Nevertheless, it is useful to make the

distinction. It also helps lo clarify some of the debates in logic programming,

whose source can be traced back to the "application" versus "system" views of

the participants.

4 Chapter 1. Preliminaries

The emergence of these two kinds of logic programming languages has

complicated the already substantial task of building parallel logic machines.

Because of the differing hardware requirements of the two classes of languages, it

seems that a difficult choice has to be made. This choice is between building a

predominantly AND-parallel machine to directly support a "system" programming

language or building a predominantly OR-parallel machine to directly support an

"application" programming language.

There is currently substantial effort being invested in the fust approach;

certainly, the Japanese fifth generation project [71J is headed this way. The

advantage of this approach is that the hardware requirements for an AMD-parallel

language, such as GHC, seem less demanding than those required for an OR-

parallel language. However, the success of a logic machine ultimately rests on the

power and expressiveness of its application languages. Thus this approach requires

some method of compiling the application languages into the lower level system

language.

In summary, logic provides a single formalism for apparently diverse parts of

computer science. It provides us with general-purpose, problem-solving languages,

concurrent languages suitable for operating systems and also a foundation for

deduclive database systems and expert systems. This range of application together

with the simplicity, elegance and un i fy ing effect of logic programming assures it of

an important and influential future. Logical inference is about to become the

fundamental unit of computation.

§2. FIRST ORDER THEORIES

This section introduces the syntax of well-formed formulas of a first order

theory. While a l l ' the requisite concepts from first order logic will be discussed

informally in this and subsequent sections, it would be helpful for the reader to

have some wider background on logic. We suggest reading the first few chapters of

[Hj , [33], [64], [69] or |99J.

First order logic has two aspects: syntax and semantics. The syntactic aspect is

concerned with well-formed formulas admitted by the grammar of a formal

language, as well as deeper proof-theoretic issues. The semantics is concerned with

the meanings attached to the well-formed formulas and the symbols they contain.

§2. Rrst Order Theories

We postpone the discussion of semantics to the next section.

A first order_ theory consisj^pf._an_alpM^t;^jJirsxju^r^laxu?ia£e.^_5Ct_ .of,

axioms and AJiELRUflfimnaLlulfi5J62LI291- The first order language consists of

the well-formed formulas of the theory. The axioms are a designated subset of

well-fonnctTformulas. The axioms find rules of inference • are used to derive the

theorems of the theory. We now proceed to define alphabets and first order

languages.

Definition An alphabet consists of seven classes of symbols:

(a) variables

(b) constants

(c) function symbols

(d) predicate symbols

(c) connectives

(f) quantifiers

(g) punctuation symbols.

Classes (e) to (g) are the same for every alphabet, while classes (a) to (d) vary

from alphabet to alphabet. For any alphabet, only classes (b) and (c) may be

empty. We adopt some informal notations! conventions for these classes.

Variables will normally be denoted by the letters u, v, w, x, y and z (possibly

subscripted). Constants will normally be denoted by the letters a, b and c (possibly

subscripted). Function symbols of various ariltes > 0 will normally be denoted by

the letters f, g and h (possibly subscripted). Predicate symbols of various arities Z

0 will normally be denoted by the letters p, q and r (possibly subscripted}.

Occasionally, it will be convenient not to apply these conventions too rigorously.

In such a case, possible confusion will be avoided by the context. The connectives

are -, A, v, -» and *-», while the quantifiers are 3 and V. Finally, the punctuation

symbols are "(", ")" and ",". To avoid having formulas cluttered with brackets,

we adopt the following precedence hierarchy, with the highest precedence at the

top:
-, V, 3

Chapter 1. Preliminaries

Next we turn to the definition of the first order language given by an alphabet.

Definition A term is defined inductively as follows;

(a) A variable is 3 lerm.

(b) A constant is a term.

(c) If f is an n-ary function symbol and '1.— ,tn are terms, then f(t. ,...,() is a term.

Definition A (well-formed) formula is defined inductively as follows^ .

(a) If p is an n-ary predicate symbol and t,,...,t are terms, then p(t.,...,t) is a

formula (called an atomic formula or, more simply, an atom).

(b) if F and G are formulas, _then_sg_are (-F), (FAG),

(c) If F is a formula and x is a

It will often be convenient to write the formula (F->G) as (G*-F).

Definition The. first order language given by an alphabet consists of the set of

all formulas constructed From the symbols of the alphabet.

Example (Vx (3y <p(*.yHq(x)))), (~(3x (p(x,a)Aq(f(x))))) and

(Vx (p(x,g(x))*-(q(x)A(-r(x))))) are formulas. By dropping pairs of brackets when

no confusion is possible and using the above precedence convention, we can write

these formulas more simply as Vx3y (p(x,y)— »q(x)), -3x (p(x,a)Aq(f(x))) and

Vx (p(x,g(x))^q(x)A~r(x)). We will simplify formulas in this way wherever

possible.

The informal semantics of the quantifiers and connectives is as follows. ~ is

negation, A is conjunction (and), v is disjunction (or), — » is implication and <— > is

equivalence. Also, 3 is the existential quantifier, so that "3x" means "there exists

an x", while V is the universal quantifier, so that "Vx" means "for all x". Thus

the informal semantics of Vx (p(x,g(x)} *- q(x)A~r(x)) is "for every x, if q(x) is

true and r(x) is false, then p(x,g(x)) is true".

Definition The scope of Vx (resp. 3x) in Vx P (resp. 3x F) is F. A bound

occurrence of a variable in a formula is an occurrence immediately following a

quantifier or an occurrence wilhin the scope of a quantifier, which has the same

variable immediately after the quantifier. Any other occurrence of a variable is

free.,

Example In the formula 3x p{x,y)Aq(x), the first two occurrences of x arc

bound, while the third occurrence is free, since the scope of 3x is p(x,y). In

§2. First Order Theories '

3x (p(x.y)Aq(x)), all occurrences of x are bound, since the scope of 3x is

p(x,y)Aq(x).

Definition A closed formu!a_ is a formula with no free occurrences of any

variable.

Example Vy3x (p(x,y)Ao(x.)) is closed. However. 3x (p(x.y)Aq(x)} is not

closed, since there is a free occurrence of the variable y.

Definition If F is a formula, then V(F) denotes the universal closure of F,

which is the closed formula obtained by adding a universal quantifier for every

variable having a free occurrence in F. Similarly, 3(F) denotes the existential

closure of F, which is obtained by adding an existential quantifier for every

variable having a free occurrence in F.

Example If F is p(x,y>Aq(x), then. V(F) is VxVy (p(x,y)Aq{x)), while 3(F) is

3y (p(x,y)Aq(x)).

In chapters 4 and 5, it will be useful lo have available the concept of an atom

occurring positively or negatively in a formula.

Definition An atom A occurs positively in A.

If atom A occurs positively (resp., negatively) in a formula W, then A occur.-:

positively (resp., negatively} in 3x W and Vx W and WAV and WvV and

W«-V.

If atom A occurs positively (resp., negatively) in a formula W, then A occurs

negatively (K&$., positively) in -W ami V*-W.

Next we introduce an important class of formulas called clauses.

Definition A literal is an atom or the negation of an atom. A positive literal^

an atom. A negative literal_is jhe negation of an atom.

Definition A clause, is a formula of the form

Vx r..VxsfL1v...vLn)

wbere each I,, is a literal and Sj,...,xs are all the variables occurring in LjV...vLm.

Example The following are clauses

VxVyVz (p(x,7.)v-q(x,y)v-r(y,z))

VxVy (~p(x,y)vr(f(x,y),a))

Chapter 1. Preliminaries

Because clause^ are so conimun in logic_progrHmrrjinE>_it will be convenient, to.

Vx....Vx (A.v...vA, v—B-V...V-B)

where A,,...,A. ,B],-3 are atoms and x.....,x are all the variables occurring in

these atoms,J>y__

A. A,f-B. B
_ . _] ' _ r . k ___.__. r_ n

Tims, in the clausal notation, alf variables are assumed to be universally quantified,

the commas in the antecedent Bj,...,B denote conjunction and the commas in the

consequent Aj,...,A^ denote disjunction. These conventions are justified because

Vx....Vx (A,v...vA. v-B,v...v-B)i s i K j. n
is equivalent to

Vx,...Vx (A, v...vA, <— B.A...AB)I s 1 k. I n'

To illustrate the application of the various concepts in this chapter lo logic

programming, we now define definite programs and definite goals.

Definition A definite, prngram^clause is a clause of the form

which contains precisely ont^ atom~(viz, A)lrTiis consequent. A is called the head

and Bj,...,Bn is called the body of the program clause.

Definition A unit clause is a clause of the form

that is, a definite program clause with an empty body.

The informal semantics of A<-B,,...,B is "for each assignment of each

variable, if B,,...,B are all true, then A is true". Thus, if n>0, a program clause is

conditional. On the other hand, a unit clause A*— is unconditional. Its informal

semantics is "for each assignment of each variable, A is true".

Definition A definite program is a finite set of definite program clauses^

Definition In a definite program, the set of all program clauses with the same

predicate symbol p in the head is called the definition of p.

Example The following program, called slowsort, sons a list of non-negative

integers into a list in which the elements are in increasing order. It is a very

inefficient sorting program! However, we will find it most useful for illustrating

various aspects of the theory.

§2. First Order Theories y

In this program, non-negative integers are represented using a constant 0 and a

unary function symbol f. The intended meaning of 0 is zero and f is the successor

function. We define the powers of f by induction: f (x)=0 and T (x)-f(f (x)).

Then the non-negative integer n is represented by the term i (0). In fact, it will

sometimes be convenient simply to denote r (0) by n.

Lists are represented using a binary function symbol "." (the cons function

written infix) and the constant nil representing the empty list. Thus the list

[17, 22, 6, 5J would be represented by 17.(22.(6.(5.nil))). We make the usual right

associativity convention and write this more simply as 17.22.6.5.nil.

SLOWSORT PROGRAM

sort(x.y) +- sorted(y), pcrm(x,y)

sorted(nil) *—

sorted(x.nil) f—

sortcd(x.y.z) «~ xfiy, sorted(y.7.)

pcrm(nil,nil) <—

perm(x.y,u.v) v- delete(u,x.y,7), pemi(z.v)

delete(x,x.y,y) «—

dclclc(x,y.z,y-w) <- delete(x,z,w)

f(x)<f(y) <- xSy

Slowsort contains definitions of five predicate symbols, sort, sorted, perm,

delete and <. (written infix). The informal semantics of the definition of sort is "if

x and y are lists, y is a permutation of x and y is sorted, then y is the sorted

version of x". This is clearly a correct top-level description of a sorting program.

Similarly, the first clause in the definition of sorted states that "the empty list is

sorted11. The intended meaning of the predicate symbol delete is that ddcte(x,y.7,)

should hold if z is the list obtained by deleting the element x from the list y. The

above definition for delete contains obviously correct statements about the delete

predicate.

Definition of thebnii

" n
that is, a clause which has an empty conscqiient.^ Each B; (t=l n) is called a

xubgoal of the goal.

If y,,...,y are the variables of the goal

10

then this clausal notation is shorthand for

or, equivalently,

Chapter 1. Preliminaries

Example To run skiwsort, we give it a goal such as

<- sort(17.22.6.5.nil,y)

Tliis is understood as a request to find the list y, whicli is trie sorted version of

17.22.6.5.nil.

Definition The empty clause, denoted n, is the clause with empty consequent

and empty antecedent. This clause is to be understood as a contradiction.

Definition A Horn clause is a clause which is either a definite program clause

or a definite goal.

§3. INTERPRETATIONS AND MODELS

The declarative semantics of a logic program is given by the usual (model-

theoretic) semantics of formulas in first order logic. This section discusses

interpretations and models, concentrating particularly on the important class of

Hcrbrand interpretations.

Before we give the main definitions, some motivation is apptopriate. In order

to be able to discuss the truth or falsity of a formula, it is necessary to attach some

meaning to each of the symbols in tlie formula first. The various quantifiers and

connectives have fixed meanings, but the meanings attached to the constants,

function symbols and predicate symbols can vary, An interpretation simply

consists of some domain of discourse over which the variables range, the

assignment loeach constant of an element of the domain, the assignment lo each

function symbol of a mapping^on the domain and the assignment to each predicate

symbol of a relation on the domain^ An interpretation thus specifies a meaning for

each symbol in the formula. We are particularly interested in interpretations for

which the formula expresses a true statement in that interpretation. Such an_

interpretation is called_a model vf the formula. Normally there is some

distinguishedjntcrgretatign t_ called the intended j.nierpre\a.[\Qn, which gives _the__

principal meaning of the symbols. Naturally_,_tlie intended inlerpretation^of a

§3. Interpretations and Models 11

formula should be a model of the formula.

First order logic provides methods for deducing die theorems of a thcorv.

These can be characterised (by Gomel's completeness iheorem [tfyj, L99]) as the

formulas which are logical consequences of the axioms of the theory, thai is, they

are true in every interpretation which is a model of each nf the axioms of the

ihcory. In particular, each theorem is true in ihe intended interpretation of the

theory. The logic programming systems in which we are interested use the

resolution rule as the only inference rule.

Suppose, we want to prove that the formula

3yr..3yr(B1A...ABn)

is a logical consequence of a program P. Now resolution theorem provers arc

refutation systems. That is, the negation of the formula lo be proved is added to

the axioms and a contradiction is derived. If we negate the formula we want to

prove, we obtain the goal

f-B, B1 .n
Working top-down from this goal, the system derives successive goals. If the

empty clause is eventually derived, then a contradiction has been obtained and later

results assure us that

3yr-3yr(V...ABn)
is indeed a logical consequence of P.

From a theorem proving point of view, the only interest is to demonstrate

logical consequence. However, from a programming point of view, we are much

more interested in the bindings that are made for the variables y,,...,y , because

these give us the output from the running of the program. In fact, the ideal view

of a logic programming system is that it is a black box for computing bindings and

our only interest is in its input-output behaviour. Tlie internal workings of the

system should be invisible to the programmer. Unfortunately, this situation is not

true, to various extents, with current PROLOG systems. Many programs can only

be understood in a procedural (i.e. operational) manner, because of the way they

use cuts and other non-logical features.

Returning to the slowsori program, from a theorem proving point of view, we

can regard the goal «-sort(17.22.6,5.nil,y} as a request lo prove thai

3y sort{17.22.6.5,ni!,y) is a logical consequence of the program. In fact, we are

much more interested that the proof is constructive and provides us with a specific

12 Chapter 1. Preliminaries §3. Interpretations and Models 13

:U

y which makes sort(17.22.6.5.ni3,y) true in the intended interpretation.

We now give the definitions of pre-interpretation, interpretation and model.

Definition A pre-inierpretation of a first order language L consists of the

following:

(a) A non-empty set D, called the domain of the prc-interpretation.

(b) For each constant in L, the assignment of an element in D.

(c) For each n-ary function symbol in L, the assignment of a mapping from Dn to
D.

Definition An interpretation I ofj^first^̂

i nlerprgtatipn J^wilh domain J^ofLjogcther with the following:

For eachj^ary predicate symbol in L, the ̂ assignment of a mapping from Dn into

{true, false] (or, cqujvalcntly^a relation on_Pn^.

We say I is based on 1.

Definition Let J be a pre-interpretation of a first order language L. A variable

assignment (wn J) is an assignment to each variable in L of an clement in the

domain of J.

Definition Let J be a pre-interpretation with domain D of a first order

language L and let V be a variable assignment. The term assignment (wn J and V)

of the terms in L is defined as follows:

(a) Each variable is given its assignment according to V.

(bj Each constant is given its assignment according to J.

(c) If[t|,...,t^)are the term assignments of t,,...,t and f' is the assignment of the

n-ary function symbol f, then f'(t',,...,t')eD is the term assignment of f(tn t).

Definition Let J be a pfe-interpretation of a first order language L, V a

variable assignment wrt J, and A an atom. Suppose A is p{t, t) and d.f...,d in

the domain of J arc the term assignments of t,,...,t wrt J and V. We call

A. y «pfdj,...,d) the f -instance of A wrt V. Let [A], = (AT v : V is a variable

assignment wrt J }. We call each element of [A], a J -instance of A. We also call

each p(ri.,...,d) a J-instance.

Definition Let I be an interpretation with domain D of a first order language L

and let V be a variable assignment. Then a formula in L can be given a truth

value, true or false, (wn I and V) as follows:

(a) If the formula is an atom p(t1?...,t), then the truth value is obtained by

calculating the value of p'(t', t1), where p' is the mapping assigned to p by 1 and

t', t' are the term assignments of ti.-.-.t wrt 1 and V.

(b) If the formula has the form -F, FAG, FvG, F-»G or F^->G7 men the truth

value of the formula is given by the following table:

G FAG FvG F-tG

true true

true false

false true

false false

false

false

true

true

true

false

false

false

true

true

true

false

true

false '

true

true

true

false

false

true

(c) If the formula has the form 3x F, then the truth value of the formula is true

if there exists deD such that F has truth value true wrt I and V(x/d), where V(x/d)

is V except that x is assigned d; otherwise, its truth value is false.

(d) If the formula has the form Vx F, then the'truth value of the formula is

true if,, for all deD, we have that F has truth value true wn I and V(x/d);

otherwise, its truth value is false,

Clearly the truth value of a closed formula does not depend on the variable

assignment. Consequently, we can speak unambiguously of the truth value of a

closed formula wrt to an interpretation. If the truth value of a closed formula wrt

to an interpretation is true (resp., false), we say the formula is true (resp,. false)

wrl to the interpretation.

Definition Let 1 be an interpretation for a first order language L and let W be

a formula in L.

We say W is satisfiable in I if 3(W) is true wrt I.

We say W is valid in I if V(W) is True wrt I.

We say W is unsatisfiable in I if 3(W) is false wrt I.

We say W is nonvalid in I if V(W) is false wrt I.

Definition LejJ be an interpretation of a first order language L and.le£F_bg_a

closed formula of L. Then I is a model for F if F is true wrt I.

Example Consider the formula Vx3y p{x,y) and the following interpretation I.

Let the domain D be the non-negative integers and let p be assigned the relation <.

Then I is a model of the formula, as is easily seen. In I, the formula expresses the

true statement thai "for every non-negative integer,- (here exists a non-negative

14 Chapler 1. Preliminaries §3. Interpretations and Models 15

integer which is strictly larger than it". On the other hand, I is not a model of the

formula 3yVx p(x,y).

The axioms of a first order theory are a designated subset of closed formulas

in the language of Ihe theory. For example, the first order theories in which we are

most interested have the clauses of a program as their axioms.

Definition Let T be a first order theory and let L be thejangjjage of_T. A

mode! for T is an mtcrpretatipn_fQr L_ which JS-ajnodel Ior_each-axiam_.oI.T..

JLT_nas a model,, we_s_ay_T is consistent.

The concept of a model of a closed formula can easily be extended to a model

of a set of closed formulas.

Definition l.et S he a set of closed formulas oF a first order language L and let

I be an interpretation of L. We say I is a modal for S if I is a model for each

formula of S.

Note that, if S = is a finite sel of closed formulas, then T is a model

for S iff 1 is a model for F.A...AF .1 n

Definition Let S be a set of closed formulas of a first order language L.

We_sa_y_S hjatisTiable if LJias.an interpretation whlcl^is a model for S.

Wcj5ay_S is_validtf every interpretatioji_of L i5_a_modeHpr S.

We say S_isunsatisftahle if no interpretation _of L is a model for S.

We say S is rwnvalid if L has an interpretation which is not a model for S.

Now we can give the definition of the important concept of logical

con sec] ue nee.

Definition Let S be a set of closed formulas and F be a closed formula of a

first_order language L. We say F is a logical consequence of S if, for every

interpretation I of L, I is a model for S implies that I is a model for F.

Note that if S = {F, F] is a finite set of closed formulas, then F is a

logical consequence of S iff F.A...AF —»F is valid.

Proposition 3.1 Let S be a_set of closed formylas.and F be a closcdJarmula

of a first order language L. Then F is ajogical consequence of S iff S u (~FJ is

unsatisfiable.

Proof Suppose that F is a logical consequence of S. Let 1 be an interpretation

of L and suppose I is a model for S. Then 1 is also a model for F. Hence I is not a

model for S u (-F), Thus S <J (-F) is unsarisfiablc.

Converscly, suppose S U {-F} is unsatisfiable. Let 1 be any interpretation of

L. Suppose I is a model for S. Since S u (-F) is unsatisfiable,'1 cannnf be a

model for -F. Thus I is a. model for F and so F is a logical consequence of S. K

Example Let S = (p(«), Vx(p{x)-+q(x))| and F be q(a). We show that F is a

logical consequence of S. Let I Its any model for S. Thus p(a) is true wit I. Since

Vx(p(x)-»q(x)) is true wrt I, so is p(a)-»q(a). Hence q{a) is true wrt I.

Applying these definitions to program?, we see that when we give a goal G to

the system, with program P loaded, we are asking the system to show that the set

of clauses P u {G) is unsatisfiable. In fact, if G is the goal t-Bp-,1^ with

variables y«,...,y , then proposition 3.1 states that showing P u (G) unsatisfiable is

exactly the same as showing that 3y,..3y (B.A...AB } is a logical consequence of

P.

Thus the basic problem is that of determining the unsatisfiability, or otherwise;

of P u (G), where P is a program and G is a goal. According to the definition,

this implies showing every interpretation of P u (G] is not a model. Needless to

say, this seems to be a formidable problem. However, it turns out that there is a

much smaller and more convenient class of interrelations, which are all thai need

to be investigated to show unsatisfiability. These are the so-calicd Herbrand

interpretations, which we now proceed to study.

Definition A ground term is a term not containing variables. Similarly, a

ground atom is an atom not containing variables.

Definition Let L be a first order language. The Herbrand universe U^ for L

is the set of all ground terms, which can be formed out of the constants and

function symbols appearing in L. (In the case that L has no constants, we add

some constant, say, a, to form ground terms.)

Example Consider the program

p(x) <- q(f(x),g(x))

r(y> <- .
which has an underlying first order language L based on the predicate symbols p. q

and r and the function symbols f and g. Then the Herbrand universe for L is

Chapter 1. Preliminaries16

{a, f(a). g(a), f(f(a)), f(g(a)), g(f(a)J,

Definition Let L be a first order language. The Herhrand base B. for L is the

set of all ground atoms which can be formed by using predicate symbols from L

with ground terms from the Herbrand universe as arguments.

Example For the previous example, the Hcrbrand base for L is

), q(a,a), r(a), p(f(a)), p(g(a)), q(a,f(a)}, q(f(a),a),...}.

Definition Let L be a first order language. The Herbrand pre-interpreiation

for L is tfie pre-interpretation given by the following:

(a) The domain of the pre- interpretation is the Herbrand universe U. .

(b) Constants in L are assigned themselves in U. .

(c) If f is an n-ary function symbol in L, then the mapping from (U.)n into U.

defined by (t. t) — * f(t,,...,t > is assigned to f.

An Herbrand interpretation for L is any interpretation based on the Herbrand

pre-inlerpretation for L.

Since, for Herbrand interpretations, the assignment to constants and function

symbols is fixed, it is possible to identify an Herbrand interpretation with a subset

of the Hcrbrand base. For any Herbrand interpretation, the^orresponding subset of

the Herbrand^ base is the set of all ground atoms which are true wrt the

interpretation. Conversely, given an arbitrary subset of the Herbrand base, there is

a corresponding Herbrand interpretation defined by specifying that the mapping

assigned to a predicate symbol maps some arguments toj'rrue" precisely_when the_

atom made up of the predicate symbol with the same arguments is in the given

subset, This identification of an Herbrand interpretation as a subset of the

Herbrand base will be made throughout. More generally, each interpretation based

on an arbitrary pre-interpretation J can be identified, with a subset of .[-instances, in

a similar way.

Definition Let L be a first order language and S a set of closed formulas of L.

An Herbrand model for S is an Herbrand interpretation for L which is a model for

S.

It will often be convenient to refer, by abuse of language, to an interpretation

of a set S of formulas rather than the underlying first order language from which

the formulas come. Normally, we assume that the underlying first order language

is defined by the constants, function symbols and predicate symbols appearing in

§3. Interpretations and Models 17

S. With this understanding, we can now refer to the Herbrand universe U^ and

Hcrbrand base Bp of S and also refer to Herbrand interpretations of S as subsets of

the Herbrand base of S. In particular, the set of formulas will often lie a program

P, so that we will refer to the Herbrand universe Up and Herhrand base Bp of P.

Example We now illustrate these concepts with the slowsort program. This

program can be regarded as the set of axioms of a first order theory. The language

of this theory is given by the constants 0 and nil, function symbols f and "." and

predicate symbols sort, perm, sorted, delete and <,, The only inference rule is the

resolution rule. The intended interpretation is an Hcrbrand interpretation. An atom

sort(l.m) is in the intended interpretation iff each -of I and m is either nii or is a list

of terms of the form r(0) and in is the sorted version of 1. The oilier riicdicate

symbols have the obvious assignments. The intended interpretation is indeed a

model for the program and hence a model for the associated theory.

Next we show that in order to prove unsatisfiabiiily of a set of clauses, it

suffices to consider only Herbrand interpretations.

Proposition 3.2 Let S be a set of clauses and suppose Sjias_a_rnodel._ Thgnj

has an Herbrand model. ,

Proof Let I be an interpretation of S. We define an Hcrbrand interpretation 1'

of S as follows:

I' = [p<t[ln)eBs : P(t,,..-,'„) is true wrt I).

It is straightforward to show that if 1 is a model, then I* is also a model, i

Proposition 3.3 Let S be a set of clauses. Then S is unsatisfiable iff S has no

Hcrbrand models.

Proof If S is satisfiable, then proposition 3.2 shows that it has an Herbrand

model. •

It is important to understand that neither jroposilion 3.2 nor 3.3 holds if we

drop the restriction that S be a set of clauses.^\n^other words, if S.Js^a set^of

arbitrary closed formulas, it is not generally possible to show S is unsatisfiable by

restricting attention to Herbrand interpretations.

Example Let S be |p(a), 3x -p(x)). Note that the second formula in S is not a

clause. We claim that S has a model. It suffices to let D be the set (0, 1], assign 0

to a and assign to p the mapping which maps 0 to true and I to false. Clearly this

18 Chapter 1. Preliminaries

gives a model for S.

However, S does not have an Herbrand mode.!. The only Herbrand

interpretations for S are 0 (the empty set) and (p(a)|. But neither of these is a

model for S.

The point is worth emphasising. Much of the theory of logic programming is

concerned only with clauses and for this Herbrand interpretations suffice.

However, non-clausal formulas do arise naturally (particularly in chapters 3, 4 and

5). For this part of the theory, we will be forced to consider arbitrary

interpretations.

There are various normal forms for formulas. One, which we will find useful,

is prenex conjunctive normal form.

Definition A formula is in, prenex conjunctive normal form if it has the form

Ox,...Ox, ((L, ,v...vL,)A...A(L ,v...vL __))^ 1 ^ k " 1 Im/ v nl nm "1 n
where each Q is an existential or universal quantifier and each L.- is a literal.

The next proposition shows that each formula has an "equivalent" formula,

which is in prenex conjunctive normal form.

Definition We say two formulas W and V are logically equivalent if

V(W<->V) is valid.

In other words, two formulas are logically equivalent if they have the same

truth values wn any interpretation and variable assignment.

Proposition 3.4 For each formula W, there is a formula V, logically equivalent

to W, such that V is in prenex conjunctive normal form.

Proof The proof is left as an exercise. (See problem 5.) •

When we discuss deductive database systems in chapter 5, we will base the

theoretical developments on a typed first order theory, The intuitive idea of a

typed theory (also called a mang-sutted theory_[33]j_js_thaj. there.arc sovcraljgrts

of variables, ..each ranging over, a different .domain. This can be thought of as a

generalisation of the theories we have considered so far which only allow a single

domain. For example, in a database context, there may be several domains of

interest, such as the domain of customer names, the domain of supplier cities, and

so on. For semantic integrity reasons, it is important to allow only queries and

§3. Interpretations and Models 19

database clauses which respect the typing restrictions.

In addition to the components of a first order theory, a typed first order' theory

has a finite set, whose elements are called types. Types are denoted by Greek

letters, such as T and o. The alphal>et of the typed first order theory contains

variables, constants, function symbols, predicate symbols and quantifiers, each of

which is typed. Variables and constants have types such as T. Predicate symbols

have types of the form T.X...XT and function symbols have types of the form

T.X...XT -*T. If f has type t, X...XT ->i, we say f has range type. T. For each type

T, there is a universal quantifier V and an existential quantifier 3

Definition A term of type I is defined inductively as follows:

(a) A variable of type T is a term of type i.

(b) A constant of type T is a term of type T.

(c) If f is an n-ary function symbol of type ^X.^XT

(i=l,...,n), then f(tn I) is a term of type t.

and t. is a term of type %•

Definition A typed (well-fnrme.d) formula is defined inductively as follows:

(a) If p is an n-ary predicate symbol of type T.X...XT and t. is a term of type t.

(i=l,...,n), then p(t,,...,t) is a typed atomic formula.

(b) .If F and G are typed formulas, then so are -F, FAG, FvG, F^G and F<-*G.

(c) If F is a typed formula and x is a variable of type T, then V. x F and 3 x F are

typed formulas.

Definition The typed first order language given by an alphabet consists of the

set of all typed formulas constructed from the symbols of the alphabet.

We will find it more convenient to use ihe notation Vx/t F in place of V x F.

Similarly, we will use the notation 3x/T F in piace of 3 x F. We let V(FJ denote

the typed universal closure of the formula F and 3(F) denote llie typed existential

closure. These are obtained by prefixing F wilh quantifiers of appropriate types.

Definition A pre- interpretation of a typed first order language L consists of

the following:

i (a) For each type T, a non-empty set D , called the domain of type T of the pre-

interprctation,

(b) For each constant of type T in L, the assignment of an element in DT.
(c) For each n-ary function symbol of type T.x._.xTn-n in L, the assignment of a

mapping from D x...xD, lo D,.
T T

20 Chapter 1. Preliminaries

Definition Aii interpretation I of a typed first order language L consists of 3

pre-interpretation J with domains {D } of L together with the following:

For each n-ary predicate symbol of type t.x...xT in L, the assignment of a

mapping from D x...xD into (true, false) (or, equivnJenlly, a relation on

D x...xDT).
1 n
We say I is based on J.

It is straightforward to define the concepts of variable assignment, term

assignment, truth value, model, logical consequence, and so on, for a typed first

order theory. We leave the details to the reader. Generally speaking, the

development of the theory of first order logic can be carried through with only the

most trivial changes for typed first order logic. We shall exploit this fact in

chapter 5, where we shall use typed versions of results from earlier chapters.

~i
The other fact that we will need about lyped logics is that Ihere is a I

trans formation of typed formulas into (type-free) formulas, which shows that the I

apparent extra generality provided by typed logics is illusory [33]. This V

transformation allows one to reduce the proof of a theorem in a typed logic to a

corresponding theorem in a (type-free) logic. We shall use this transformation

process as one stage of the query evaluation process for deduutive database

systems in chapter 5.

H UNIFICATION

Earlier we stated that the main purpose of a logic programming system IK to

compute bindings. These bindings are computed by unification, In this section, we

present a detailed discussion of unifiers and the unification algorithm.

Definition A substitution 9 is a finite set of the form fv./t,,...,v /t), where

each v is a variable, each t. is a term distinct from v. and the variables Vj,...^

nre distinct Each element v./t. is called a binding for v.. 6 is called a ground •

substitution if the t. nre all ground terms. 6 is called a variable-pure substitution if

the t. are all variables.

Definition An expression is either a term,' a literal or a conjunction or

disjunction of literals. A simple expression is either a term or an atom.

§4. Unification 21

Definition Let 9 — \v./t,,...,v A 1 be a substitution and E be an expression.
1 1 1 n n

Then E9, ihc instance of E by 0, is the expression obtained from E by

smiultuneously replacing each occurrence of the variable v. in E by the term t.

(i—l,...,n). If EO is ground, Ihen E9 is called a ground instance of E.

Example Let E = p(x,y,f(a)) and' 0 = [x/b, y/xj. 'Ihen E9 = p(b,x,f(a)).

If S = (E.,...,E } is a finite set of expressions and 6 is a substitution, then S9

denotes the set (E

DcfiiiHion Let 9 = (u,/s, u /s) and o = [v,/l,,...,v /t) be substitutions.
1 I 1 m m' u 1 1 n n '

Then the composition 60 of 9 and a is the substitution obtained from die set

by deleting any binding u./s.o for which u.=s-cr and deleting any binding v./t. for

which v-efu......^!].

Example Lei 8 = (x/f(y), y/zj and o = {x/a, y/b, z/y). Then 6a = (x/f(h),

7jy}.

Definition The substitution given by the empty set is called the identity

substitution.

We denole the identity substitution by e. Note mat Ee = E, for. all expressions

E. The elementary properties of substitutions are contained in the following

proposition.

Proposition 4,1 Let 9, O and y be substitutions. Then

(a) ee = ee = e.
(b) (E6)o = E(6o), for all expressions E.

(c)

Proof (a) This follows immediately from the definition of E.

(b) Clearly it suffices to prove the result when E is a variable, say, x. Let

9= t'VV'^nAn1 and 0= (W'"'̂ !!1- If x^(ui"-"m] u lvl V' tlie"
(x9)a -= x = x(Off). If xe{u. ,.~,u J, say x=n.. then {x(J)o = s.a = x(6a). If
x={v v }\(u.,...,u J , say x-v., then (xfljtt = I - - x(9a).

(t;) Clearly it suffices to show that if x is a variable, then x((9a)y) = x(6(or)).

In fact, x((ea)v) = <x<9o))7 - ((xfl)<r)y = (xO)(ffy) * x(9(ffV)), by (b). •

22 Chapter 1, Preliminaries

Proposition 4.1(a) shows that E acts as a left and right identity for composition.

The definition of composition of substitutions was made precisely to obtain (b).

Note that (c) shows that we can omit parentheses when writing a composition

9. ...9 of substitutions.

Example Let 6=[x/f(y), y/z) and o={x/a, z/b}. Then 00 = (x/f(y), yA>, z/b}.

Let E = p(x,y,g(z)), Then E9 = p(f(y),z,g(z)) and (E9)o = p(f(y),b,g(b)). Also

E(8o) = p(f(y),b,g(b)) = (E9)a.

Definition Let E and F be expressions. We say E andJF are variants if there

exist substitutions 9 and O juch that E=F9 and F=Eq We also say E is a variant

of F or F is a variant of E.

Example p(f(x,y),g(z),a) is a variant of p(f(y,x),g(u),a). However, p(x.x) is not

a variant of p(x,y).

Definition Let E be an expression and V be the set of variables occurring in E.

A renaming substitution for E is a variable-pure substitution {x./y.,,..,x /y } sucli

that (x., . . . ,x) c V, the y. are distinct and (V\x J) n {y, y) = 0.

Proposition 4.2 Let E and F be expressions which are variants. Then there

exist substitutions 9 and ct such that E=F9 and F=Ecr, where 6 is a renaming

substitution for F and a is a renaming substitution for E.

Proof Since E and F are variants, there exist substitutions 9, and o, such that

E=F0. and F=Eo.. Let V be the set of variables occurring in C and let o be the

substitution obtained from a, by deleting all bindings of the form x/t, where x£V.

Ciearly F=En. Furthermore, E=F8.=F,06. and it follows that 0 must be a

renaming substitution for E. •

We will be particularly • interested in substitutions which unify a set of

expressions, that is, make each expression in (he set syntactically identical. The

concept of unification goes back to Ikrbrand [44] in 1930. It was rediscovered in

1963 by Robinson (88J and exploited in the resolution rule, where it was used to

reduce the combinatorial explosion of the search space. We restrict attention to

(non-empty) finite sets of simple expressions, which is all itiat we require. Recall

that a simple expression is a term or an atom.

Definition Let S be a finite set of simple expressions. A substitution 9 is

called a unifier for"S if S6 is a singleton. A unifier 6 for S is called a most

§4. Unification 23

general unifier (mgu) for S if, for each unifier o of 5, there exists a jubstitutionjy^

Example (p(f(x),a), p(y,f(w))] is not unifiable, because the second arguments

cannot be unified.

Example (p(f(x),z), p(y,a)} is unifiable, since a = {y/f(a}, x/a, z/a} is a

unifier. A most general unifier is 0 = (y/f(x), z/a). Note diat a = 0{x/a).

It follows from the definition of an mgu that if B and o are both mgu's of

(E,,...,E), then E,9 is a variant of E.a. Proposition 4.2 then shows that E,o can

be obtained from E,9 simply by renaming variables. In fact, problem 7 shows that

mgu's are unique modulo renaming.

We next present an algorithm, called the unification algorithm, whichjakes_a

fi n i te set of simple expressions, as input and oulpulS.an mgu_if_the set is unifiable.

Otherwise, it reports the fact that the set is not unifiable^ The intuitive idea behind

the unification algorithm is as follows. Suppose we want to unify two simple

expressions. Imagine two pointers, one at the leftmost symbol of each of the twu

expressions. The pointers are moved together to the right until they point to

different symbols. An attempt is made to unify the two subexpressions starting

with these symbols by making a substitution. If the attempt is successful, (he

process is continued with the two expressions obtained' by applying the

substitution. If not, the expressions are not unifiable. If the pointers eventually

reach die ends of the two expressions, the composition of all the substitutions

made is an mgu of the two expressions.

Definilion Let S be a finite set of simple expressions. The disagref.mf.n! set of

S is defined as follows. Locate the leftmost symbol position at which not ail

expressions in S have the same symbol and extract from each expression in S the.

subexpression beginning ai lhai symbol position. The set of all such subexpressions

is the disagreement set.

Example Let S = {p(f(x),h(y).a), p(f(x),z,a), p(f(x),h(y),b)). Then the

disagreement set is (h(y), z j .

We now present the unification algorithm. In this algorithm, S denotes a finite

set of simple expressions,

24 Chapter 1. Preliminaries

UNIFICATION ALGORITHM

1. Put and on=e,

2. If SOY is a singleton, then stop; OY is an mgu of S. Otherwise, find the

disagreement set D, of So, .

3. If there exist v and t in D. such that v is a variable thai dues not occur in t,

then put o, +. ~ a. (v/t), increment k and go to 2. Otherwise, slop; S is not

uniflable.

The unification algorithm as presented above is non-deterministic to the extent

that there may be several choices for v and t in step 3. However, as we remarked

earlier, the application of any two mgu's produced by the algorithm leads to

expressions which differ only by a change of variable names. It is clear that the

algorithm terminates because S contains only finitely many variables and each

application of step 3 eliminates one variable.

Example Let S - (p(f(a),g(x)), p(y,y)).

(a) aQ = e.

(b) DQ = (f(a), y], 0j = {y/f(a}} and SOj = [p(f(a),g(x)), p(f(a),f(a))].

(c) ^j = UOO, f(a)]. Thus S is not unifiable.

Example Let S = {p{a,x,h(g(7.))), p(z,h(y).n(y))}.

(a) OQ = E.

(b) DQ = '{a, T}, Oj = {z/a} and SOj = {p(a,xTh(g(a)», p(a,h(y),h(y))).

(c) Dj = (x, h(y)}, a2 = {z/a, x/h(y>} and Sa2 = (p(a,h(y),h(g(a))}, p(a,h(y),h(y))}.

(d) D2 = (y, g(a)}, 03 = {z/a, x/h(g(a)J, y/g(a)] and Sa3 = {p(B,h(g(a)).h(g(a)»).

Thus S is unifiable and a, is an mgu,

In step 3 of the unification algorithm, a check is made to see whether v occurs

in l. This is called the occur check. The next example illustrates the use of the

occur check.

Example Let S = (p(x,x), p(y/(y))}.

(a) O-Q = E.

(b) DQ = [x, y], Oj = (x/y) and SOj = tp(y,y), p(y,f(y))}-

(c) D. = {y, f(y)J. Since y occurs in f(y), S is not unifiable,

Next we prove that the unification algorithm does indeed find an mgu of a

imifiable set of simple expressions. This result first appeared in [88J,

§4. Unilicalion

Theorem 4.3 (Unification Theorem)

Let S be a finite set of simple expressions. If S is unifiable, then the

unification algorithm terminates and gives an mgu for S. If S is not unifiable, then

the unification algorithm terminates and reports this fact.

Proof We have already noted that the unification algorithm always terminates.

It suffices to show that if S is unifiable, then the algorithm finds an mgu. In fact,

if S is not unifiable, then the algorithm cannot terminate at step 2 and, since it

does terminate, it must terminate at step 3. Tims it does report tlie fact that S is

not unifiable.

Assume then that S is unifiable and let 9 be any unifier for S. We prove first

that, for k>(], if o, is the substitution given in the kth iteration of the algorithm,

then there exists a substitution y. such that 9 = o. y. .

Suppose first that k=0. Then we can put yw = G, since 6 = e6. Next suppose;,

for some kSO, there exists y, such that 6 = 0, y. . If So. is a singleton, then the

algorithm terminates at step 2. Hence we can confine attention to the case when

SOY is not a singleton. We want to show that the algorithm will produce a further

substitution o. , and that there exists a substitution y. . such that 9 = 0, ,y, ,.

Since So, is not a singleton, the algorithm will determine the disagreement set

D, of SOY and go to step 3. Since 6 = a, y, anil 6 unifies S, it follows t h a t y,

unifies D, . Thus D, must contain a variable, say, v. Let t be any other term in D, .

Then v cannot occur in t because vj, = ty^. We can suppose that {v/t} is indeed

the substitution chosen at step 3. Thus o. . = <V{v/t),

We now define y, , = YvMv/vy,}. If y, has a binding for v, then

* (v/tyk} u yk+1

~ lv^Y|r-t-1 1 ̂ Yfc+1

(since vyk = tyk)
(since v does not occur in t)

• = [v/OYj,.! (by tne definition of composition).

If y,.does not have a binding for v, then y,+. = y, , each element of U^ is a

variable and Y k = (v A) Y k 4 i . Thus 6 - okyk = ok(v/t}yk+] - ai t+]Yk4j. as

required.

Now we cnn complete the proof. If S is unifinble, then we have shown that ihe

algorithm must terminate at step 2 and, if it terminates at the kth iteration, then

6 = OY Y. , for some y, . Since o, is a unifier of S, this equality shows that it is

indeed an mgu for S. •

26 Chapter 1, Preliminaries

The unification algorithm which we have presented can be very inefficient. In

the worst case, its running time can be an exponential function of the length of the

input. Consider the following example, which is taken from [9]. Let

S = (p(*j xn), pffCxg.Xg),...,^^,*^))}. Then rjj = (Xj/f(x0,x0)) and Sdj -

.x),x,...,x), p (f C x , x) , f (f (K , x) , f (x , x)) , f (x T x) , f (x , x)) } . The

next substitution is C? = { x . /f^x-.x,,), x~/f(f(xn.x(.), f(x(,.x()))}, and so on. Note
IT

that the second atom in So has 2 -1 occurrences of f in its kth argument

n). In particular, its last argument has 2 -1 occurrences of f. Now recall

that step 3 of the unification algorithm has the occur check. The performance of

this check just for the last substitution will thus require exponential lime. In fact,

printing a also requires exponential time. This example shows that no unification

algorithm which explicitly presents the (final) unifier can be linear.

Much more efficient unification algorithms than the one presented above are

known. For example, [G7J and [80] give linear algorithms (see also [68]). In [80],

linearity is achieved by the use of a carefully chosen data structure for representing

expressions and avoiding the explicit presentation of the unifier, which is instead

presented as a composition of constituent substitutions. Despite its linearity, this

algorithm is not employed in PROLOG systems. Instead, most use essentially the

unification algorithm presented earlier in this section, but with the expensive occur

check omitted! From a theoretical viewpoint, this is a disaster because it destroys

the soundness of SLD-resolution. We discuss this matter further in §7.

§5. FIXPOINTS

Associated with every definite program is a monotonic mapping which plays a

very important role in the theory. This section introduces the requisite concepts and

results concerning monotonic mappings and their fixpoinis.

Definition Let S be a set. A relation R on S is a subset of SxS. •

We usually use infix notation writing (x,y)eR as xRy.

Definition A relation R on a set S is a partial order if the following

conditions are satisfied:

(a) xRx, for all xeS.

(b) xRy and yRx imply x=y, for all x.yeS.

§5. Fixpoints

(c) xRy and yRz imply xR?., for all x,y,z=S.

5
Example Let S Ire a set and 2 be the set of all subsets of S. Then set

5
inclusion, £, is easily seen to be a partial order on 2 .

We adopt the standard notation and use < to denote a .partial oider. Thus we

have (a) xSx, (b) xSy and y<x imply x=y and (c) x<y and y<z imply x<z, for all

Definition Let S be a set with a partial order £. Then a^S is an upper bound

of a subset X of S if x<a, for all xeX. Similarly, beS is a lower bound of X if

b<x, for all xeX.

Definition Let S be a set with a partial order 5. Then aeS is the least upper

bound of a subset X of S if a is an upper bound of X and, for all upper bounds a'

of X, we have a<a'. Similarly, beS is the greatest lower bound of a subset X of S

if b is a lower bound of X and, for all lower bounds, b' of X, we have b'<b.

The least upper bound of X is unique, if it exists, and is denoted by lub(X).

Similarly, the greatest lower bound of X is unique, if it exists, and is denoted by

glb(X).

lallice i f lub(X) and_ gJbrX)Definition JA_jwtiaI]y_ Qrdgred_get_J^ ̂

exist for every subset X of L.

We let T denote the top element lub(L) and X denote the bottom dement

glb(L) of the complete lattice L.

S • '''Example In the previous example, 2 under C is a complete lattice. .In fact, (

the least upper bound of a collection of subsets of S is their union and the greatest {

jower bound is their intersection. The top element is S and the bottom element is _)

0.

Definition Let L be a complete lattice and T : L->L be a mapping. We say T

is monotonic if T(x)ST(y), whenever x^y. ,_-

Definition Let L be a complete lattice and

every finite subset of X has an upper bound in X.

L. We say X is directed if

Definition Let L be a complete lattice and T : L-*L be a mapping. We say T

is continuous if T(lub(X» = Uib(T(X)), for every directed subset X of L.

28 Chapter 1. Preliminaries

By taking X - [x,y] f we see that every continuous mapping is monotonic.

However, the converse is not true. (See problem 12.)

Our interest in these definitions arises from the fact that for a definite program

P,.the.collection of all Herbrand interpretations forms a complete lattice in a

natural way and also because there is a continuous mapping associated with P

defined on this lattice^ Next we study fixpoints of mappings defined on lattices.

Defitiilion Let 1. be a complete lattice and T : L— *L be a mapping. We say

aeL is the lease fixpo in! of T if a is a fixpoint (that is, T(a)=a) and for ail fixpoints

b of T, we have a^b. Similarly, we define greatest fixpoint,

The next result is a weak form of a theorem due to Tarski [103], which

generalises an earlier result due to Knaster and Tarski. For an interesting account

of the history of propositions 5.1, 5.3 and 5.4, see [55]. .

Proposition 5.1 Let L be a complete lattice and T : L— >L be monotonic. Then

T has a least fixpoint, lfp(T)k and a greatest fixpoint, gfp(T). Furthermore, lfp(T) -

glb{x:T(x)=x} = glb[x:T(x)<;x} and gfp(T) = lub[x:T(x)-x} = lub{

Proof Put G = (x : T(x)Sx) and g = glb(G). We show that geG. Now g£x,

for all xeG, so that by the monotonicity of T, we have T(g)£T(x), for all XE<J.

Thus T(g)<x, for all xeG, and so T(g)<g, by the definition of gib. Hence geG.

Next we show that g is a fixpoint of T. It remains to show that g<T(g). Now

T(g)£g implies T(T(g))£T(g) implies T(g)eG. Hence g<T(g). so that g is a

fixpoint of T.

Now put g' = glb{x : T(x)-x). Since g is a fixpoint, we have g'^g. On the

other hand, {x : T(x)^x] £ (x : T(x)<x) and so g<g'. Thus we have g=g' and 'the

proof is compielc for IfpfT).

The proof for gfpCD is similar. I

Proposition 5.2 Let L be a complete laltice and T : L—»L be monotonic.

Suppose a=L and a<T(a). Then there exists a fixpoint a' of T such that a<a*.

Similarly, if beL and T(h)<b, then there exists a fixpoim b' of T such that b'^b.

Proof By proposition 5.1, it suffices lo put.a'^gfp(T) and b'=lfp(T). •

We will also require the concept of ordinal powers of T. First we recall some

elementary properties of ordinal numbers, which we will refer to more simply as

ordinals. Intuitively, the ordinals are what we use to count with. The first ordinal 0

§5. Flxpoinls

is defined lo be 0. Then we define I = (0| = (0), 2 = {0, (0}J = (0, 1],

3 = {0, (0), J0, [0))) = (0, .1, 2}, and so on. These are the finite ordinals, the

non-negative integers. The first infinite ordinal is ft) = [0, 1, 2,..,), the set of all

non-negative integers. We adopt the convention of denoting finite ordinals by

roman letters n, m while arbitrary ordinals will be denoted by Greek letters a,

P,.... We can specify an ordering < on the collection of a] (ordinals by defining

a<P if CCEfi. For example, n<03, for ail finite ordinals n. We will normally write

new rather than n<w. If a is an ordinal, the successor of a is the ordinal q4 1 -•_

a u {a}, which is the icast_ordinal greater thaji o._ ct+1 is then said to be a

successor ordinal. For example, 1 = 0+1, 2 = 1+1, 3 = 2+1, and so on. If a is a

successor ordinal, say a = fi+1, we denote [5 by a-1. An ordinal a is said to be a

limit ordinal if it is not the successor gf_any_ordirtal. The smallest limit ordinal

(apart from 0) is co. After to comes cn+1 - 0) u (coj , to+2 = (OH-1)+1, w+3, and .so

on. The next limit ordinal is 0)2, which is the .set consisting of all n, where new.

and all (0+n, where new. Then come co2+l, 0)2+2 co3, u>3+l,...,o>4,...,wii

We will also require the principle of transfinite induction, which is as follows.

Let P(cc) be a property of ordinals. _A^sume_i_hat for all ordinals ft, if P(y) holds for

all yep, then P(P) holds. Then P(ct) holds for all ordinals a.

Now we can give the definition of the ordinal powers of T.

Definition Let L be a complete lattice and T ; L—*L be monolonic. Then we

define

TtO = 1

T'Ta = TrrTfa-])}, if a is a successor ordinal

Tta = lubfTt f l : p<ce), if a is a limit ordinal

TJ.O =T

T-La = T(Tl(a-IJ), if a is a successor ordinal

T-la = glbjTJ-p : p<a], if a is a limit ordinal

Next we give a well-known characterisation of ifp(T) and gfp(T) in (crms of

ordinal powers of T.

Proposilion 5.3 Let L be a complete lattice and T : L->L be. monotonic.

Then, for any ordinal a, Tta < IfpfT) and Tin ^ gfp(T). Furthermore, there exist

ordinals pf and P2 such that f{ Z ${ implies T^ = lfp(T) and J2 Z P2 implies

30 Chapter 1. Preliminaries

Ji lK"

Proof The proof for lfp(T) foliows from (a) and (e) below. The proofs of (a),

(b) and (c) use transfinite induction.

(a) For all a. TTa <. lfp(T):

If a is a limit ordinal, then TTa = lub{TTp : P<a} <, lfp(T), by the induction

hypothesis. If or is a successor ordinal, then TTa = T(TT(a-l)) ^

T(lfp(T)) = Ifp(T), by the induction hypothesis, the monotonicity of T and the

fixpoint property.

(b) For all a, TTa£TT(a+l):

If a is a successor ordinal, then TTa = T(TT(a-l)} £ T{TTa) - TT(a+l),

using the induction hypothesis and the monotonicity of T. If a is a iimit

otdinal, then TTa = lub{TTp : p<a] ^]ul>{TT(p+l) : p<a) < T(lub{TTp :

p<a)) = TT(a+l)., using the induction hypothesis and monotonicity of T.

(c) For all a,p, a<p implies TTa <. TTp:

If P is a limit ordinal, then TTa £ lub{TTy : y<;p) = TTp. If p is a successor

ordinal, then a 5 (M and so TTa < TT(p-l) £ TTp, using the induction

hypothesis and (b).

(d) For Ed! a,p, if a<P and TTa = TTp, then TTa = lfp(T):

Now TTa £ TT(rt4l) S TTp, by (c). Hence TTa = TT(a+l) = T(TTa) and so

TTa is a fixpoint. Furthermore, TTa = ffp(T), by (a).

(e) There exists p such that y2 p implies TTy = lfp(T):

Let a be the least ordinal of cardinality greater than the cardinality of L.

Suppose that TTS / lrp(T), for aJl 5<a, Define h:a-»L by h(5) •=• TT6. Then,

hy (d), h is injective, which conlrndicts the choice of a. Thus TTp = lfp(T), for

some p<«, and the result follows from (a) and (c).

The proof for gfp(T) is similar. •

The least a such that TTa = lfpITl.l^_calted the closurejjrdinal o{ T. The next

result,_which is \isualiy__3ltributed__to KIeen_e,_ sliows that under the stronger

assumption that T is continuous, the closure ordinal. of T is < m.

Proposilion 5.4 Lc^ L_be_a_

= TTo>.

Problems (or Chapter 1 31

I'roor By proposition 5.3. it suffices to show that "I'Toi is a fixpoim. Note that

{TTn : new) is OJre.cted, since T is monotonic. Thus TfTTtuJ = T(lub{TTn :

new}) = lub(T{TTn) : nefo) = TT(u, using the cont inui ty of T. •

The analogue of proposition 5.4 for gfp(T) does not hold, that is, gfp(T) may

not be equal to I'J-oj. A counterexample is given in the next section.

PROBLEMS FOR CHAPTER 1

1. Consider the interpretation I:

Domain is the non-negative integers

s is assigned the successor function x — > x+1

a is assigned 0

b is assigned 1

p is assigned the relation !(x,y) : x>y]

q is assigned the relation (\ x>0)

r is assigned the relation {(x.y) : x divides y)

For each of the following closed formulas, determine the truth value of the formula

wrt I:

(a) Vx3yp(X,y)

(b) 3xVyp(x,y)

(c) p(s(a),b)

(d) Vx(q(jE)-»p(x,a))

(e.) Vxp(s(x),x)

(g) r(s(b),s(x)) -> q(x))

2. Determine whether the following formulas are valid or not;

.(a) V*3yp(x,y) — * 3yVxp(x,y)

(b) 3y Vxp(s,y) -4 Vx3yp(Jt ,y)

3. Consider ihc formula

(Vxp(x.x) A VxVyVzi(p(x,y)Ap(y,7,)J-*P(K.z)] A VxVy [p(x,y)vp(y,x)]) -t 3yVxp(y.x>

(a) Show that every interpretation with a finite domain is a model.

(b) Find an interpretation which is not a model.

4. Complete the proof of proposition 3.2.

5. Let W be a formula. Suppose that each quantifier in W has a distinct variable.

32 Chapter 1. Preliminaries

following it and no variable in W is both bound and free. (This can be achieved

by renaming bound variables in W, if necessary.) Prove that W can be transformed

to a logically equivalent formula in prcnex conjunctive normal funn (called a

pre.nex conjunctive normal form of W) by means of the following transformations:

(a) Replace

all occurrences of F<— G by Fv-G

all occurrences of F^->G by (Fv-G)A(-FvG).

(b) Replace

~VxF by 3x~F

~3xF by Vx-F

~(FvG) by -FA-G

-(FAG) by ~Fv~G

—F by F

until each occurrence of - immediately precedes nn atom.

(c) Replace

3xFvG by 3x(FvG)

Fv3xO by 3x(FvG)

VxFvG by Vx(FvG)

FvVxG by Vx(FvG)

by 3x(FAG)

by 3x(FAG)

VxFAG by

FAVxG by

until all quantifiers are at the front of the formula.

(d) Replace

(FAG)vH by (FvH)A(GvH)

Fv(GAH) by (FvG)A(FvH)

until the formula is in prenex conjunctive norma] form.

6. Let W be a closed formula. Prove that there exists a formula V, which is a

conjunction of clauses, such that W is unsatisfiable iff V is unsatisfiable.

7. Suppose 0, and 9~ are substitutions and there exist substitutions O", and CT-, such

that 0, = O^CTI and D~ = 0,a?. Show that there exists a variable-pure substitution

f such that 0, = O^y.

Problems for Chapter 1 33

8. A substitution 0 is idcm/wenl if 9 = 60. Let 0 = (x^t j xn^n} aild suppose. V

is the set of variables occurring in terms in)tj....,tn). Show that 9 is idcmpotcnt

iff [x j x n) n V = 0.

9. Prove that each mgu produced by the unification algorithm is iriempotent.

10. Let 9 be a unifier of a finite set S of simple expressions. Prove that 6 is an

mgu and is idempotent iff, for every unifier CT of S, we have CT = 60.

11. For each of the following sets of simple expressions, determine whether mgit's

exist or not and find them when they exist:

(a) {p(f(y),wTg(z}}, ptu.u.v)}

(b) (p(f<y),w,g(z)),p(v,u,v))

(c) {p(a,x,f(g(y}))r p(Z,h(Z,w),f(w)»

12. Find a complete lattice L and a mapping T : L-»L such that T is monotonic

but not continuous.

13. Let L be a complete laitice and T : L-»L be monotonic.

(a) Suppose aeL and a£T(a). Define

T°(a) - a

T^la) = T(Ta~1(a)), if a is a successor ordinal

T°(a) = lub{TP(a): fi<a), if a is a iimit ordinal.

Prove that there exists an ordinal P such that T' (a) is a fwpoint of T and 3<T (a).

(b) Suppose beL and T(b)£b. Define

T°(b) = b
TCt(b) = TfT0" (b», if a IR a successor ordinal

1W(b) = glb[1^(b) : P<a), if a is a limit ordinal.

Prove dial there exists an ordinal y such that T^(b) is a fixpoint of T and TT(b)<b.

Chapter 2

DEFINITE PROGRAMS

This chapter is concerned with the declarative and procedural semantics of

definite programs. First, we introduce the concept of the least Herbrand jnodel of

a definite program and prove various iniportat^j^operties_o^jucJi_rriodE:ls.L Next,

we define correct answers, which provide a declarative description ofjhe^desircd

outpntjrgrn a pfBgragLflnd-S-EQal. The procedural counterpart of a correct answer

is a computed answer, which is jdefined usmg_JSLD;resglutigti. We prove that

every computed answer is correct and that every correct answer is an instance of a

computed answer. This establishes the soundness and completeness of SLD-

resolution, that is, shows that SLU-resolution produces only and all correct

answers. Other important results established arc ihe independence of the

computation rule and the fact that any computable function can be computed by a

definite program. Two pragmatic aspects of PROLOG implementations are also

discussed. These are the omission of the occur check from the unification

algorithm and the conlro! facility, cut.

§6. DECLARATIVE SEMANTICS

This section introduces the least Herbrand model of a definite program. This

particular model plays a central role in ihe theory. We show thai the least

Herbrand model is precisely the set of ground atoms which are logical

consequences of the definite jrrograrn. We alsQ_obtain an imponam_flxpoinl

characterisation of the lenst Herbrand model. Finally, we define the key concept of

correct answer.

First, let us recall some definitions given in the previous chapter.

36 Chapter 2. Definite Programs

Definition A definite, program clause is a clause of the form

.,...,r n
which contains precisely one atom (viz. A) in its consequent. A is called the head

and Bj,...,Bn is called the body of the program clause.

Definition A definite program is a finile set of definite program clauses.

Definition A definite goal is a clause of the form

that is, a clause which has an empty consequent.

In later chapters, we will consider more general programs, in which the body

of a program clause can be a conjunction of literals or even an arbitrary formula.

Laier we will also consider more general goals. The theory of definite programs is

simpler than the theory of these more general classes of programs because definite

programs do not allow negations in the body of a clause. This means we can avoid

the theoretical and practical difficulties of handling negated, subgoals. Definite

programs thus provide an excellent starting point for the development of the
theory,

Proposition 6.1 (Model IntersectionJProperty)

Pr"gram anc) f ^ a non-enipty set of Herbrand

models for P. Then n. ,M. is an Herbrand model for P.

Proof Clearly n. .M. is an Herbrand inlerpretation for P. It is straightforward

to show that ^-^jM. is a model for P. (See problem 1.) •

.
Since every definite program P has Bp as an Herbrand mode!, the set of all

Herbrand models for P is non-empty. Thus the intersection of all Herhrand models

for P is again a model,-called the Ieast_Herbrand model for P. We denote ihis

model by M~p.

The intended interpretation of a definite program P^can, of course, bcjiifferent

from Mp. However, there are very strong reasons for regarding MD as the natural

interpretation of a program. Certainly, it is usual for the programmer to have in

mind the "free" interpretation of the constants and function symbols in the

program given by an Herbrand interpretation. Furthermore, the next theorem shows_

£iat the atoms in_Mp _are^ precisely those that airjpgc4_cgjisogjicjices_of_jhe_

program. This result is due to van Emden and Kowalski [107].

§6. Declarative Semantics 37

Theorgni_6j Let P be a definite program. Then Mp = [AeBp : A js a logical C

consequence of P). J

Proof We have that

A is a logical consequence of P

iff P u (~A) is unsatisfiable, by proposition 3.1

iff P U (-A} has no Herbrand models, by proposition 3.3

iff -A is false wrt all Herbrand models of P

iff A is true wit all Herbrand models of P

iff AeMp. •
/"

We wish to obtain a deeper characterisatioji, of Mp using fixpoint concepts. For

this we need to associate a complete lattice with every definite program.

Let P be a definite program. Then '2 p, which is the set of all^Hcrbrand

interpretations of P, is a complete lattice under the partial order of set inclusion

C - The top element of this lattice is Bp and the bottom element is 0. The least

upper bound of any set of Herbrand interpretations is the Herbrand interpretation

which is the union of all the Herbrand interpretations in the set. The greatest

lower bound is the intersection.

Definition Ixt P be a dcfmitc_ program. The mapping Tp̂ : 2 p -» 2 F ̂

defined as follows. Let I be an Herbrand interpretation. Then Tp(l) =

: A«-A,,...,A is a ground instance of a clause in P and I).

Clearly Tp is monotonic. Tp provk!es__the_link : between the_ declarative and

procedural semantics_Q.f P,. This definition was first given in [107],

Example Consider the program P
I

Put

) «- p(x)

= Bp, I2 = and f ? = 0. Then = {q(a)J u {p(f(0> : teUp).

U {p(f(f(0» : ieUp} and Tp(I3) = 0.

Proposition 6J Let P be_a definite program. Then the mapping Tp^ is

continuous.

B
Proof Let X be a direcied subset of 2 F>, Note first that (Aj,...^! c 1nb(X)

iff j A j A J cl. for some leX. (See problem 3.) In order to show Tp is

continuous, we have to show Tp(lub(X)J = lub(Tp(X)), for each directed subset X.

36 Chapter 2. Definite Programs

Now we have that

AeTp(Iub(X)}

iff Af-Aj An is a ground instance of a clause in P and (A,,...,A } c lub(X)

iff Af-A.,...,A is a ground instance of a clause in P and (A,,,..,A } £ I, for

some 1<=X

iff AeTp(I), for some leX

iiTAelub(Tp(X)). •

Herbrand interpretations which are models can be characterised in terms of Tp.

Proposition 6.4 Let P be a definite program and I be an Herbrand

interpretation of P. Then I is a model for F iff Tp(I) c I-

Proof I is a model for P iff for each ground instance A<-A,,...,A of each

clause in P, we have {A(I...,An) c I implies Ael iff Tp(J) c I. •

Now we come to the first major result of the theory. This theorem, which is

due to van Emden and Kowalsfci [107], provides a fixpoint characterisation of the

least Herbrand model of a definite program.

Theoremji.5 (Fixpoint Characterisation of the Least Herbrand Model)

Let P be a definite program. Then Mp = IfpfTp)

Proof Mp = glb[J : J is an Herbrand model for P)

- glb[I : TpO) £ J) . by proposition 6.4

= Ifp(Tp), by proposition 5.1

= TpTco, by propositions 5.4 and 6.3. •

However, it can happen tha t gfp(Tp) * TP4-03.

Example Consider th? program P

p(f(x)) - p(x>

TP

Then = {q(a», but g fp (T) - 0. In fact, gfp(T) - Tifu+I) .

I^et us now turn to the definition of a correct answer. This is a central concept

in logic programming and provides much of the focus for the theoretical

developments.

§G. Declarative Semantics 39

Definition Let P be a definite program and G a definite goal. An answer for

P U (G] is a substitution for variables of G.

It is understood thai the answer does not necessarily contain a binding for

every variable in G. In particular, if G has no variables the only possible answer is

the identity substitution.

Definifion Let P be a definite program, G a definite goal *— A,,...,A. and 9 an

answer for P u (G}. We say that 0 is a correct answer for^Pj-JJGJ if

V((A. A...AA,)6) is a logical consequence of P.

Using proposition 3.1, we sec that 9 is a correct answer iff

P U [~V((A.A...AA,)0)] is imsatisfiable. The above definition of correct answer

docs indeed capture the intuitive meaning of this concept. It provides a declarative

description of the desired output from a definite program ami goal. Much of this

chapter will be concerned with showing the equivalence between this declarative

concept and the corresponding procedural one, which is defined by the refutation

procedure used by the system.

As well as returning substitutions, a logic programming system may also return

the answer "no". We say the answer "no" is correct if P w (G) is satisfiable.

Theorem 6.2 and the definition of correct answer suggest that we may be able

to strengthen theorem 6.2 by showing that an answer 6 is correct iff

V((A.A...AA.)0) is true wrt the least Hernrand model uf (he program.

Unfortunately, (he result does not hold in this generality, as the following example

shows.

Example Consider the program P

p(a) t-

Lei G be lire goal t-p(x) and tf be the identity substitution. Then Mp = (p(a)) and

so Vx p(x)9 is true in Mp. However, 0 is not a correct answer, since Vx p(x)9 is

not a logical consequence of P.

The reason for the problem here is (hat ~Vx p(x) is no! a clause and iiencc we

cannot restrict attention to HerbrancJ interpretaiions when attempting to establish

the tin satisfiability of (p(a)*-} u)-Vx p(x)(. However, if we make a restriction

pn 9. we do obtain a result which generalises theorem fi.2.

40 Chapter Z. Definite Programs

Theorem 6.6 Let P be a definite program and G a definite goal ^-A.,...,,

Suppose 6 is an answer for P U {G) such that (A.A...AA.)0 is ground. Then

following are equivalent:

(a) 0 is correct.

(b) (A.A...AA,)0 is true wrt every Herbrand model of P.

(c) (A.A...AA.)6 is true wrt the Jcast Herbrand model of P.

Proof Obviously, it suffices to show that (c) implies (a). Now

(A.A...AA,)0 is true wrt the least Herbrand model of P

implies (A^^AA-IB is true wrt al! Herbrand models of P

implies -(A.A...AA,)8 is false wrt all Herbrand models of P

implies P u (-(A, A...AA.)0] has no Herbrand models

implies P U (~(AjA...AA.)0J has no models, by proposition 3.3. •

g7. SOUNDNESS OF SLl>-RESOLUTION

In this section, the procedural semantics of definite programs is introduced.

Computed answers are defined and the soundness of SLD-resolution is established.

The implications of omitting the occur check from the unification algorithm are

also discussed. Although all the requisite results concerning SLD-resolution will

be discussed in this and subsequent sections, it would be helpful for the reader to

have a wider perspective on automatic theorem proving. We suggest consulting [9],

[14], [64] or [66].

There are many refutation procedures based on the resolution inference rule,

which are refinements of the original procedure of Robinson [88]. The refutation

procedure of interest here was first described by Kowalski [48]. It was called

SLD-resolution in [4]. (The term LUSH-resolution has also been used [46].) SLD-

resolution stands for SL-resolution for Definite clauses. SL stands for Linear

resolution with Selection function. SL-resolution, which is due to Kowalski and

Kuehner [53], is a direct descendant of the model elimination procedure of

:Loveland [65]. In this and the next two sections, we will be concerned with SLD-

refutations. In §JO, we will study SLD-refutation procedures.

Definition Let G be f-A,,...,A ,...,Ai and C be A*-B.,...,B .

derived from G and C using mgu 6 if the following conditions hold:

(a) A is an atom, called the selected atom, in G.

Then G' is

§7. Soundness of SLD-ReRoldilon 41

(b) 9 is an rngu of A and A.

(c) G' is the goal MA,,...^^^ Bq,Am+),,...,Afc)e.

in resolution terminology, G' is called a resolvent of G and C,

Definition Let P be a definite program and G a definite goal. An .VLD-

derivaiion of P u [G] consists of a (finite or infinite) sequence G,,=G, G.,... nf

goals, a sequence C., C-,,... of variants of program clauses of P and a sequence 0,,

9-,,... of mgu's such that each G. . , is derived from G. and C.^ using 6^+j.

Each C- is a suitable variant of the corresponding program clause so that C.

does not have any variables which already appear in the derivation up to G. H .

This can be achieved, for example, by subscripting variables in G by 0 and

variables in C. by i. This process of renaming variables is called standardising the

variables apart. It is necessary, otherwise, for example, we would not be able to

unify p(x) and p(f(x)) in ^p(x) and p(f(x))«-. Each program clause variant Cj ,

CU,... is called an input clause of the derivation.

Definition An SLD-refutation of P u [GJ is a finite SLD-derivation of

P u (G) which has the empty clause u as the last goal in the derivation. If G = n,

we say the refutation has length n.

Throughout this chapter, a "derivation" will always mean an SLD derivation

and a "refutation" will always mean, an SLD-refutation. We can picture SLD-

derivatJons as in Figure t.

It will be convenient in some of the results 10 have a slightly more general

concept available.

Definition An unrestricted SLD-refutation is an SLD-refutation, except that we

drop the requirement that the substitutions 0- be most general unifiers. They are

only required to be unifiers.

SLD-derivation5 moy be finite or infinite. A finite SLD-derivation may be

successful or failed. A successful SLD-derivation is one that ends in the empty

clause. In other words, a successful derivation is just a refutation. A failed SLD-

derivation is one that ends in a non-empty goal with the property that the selected

atom in this goal does not unify with the head of any program clause. Later we

shall see examples of successful, failed and infinite derivations (sec Figure 2 and

Figure 3).

42 Chapter 2. Definite Programs

Fig. 1. An SLD-derivation

Definition Let P be a definite program. The success set of P is die set of all

such that P u [f-A] has an SLD -refutation.

The success set is the procedural counterpart of ilic least Hcrbrand model. We

shall see later that the success set of P is in fact equal to the least Herbrand model

§7. Soundness of SLD-Resolution 43

•of P. Similarly, we have the procedural counterpart of a correct answer.

Definition Let P be a definite program and G a definite goal. A computed

answer 9 for P\J (GJ is the substitution Obtained by restricting the composition

0,...0 to the variables of G, where 9.,...,6 is the sequence of mgu's used in an

SLD refutation .of P_LJ (G) .

Example If P is the slowsort program and G is the goal <--sort(17.22.6.5.nil,y),

then (y/5.6.17.22.nil) is a computed answer.

The first soundness result is that computed answers are correct, in the form

below, this result is due to Clark [16],

Theorem 7.1 (Soundness of SLD-Resolution)

Let P be a definite program and .'-3 a definite goal. Then every computed

answer for P u {GJ is a correct answer for P u [G}.

Proof Let G be die goal *—A,,...,A, and 9.,...,9 be the sequence of

mgu's used in a refutation of P U (G|. We have to show that

V((A«A,..AA.)9,..,8) is a logical consequence of P, The result is proved by

induction on the length of the refutation.

Suppose first that n=l. This means that G is a goal of the form «— A,, the

program has a unit clause of the form A<— and A,0, = A9.. Since A . 9 , f — is an

instance of a unit clause of P, it follows that V(A.9,) is a logical consequence of

P.

Next suppose that the result holds for computed answers which come from

refutations of lengdi n-1. Suppose 9-,.,.,6 is the sequence of mgu's used in a

refutation of P u (G} of length n. Let A*—B.,...,B (q20) be the first input clause

and A the selected atom of G. By the induction hypothesis,

V((A.A...AA .AB.A...AB AA ,A...AA.JG....9) is a logical consequence of P.

Thus, if q>0, V((B,A...AB)0....6) is a logical consequence of P. Consequently,

V(A 0....9), which is the same as V(A9)...9n)> is a logical consequence of P._

Hence V((A,A...AA,)0,...6) is a logical consequence of P. •

Corollary 7.2 Let P be a definite program and G a definite goal. Suppose

there exists an SLD-rcfuiation of P u [G}. Then F u {G) is unsatisfiablc.

Proof Let G be the goal *-A. A. . By theorem 7.1, (he computed answer 0

coming from the refutation is correct. Thus VffA.A...AA,)9) is a logical

44 Chapter 2. Definite Programs

consequence of P. It follows that P u (OJ is unsatisfiable. •

Corollary 7.3 The success set of a definite program is contained in its least
Herbrand model.

Proof Let the program be P, let AeBp and suppose P w (*— A] has a
refutation. By theorem 7.1, A is a logical consequence of P. Thus A is in the least
Herbrand model of P. •

It is possible to strengthen corollary 7.3. We can show that if AEBp and

P u [*-A) has a refutation of length n, then AeTptn. This result is due to Apt
and van Emden [4],

If A is an atom, we put [A] = {A'eBp : A'=A9, for some substitution 0}.

Thus (AJ is the set of aJI ground instances of A. EquivaJently, [A] is [A]., where J
is the Herbrand pre-interpretation.

Theorem 7.4 Let P be a definite program and G a definite goal <— A,,..., A, .

Suppose that P v f C J) has an SLD-re rotation of length n and 9,... .,9 is the

sequence of mgu's of the SLD-refutation. Tlien we have that

Proof The result is proved by induction on the length of the refutation.

Suppose first tfiat n=l. Then G is a goal of the form <~A., the program has a unit

clause of the form A*— and A,G. = AO,. Clearly, [A] c TpTl and so
r A j B j J c T p T j .

Next suppose the result is true for refutations of length n-l and consider a

refutation of P u (G) of length n. Let A. be an atom of G. Suppose first that A.

is not the selected atom of G. Then A.9, is an atom of G., the second goal of the

refutation. The induction -hypothesis implies that [A.9j62...9 1 c Tp^n~^ an(1

Tpt(n-I) c Tptn, by the monolonicity of Tp.

Now suppose that A. is the selected atom of G. Let B*-B.,...,B (q>0) be the

first input clause. Then A.9, is an instance of B. If q=0, we have [B] c TpTl.

Thus [A.er..en]c[A.ej] C lBJcTpTl cTpTn. If q>0, by the induction

hypothesis, [R-8,. ..01 c TpT(n-l), for i»l,...,q. By the definition of Tp, we have
that [A.e,...Bnl cTpTn. •

Next we turn to the problem of the occur check. As we mentioned eatlicr, the

occur check in the unification algorithm is very expensive and most PROLOG

§7. Soundness of SLD-Resolullon

systems leave it out for the pragmatic reason that it is only very rarely required.

While this is certainly true, its omission can cause serious difficulties.
.*

Example Consider the program

test <— p(x,x)
p(x,f(x)) <-

Given the goal f-test, a PROLOG system without ihe occur check will answer

"yes" (equivalently, e is a correct answer)! This answer is quite wrong because

test is not a logical consequence of the program. The problem arises because,

without the occur check, the unification algorithm of die PROLOG system will

mistakenly unify p(x,x) and p(y,f(y)).

Thus we see that the lack of occur check has destroyed one of the principles

on which logic programming is based - the soundness of SLD-resolution.

Example Consider the program

lest «— p(x,x)

p(x,f(x)) f- p(x,x)

This time a PROLOG system without the occur check will go into an infinite loop

in the unification algorithm because it will attempt to use a "circular" binding

made in the second step of the computation.

These examples illustrate what can go wrong. We can distinguish two cases.

The first case is when a circular binding is constructed in a "unification", but this

binding is never used again. The first example-illustrates this. The second case

happens when an attempt is made to use a previously constructed circular binding

in a step of the computation or in printing out an answer. The second example

illustrates this. The first case is more insidious because there may be no indication

that an error has occurred.

While these examples may appear artificial, it is important to appreciate that

we can easily have such behaviour in practical programs. The most commonly

encountered situation where this can occur is when programming with difference

lists [21]. A difference list is a term of Jie form x-y, where - is a binary function

(written infix), x-y represents the difference between the two lists x and y. For

example, 34.S6.J2.x-x represents the list [34, 56, 17}. -Similarly, x-x represents the

empty list.

46 Chapter 2. DofinHe Programs

Let US say two difference lists x-y and z-w are compatible if y=z. Then

compatible difference lists can be concatenated in constant' time using the

following definition which comes from [21]

concat(x-y,y-7,x-z) <—

For example, we can concatenaie 12.34.67.45.x-x and 36.89.y-y in one step to

obtain I2.34.67.45.36.89.z-z. This is clearly a very useful technique. However, it

is also dangerous in the absence of the occirr check.

Example Consider the program

test *— concat(u-u,v-v,a.w-w)

concat(x-y,y-z,x-z) «—

Given the goal f-test, a PROLOG system without the occur check will answer

"yes". In other words, it thinks thai the concatenation of the empty fist with the

empty list is the list fa j f

Programs which use the difference list technique normally do not have an

explicit concat predicate. Instead the concatenation is done implicitly. For

example, the following clause is taken from such a version of quicksort [93].

Example Consider the program

qsort(nil.x-x) «-

Given the goal «-q5ort(nil,a.y-y), a PROLOG system without the occur check will

succeed on the goal (however, it will have a problem priming out its "answer",

which contains the circular binding y/a.y).

It is possible to minimise the danger of an occur check problem by using a

certain programming methodology. The idea is to "protect" programs which could

cause problems by introducing an appropriate top-level predicate to restrict uses of

the progranj to those which are known to be sound. This means that llicie must be

some mechanism for forcing all calls to the program to go through this top-level

predicate. However, with this method, the onus is still on the programmer and it

thus remains suspect. A better idea [82J is to have a preprocessor which is able to

identify which clauses may cause problems and add checking axle lo these clauses

(or perhaps invoke the full unification algorithm when these clauses are used).

§8. Completeness of SLD-Resotutlon 47

§8. COMPLETENESS OF SLD-RESOLUTfON

The major result of this section is the completeness of SLD -resolution. We

begin with two vc<y useful Icmmns.

Lemma 8.1 (Mgu Lemma)

Let P be a definite program and G a definite goal. Suppose that P u [G} has

an unrestricted SLD-refutation. Then F U [GJ has an SLD-refutation of the same

length such that, if 0,,...,e are the unifiers from the unrestricted SLD-refutation

and 8' ,..,fl' are the mew's from the SLD-refutation, then there exists a substitutionr n fc

y such thai Bj.-.S - 9\...9'f.

Proof The proof is by induction on the length of the unrestricted refutation-

Suppose first that n=l. Thus P U {G} has an unrestricted refutation GQ=G, Gj=D

with input clause C, and unifier 9.. Suppose 9', is an mgu of the atom in G and

the head of the unit clause C,. Then D I = 9'̂ , for some f. Furthermore, P u (G)

has a refutation G0=G, G,= n with input clause Cj and mgu 6^.

Now suppose the result holds for n-1. Suppose P U 1C) has an unrestricted

refutation G0=G, G. ,...,Gn= n of length n with input clauses C,,...,Cn and unifiers

0, 0 . There exists an mni 0', for the selected atom in G and the head of C,
I n i *

such that B, = e'jp, for some p. Thus P u (G) has an unrestricted refutation

GQ=O, Gj, G2...-,G =n with input clauses Cj Cn and unifiers 0j, p62, 8,, Bn.

where G^G'jp. By the induction hypothesis. PUEG' . ,) has a refutation

G1,, G' ...,G^=o with mgu's B2f.. .,9^ such that p62-..en = ^'A7' for some y.

Thus Pu (G) has a refutation GO=G, Gj G'n= D with mgu's ®\'-$'n such that

Lemma 8.2 (Lifting Lemma)

Let P be a definite program, G a' definite goal and 0 a substitution. Suppose

there exists an SLD-rcfuiatiwn of P u [G0J. Then there exists an SLD -refutation

of P u (G) of the same length such that, if 6, On are the mgu's from the SLD-

refutation of P u (GB) and 8',,...̂ a.-, the niRu's from the SLD-refutation of

P u {G), then there exists a substitution ysuch that 60j...0n = 0'j... 6^y.

Proof Suppose the first input clause for the refctprion of P u (GB) is Cj, the

first mgu is H, and G, is the goal which results from the first step. We may

Rssume 9 does not set on any variables of Cj. Now BBj is a unifier for the head

of C, and the atom in G which rorreKponds to the selected atom in G8. The result

48 Chapter 2. Definite Pmgrams

of resolving G and C, using 99. is exactly G,. Thus we obtain an unrestricted

refutation of P u (G], which looks exactly like the given refutation of P ̂ (G9},

except the original goal is different, of course, and the first unifier is 60,. Now
apply the mgu lemma. •

The first completeness result gives the converse to corollary 7.3. This result is
due to Apt and van Emden [4], _ ________

Theorem 8.3 The success set of a definite program is equal to its least \d model. ..._. J

Proof Let the program be P. By corollary 7.3, it suffices to show that the

least Herbrand model of P is contained in the success set of P. Suppose A is in

the least Herbrand model of P. By theorem 6.5, AeTptn, for some new. We

prove by induction on n that AeTpTn implies that P u (*—A} has a refutation and
hence A is in the success set.

Suppose first that n=I. Then AeTptl means that A is a ground instance of a
unit clause of P. Clearly, P u {<~AJ has a refutation.

Now suppose that the result holds for n-1. Let AeTpTn. By the definition of

Tp, there exists a ground instance of a clause IM-B. B, such that A=B9 and

(B|9 B^Q] c Tpt(n-i), Jmjjomejt. By (he induction hypothesis, P u {*~B-0J

has a refutation, for i=l,...,k. Because each B.6 is ground, these refutations can be

combined into a refutation of P u (*-(Bj Bfc)8). Thus P u f-*-AJ has an

unrestricted refutation and we can apply thejngu lemma jo obtain a refutation of
Fu f«-A). I I

L.

The next completeness result was first proved by Hill [46]. Sec also [4J.

Theorem 8.4 Let P be a definite program and G a definite goal. Suppose that

P u {GJ is unsatisfiable. Then there exists an SLD-refutation of P u (G).

Proof Let G be the goal «—A.,...,A,. Since P ̂ (G) is unsatisfiable, G is

false wrt Mp. Hence some ground instance G6 of G is false wrt Mp. Thus

[A.8,...,A, 0) C Mp. By theorem 8.3, there is a refutation for P V {*-Aj0|, for

i=l,...Jc. Since each A.9 is ground, we can combine these refutations into a
refutation for P u (GO). Finally, we apply the lifting lemma. H

Next we turn attention to correct answers. It is not possible to prove ihe exact

converse of theorem 7.1 because computed answers are always "most general".

§9. Independence ol Ihe Compulation Ruls 49

However, we can prove that every correct answer is_ an instance of a computed

answer.

-Lemma. 8.5 Let P be a definite program and A an atom. Suppose that V(A) is

fl logical consequence of P. Then there exists an SLD-refutation of P U {<— A)

with the identity substitution as the computed answer.

Proof Suppose A has variables x.,...,x . Let a,,...,a be distinct constants not
rr i n 1 n

appearing in P or A and let 8 be the substitution {x,/a.,...,x ,,/al. Then it is cleat'i x n n *̂
that A9 is a logical consequence of P. Since AS is ground, theorem S.^sbows that

P u [*— A9) has a refutation. Since the a. do not appear in P or A, by replacing a,

by x- (i=l,...,n) in this refutation, we obtain a refutation of P u («— A) with the

identity substitution as the computed answer. B

Now we are in a position in prove the major completeness result. This result

is due to Clark [16]. _ ______ ______ ___

Theorem 8.6 (Completeness of SI.D-Resolution) j

I.el P be fl definite program and G a definite goal. For every correct answer 0 I

for P u (G), there exists a computed answer o for P u (G) and a substitution 7

such that 9 = cry. r ___ ___ ________ __ _ _______ _

Proof *~A^,...,Ar Since 8 is correct,Suppose G is the goal ~ ^ , . . . , r .

V((AjA...AA,)0) is a logical consequence of F. By lemina 8. 5, J there exists P

refutation oi Pu (f-A.9) such thai the computed answer is ihe identity, for

i=lf....k. We can combine these refutations into a refutation of P u (G9J such

that the computed answer is Uie identity.

Suppose Ihe sequence of mgu's of the refutation of P u {G9} is Hj,...,fl

Then G96. ...9 =G9. By the lifting lemma, mere exists a refutation of P U {GJ

with mini's 9', ,...,9' such that 09, ...R . = 01 ...9' 7', for some substitution v'. Let CT
0 1 n 1 n I n' '

be 0J...9' restricted to die variables in G. Then 9 = cry, where y is an appropriate

restriction uf y . C

§9, INDEPENDENCE OF THE COMPUTATION RU1,E

In this section, we introduce the concept of a compulation rule, which is used

tn select atoms in an SLD-derivfltion. We show that, for any choice of

computation rule, if P u |G| is unsatisfiflbfe, we can always find a refutation

