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This paper presents a fully automated segmentation and classification scheme for mam-

mograms, based on breast density estimation and detection of asymmetry. First, image

preprocessing and segmentation techniques are applied, including a breast boundary

extraction algorithm and an improved version of a pectoral muscle segmentation scheme.

Features for breast density categorization are extracted, including a new fractal dimension-

related feature, and support vector machines (SVMs) are employed for classification,

achieving accuracy of up to 85.7%. Most of these properties are used to extract a new set

of statistical features for each breast; the differences among these feature values from the

two images of each pair of mammograms are used to detect breast asymmetry, using an

one-class SVM classifier, which resulted in a success rate of 84.47%. This composite method-

ology has been applied to the miniMIAS database, consisting of 322 (MLO) mammograms

-including 15 asymmetric pairs of images-, obtained via a (noisy) digitization procedure.

The results were evaluated by expert radiologists and are very promising, showing equal

or higher success rates compared to other related works, despite the fact that some of
them used only selected portions of this specific mammographic database. In contrast, our

methodology is applied to the complete miniMIAS database and it exhibits the reliability

ired
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of radiologists. In addition, when observing a mammographic

0
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that is normally requ

. Introduction

reast cancer, i.e., a malignant tumor developed from breast
ells, is considered to be one of the major causes for the
ncrease in mortality among women, especially in developed

ountries. More specifically, breast cancer is the second most
ommon type of cancer and the fifth most common cause of
ancer death according to Nishikawa [1].
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While mammography has been proven to be the most
effective and reliable method for the early detection of breast
cancer, as indicated by Siddiqui et al. [2], the large number
of mammograms, generated by population screening, must
be interpreted and diagnosed by a relatively small number
image, abnormalities are often embedded in and camouflaged
by varying densities of breast tissue structures, resulting in
high rates of missed breast cancer cases as mentioned by

erved.
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Wroblewska et al. [3]. In order to reduce the increasing work-
load and improve the accuracy of interpreting mammograms,
a variety of computer-aided diagnosis (CAD) systems, that
perform computerized mammographic analysis have been
proposed, as stated by Rangayyan et al. [4]. These systems
are usually employed as a second reader, with the final deci-
sion regarding the presence of a cancer left to the radiologist.
Thus, their role in modern medical practice is considered to
be significant and important in the early detection of breast
cancer.

All of the CAD systems require, as a first stage, the segmen-
tation of each mammogram into its representative anatomical
regions, i.e., the breast border, the pectoral muscle and the
nipple, as in the work by Ferrari et al. [5]. The breast border
extraction is a necessary and cumbersome step for typical CAD
systems, as it must identify the breast region independently
of the digitization system, the orientation of the breast in the
image and the presence of noise, including imaging artifacts.
The goal is to exclude the background from the subsequent
processing steps, reducing the image file size without losing
anatomic information. It should also have a fast running time
and be sufficiently precise, in order to improve the accuracy of
the overall CAD system.

The pectoral muscle is a high-intensity, approximately tri-
angular region across the upper posterior margin of the
image, appearing in all the medio-lateral oblique (MLO)
view mammograms and in 30–40% of the cranio-caudal (CC)
mammograms, as described by Andolina et al. [6]. Auto-
matic segmentation of the pectoral muscle can be useful
in many ways, according to Kwok et al. [7] and Ferrari
et al. [8]. One example is the reduction of the false posi-
tives in a mass detection procedure, because of the similarity
between the pectoral region and the mammographic glan-
dular parenchyma. In addition, the pectoral muscle must be
excluded in an automated breast tissue density quantification
method. The location of the nipple is also of great importance, as
it is the only anatomical landmark of the breast, as mentioned
by Andolina et al. [6], and can therefore serve as a key point
for the whole mammographic image. Most CAD systems use
the nipple as a registration point for comparison, when try-
ing to detect possible asymmetry between the two breasts of
a patient, according to Yin et al. [9]. These automatic methods
can also use the nipple as a starting point for cancer detec-
tion, as cancer appears in the glandular/ductal (not the fatty)
tissue of the breast, which ends at the nipple and appears as a
“cone” to the remaining breast area, as mentioned by Knauer-
hase et al. [10]. In addition, radiologists pay specific attention
to the nipple, when examining a mammogram, according to
Chandrasekhar and Attikiouzel [11] and Méndez et al.[12].

Another important characteristic of a mammogram is the
breast parenchymal density with regard to the prevalence of
fibroglandular tissue in the breast as it appears on a mam-
mogram. The relation between mammographic parenchymal
density levels and high risk of breast cancer was first shown by
Wolfe [13], using four distinct classes for breast parenchymal
density categorization, leading later to the BI-RADS classifica-

tion scheme proposed by De Orsi et al. [14] from the American
College of Radiology (ACR). Thus, mammographic images with
high breast density value should be examined more carefully
by radiologists, for both physiological and imaging risk fac-
b i o m e d i c i n e 1 0 2 ( 2 0 1 1 ) 47–63

tors, creating a need for automatic breast parenchymal density
estimation algorithms. In Masek [15], such algorithms are pre-
sented and a new technique, introducing a histogram distance
metric, achieves good results. Some existing algorithms, e.g.,
Bosch et al. [16] and Oliver et al. [17], use the texture infor-
mation of mammograms, in order to extract more features for
breast density estimation.

Radiologists try also to detect possible asymmetry between
the left and the right breast in a pair of mammograms, as it can
provide clues about the presence of early signs of tumors such
as parenchymal distortion, according to Homer [18]. Many
CAD systems analyze automatically the images of a mammo-
gram pair and provide results for the detection of asymmetric
abnormalities by applying some type of alignment and direct
comparison, as implemented by Yin et al. [9]. In the works of
Ferrari et al. [19] and Rangayyan et al. [20], directional analy-
sis methods are proposed, using Gabor wavelets, in order to
detect possible asymmetry.

In this work, we propose a fully automated and complete
segmentation methodology as the first stage of a multi-stage
processing procedure for mammographic images. Specifically,
we have chosen to implement and apply the algorithm pre-
sented by Masek [15] for breast boundary extraction, as the
first step of the composite processing procedure; for the sec-
ond step of pectoral muscle estimation, we enhanced the
algorithm presented by Kwok et al. [7] in order to achieve
improved results; as a third step, we propose a new nipple
detection technique, using the output of the breast bound-
ary extraction procedure, when the nipple is in profile; that
is, when it is projected on the background area of the mam-
mogram, which is the recommended and usual case. The last
algorithm, that is proposed in this work, besides locating the
nipple point, can also serve as an improvement for the exist-
ing breast boundary algorithm, which misses the nipple if
it is in profile. The improvement is obtained when updating
the breast boundary, in order to include the detected nip-
ple. Furthermore, as a fourth step, a new breast parenchymal
density estimation algorithm is proposed, using segmenta-
tion, first-order statistics and fractal-based analysis of the
mammographic image for the extraction of new statistical
features, while the classification task is performed using sup-
port vector machines (SVMs). Finally, a new algorithm is
proposed for breast asymmetry detection, using the feature
values already extracted from the breast parenchymal den-
sity estimation step, using an one-class SVM classifier. Both
techniques achieve high success rates, often higher than the
corresponding values of other algorithms in the relevant lit-
erature, while simpler and faster feature extraction methods
have been employed. Our methodology has been tested on all
the 322 mediolateral oblique view mammograms of the com-
plete miniMIAS database, which is provided by Suckling et al.
[21], giving prominent results according to specific statistical
measures and evaluation by expert radiologists, even in the
case of such a difficult (very noisy) mammographic dataset.

The rest of this paper is organized as follows: In Section
2, the mammographic image database used is described. The

pre-processing techniques, the segmentation algorithms, the
breast parenchymal density estimation method and the asym-
metry detection scheme are described in Section 3. Section
4 presents the results obtained by the proposed algorithms,

dx.doi.org/10.1016/j.cmpb.2010.11.016
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Fig. 1 – Images of the database used: (a) types of noise
c o m p u t e r m e t h o d s a n d p r o g r a m

hile the discussion and the conclusions are summarized in
ection 5.

. Dataset

he methodology presented in this work was applied on the
omplete miniMIAS database [21]. It is available online freely
or scientific purposes and consists of 161 pairs of mediolat-
ral oblique view mammograms. The images of the database
riginate from a film-screen mammographic imaging process

n the United Kingdom National Breast Screening Program.
he films were digitized and the corresponding images were
nnotated according to their breast density by expert radi-
logists, using three distinct classes: Fatty (F) (106 images),
atty-Glandular (G) (104 images) and Dense-Glandular (D) (112
mages), similar to Mavroforakis et al. [22]. Any abnormali-
ies were also detected and described, including calcifications,
ell-defined, spiculated or ill-defined masses, architectural
istortion or asymmetry. Each pair of images in the database is
nnotated as Symmetric (146 pairs) or Asymmetric (15 pairs).
he severity of each abnormality is also provided, i.e., benig-
ancy or malignancy.

Typical mammographic images are shown in Fig. 1. The
resence of high levels of noise and imaging artifacts is read-

ly observed; this makes the segmentation of the image a
emanding task. Moreover, speckle noise was added through
he original digitization processing of the film mammo-
rams. The original 0.2 mm/pixel images were resized to
.4 mm/pixel, as in Kwok et al. [7] and Chandrasekhar and
ttikiouzel [11], in order to reduce the required computational

ime, whereas the initial bit depth of 8 bits was preserved
houghout all the experiments and processing steps. It should
e noted that the very high noise levels introduced in the dig-

tal images makes the miniMIAS dataset a very hard testbed
or our methodology and this is a major reason of adopting it.

. Methodology

.1. Mammogram image pre-processing

mage pre-processing techniques are necessary, in order to
nd the orientation of the mammogram, remove the noise
nd enhance the quality of the image. Thus, (i) an algorithm
o deduce the orientation of the image is implemented, (ii) the
oise is estimated according to a specific scheme and (iii) an

mage filtering technique is adopted for enhancement.

.1.1. Image orientation
he orientation of the mammogram is determined accord-

ng to Masek [23]. The image is rotated and reflected, so that
he chest wall location, i.e., the side of the image containing
he pectoral muscle, is on the left side of the image and the
ectoral muscle is at the upper-left corner of the image. An
xample is shown in Fig. 2. In Fig. 2a, the initial image is shown,

n which the algorithm is applied. In order to determine the
hest wall location, the decreasing pixel intensity of the breast
issue near the skin-air interface (breast boundary) is used,
s Fig. 2b displays. This tissue is located by employing the
observed at a mammogram and (b) an example of a
mammogram with the breast cut off.

minimum cross-entropy thresholding technique, proposed by
Brink and Pendock [24], twice in the original image. By esti-
mating the first derivatives in these pixel transition areas,

using the appropriate convolution masks, we can determine
the chest wall location. The image is rotated, in order for the
chest wall location to be placed on the left side of the image,
resulting to the image of Fig. 2c. Next, the top of the image

dx.doi.org/10.1016/j.cmpb.2010.11.016
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Fig. 2 – The different steps of the image orientation procedure: (a) initial image, (b) the pixels of the breast tissue near the
skin-air interface, (c) initial image rotated, (d) the vertical centroid extracted, (e) the asymmetric regions, (f) the final

reflected image.

is determined: At first, we extract the vertical centroid of the
image, as the row dividing the skin tissue mask into two equal
parts, as Fig. 2d shows. Then, the asymmetric regions with
respect to the vertical centroid are estimated (Fig. 2e). We
assert that the asymmetric region closest to the right side
of the vertical centroid is the tip of the breast. The image is
flipped vertically, if needed, to place this asymmetric region
below the vertical centroid, resulting in an image the right
way up as in Fig. 2f.

3.1.2. Noise estimation
As in typical film scanned mammographic images, in the
images of miniMIAS database several types of noise and imag-
ing artifacts are present, as Fig. 1a shows. Our methodology
estimates those regions and excludes them from the remain-

ing process.

Noise corresponding to high values of optical densities is
refered to as “high intensity noise”. Examples are the labels
or the scanning artifacts of Fig. 1a. In order to detect these
regions, an existing algorithm, that uses a combination of the
2-level minimum cross entropy thresholding technique [24]
as well as of logical and morphological operations, is imple-
mented.

In Fig. 1a, we can also observe “tape” artifacts. These are
defined as markings left by tapes or other shadows present-
ing themselves as horizontally running strips. This horizontal
line, corresponding to their edges, is used for the segmenta-
tion of this type of “noise” as in [15]. The methodology first
detects the high intensity noise and determines the orienta-
tion of the image. Then the image is rotated and flipped, so as
to enclose the pectoral muscle on the upper left corner, accord-
ing to the procedure described in the previous subsection.
Then, the horizontal edges of the image are enhanced, using
a 3 × 3 horizontal Sobel mask, described in detail by Sobel [25].

The tape artifact detection is completed by adopting the Radon
transform proposed by Radon [26] and performing it on the
left-half of the edge-enhanced image containing the pectoral
muscle. Obviously, the rotation angle theta of the Radon trans-

dx.doi.org/10.1016/j.cmpb.2010.11.016
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orm is set to (�/2), in order to compute the projection of the
mage onto the y-axis.

The already mentioned noise removal techniques are ade-
uate for the separation of the human tissue region from the

mage background. Other types of noise (besides of the speckle
oise, which is discussed separately in the next subsection),
uch as low intensity noise, are not considered, as their con-
ribution is negligible to the context of this work.

.1.3. Image enhancement
ue to the digitization process, the images of the database
ontain also speckle noise. In order to enhance the quality
f the image and achieve better resulting image quality and,
ence, better boundary detection and segmentation results,
his type of noise should be eliminated. After trying specific
mage filtering techniques, the method that was selected to
emove this type of noise, preserve the edges of the image and
chieve the best segmentation results, is the median filtering,
s described by Gonzalez and Woods [27]. The median filter is
alculated over a neighborhood of 3 × 3 pixels.

.2. Mammogram segmentation

.2.1. Breast boundary detection
he adopted method to detect the breast boundary of each
ammogram is described in detail in [15]. In this algorithm,

wo interfaces are estimated and then combined in order
o obtain the final one: the row-wise interface, which esti-

ates one pixel from each row as a boundary pixel and the
olumn-wise interface, which also estimates one pixel from
ach column as a boundary pixel. Each one of the two inter-

aces is divided into two parts, as shown in Fig. 3a and b,
esulting, at the end, to four estimates to be combined in order
o obtain the final one (Fig. 3c). Each of them is transformed
nto a function having one value for each row or column.

ig. 3 – The row-wise and the column-wise interfaces estimated
ow-wise interfaces, (b) column-wise interfaces, (c) final interfac
b i o m e d i c i n e 1 0 2 ( 2 0 1 1 ) 47–63 51

The algorithm relies on the idea that the skin-air interface
is the smoothest section of identical pixels near the breast
boundary. Based on that, we segment the image using a spe-
cific threshold, extract the interface and fit polynomials of
degree 5 to 10, in order to extract each one of the above four
interfaces. Then the square error between the fitted curve and
the interface is calculated, “punishing” high values of inten-
sities, in order not to detect contours internal to the breast.
This procedure is repeated for several values of the threshold
and the final estimate is chosen as the one that results in the
minimum error, when compared with the inherently smooth
polynomial.

3.2.2. Pectoral muscle detection
The region of the pectoral muscle of a mammogram is pre-
sented magnified at Fig. 4. In order to detect this region in
detail, we used the technique described by Kwok et al. [7],
which adopts a two-step segmentation scheme. The first step
is called straight line estimation and validation and approxi-
mates the boundary as a straight line, as Fig. 4a shows. This
line is given as input to the second step of processing, named
iterative cliff detection. This procedure iteratively refines the
straight line to a curve that depicts the pectoral margin more
accurately (Fig. 4b).

At the end of this process, if the bottom end of the esti-
mate is not aligned with the left edge of the image, Region
Enclosing is performed. According to this technique, the bot-
tom end is extended by a straight line parallel to the initial
straight line estimation. In order to use the updated estimate
of the pectoral muscle and not the initial straight line esti-
mation, we extend the bottom end – if needed – by a straight

line parallel to the straight line, which best fits the iteratively
refined estimate. Using this improvement of the existing algo-
rithm, we achieve better results, as it is obvious from Fig. 4 and
analytically presented in subsection 4.1. The initial straight

(a and b) and combined to determine the final one (c). (a)
e.

dx.doi.org/10.1016/j.cmpb.2010.11.016
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line
he p
Fig. 4 – Pectoral muscle segmentation procedure: (a) straight
bibliography, (c) improvement we propose, (d) difference of t

line estimation, which is used for the Region Enclosing pro-
cedure is not the best one. Thus, the bottom end of the final
estimate of Fig. 4b is not aligned with the actual boundary.
In Fig. 4c, the line used for the Region Enclosing is not the
initial one, but the straight line that best fits the iteratively
refined estimate, which results to a better estimate. The dif-
ference of the pixels of the two techniques is observed in
Fig. 4d.

3.2.3. Nipple detection
It is evident from Fig. 3c that the nipple boundary is character-
ized by high curvature or corner lines. This is the main reason
for the inadequacy of the breast boundary estimation algo-
rithm to detect the nipple, when it is in profile. We propose a
new technique to detect the nipple whenever this is in profile,
using the already estimated boundary.

The regions of a mammogram, which may contain the
nipple, correspond to the right-column, bottom-row and top-
row interfaces of the breast boundary detection algorithm,
as Fig. 3a and b shows. The algorithm uses the thresholds
selected for these interfaces. Considering a threshold value,
we assume a search area of 10 mm width, which is located on
the right of the already detected breast boundary (of a mam-
mogram facing right, Fig. 5a) and we threshold the search area,
after performing a 3 × 3 gaussian filter of 0.5 standard devia-
tion in order to minimize the noise of the background pixels.
For each row of the search area, the first zero pixel (the pixel
whose value in the initial image is smaller or equal with the
threshold value) is detected and all the previous columns are
given the value 1, creating a new binary mask ST, where T
is the threshold value. S is assumed to be an area that may
T

contain a nipple. The previous procedure is repeated for the
minimum and maximum values of the thresholds, as well as
for the intermediate values, resulting to several binary masks,
some of which are shown in Fig. 5b and c.
estimation, (b) the final estimate of the algorithm of the
ixels of the two techniques.

Considering a binary mask ST, an ellipse with moving cen-
ter at each pixel of the boundary and with variable semi-major
and semi-minor axis from 2 mm to 10 mm is drawn, trying to
model the possible presence of the nipple, as Fig. 5d shows
an ellipse having a 10 mm semi-major axis and 4 mm semi-
minor axis, which tries without success to model the nipple.
The major axis is considered to be the tangent of the boundary
at the specific point. Note that the smallest value of the axis is
smaller than the one in Chandrasekhar and Attikiouzel [11], in
order to be able to detect smaller nipples. If the pixels of the
ellipse, which are located on the right of the boundary have
also non-zero values in the binary image ST, then a possible
nipple is detected and those pixels are considered as a region
of interest (nippleROI).

Subsequently, we use the area STmax , defined as the binary
mask obtained by the largest value of the thresholds, in order
to avoid detecting possible noise pixels as being the nip-
ple. The basic idea is that the segmented mask, which is
obtained by the largest value of threshold Tmax should con-
tain at least one pixel of the nipple; otherwise, we have
detected noise as possible nipple area. Thus, a logical AND
operator is performed between each region of interest nip-
pleROI and STmax and the corresponding nippleRoi is discarded
if the result is a black binary image not containing any white
pixels.

By repeating the previous procedure for all the binary
images ST, we obtain several nippleROI’s and we consider the
largest of them as the possible nipple, as Fig. 5e indicates.

3.3. Mammogram classification
3.3.1. Breast density estimation
After the implementation of the complete segmentation
scheme, which was previously presented, we adopt a new
image pre-processing stage, in order to improve the overall

dx.doi.org/10.1016/j.cmpb.2010.11.016
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ig. 5 – Nipple detection procedure: (a) defined search area f
ipple, (d) an ellipse trying to model the nipple, (e) final nipp

uality of the images of the database for the breast density
lassification. This stage includes:
a gaussian smoothing filter, as described by Gonzalez and
Woods [27], with variable kernel size hsize and standard
deviation sigma, in order to remove the noise of the image
an unsharp filter, as declared by Gonzalez and Woods [27],
with custom convolution mask
nipple, (b) S2, (c) S3 binary masks searched for containing a
stimate.

hUNSHARP = 1
1 + a

·
[ −a a − 1 −a

a − 1 a + 5 a − 1
−a a − 1 −a

]
of variable

parameter alpha, in order to enhance the edges inside

the image

The previous parameters were automatically tuned accord-
ing to an experimentation scheme. Specifically, the following
values were given to the variables and, for each combination

dx.doi.org/10.1016/j.cmpb.2010.11.016
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Fig. 6 – Different regions for the feature extraction of the
breast density classification: (a) initial image I, (b)
54 c o m p u t e r m e t h o d s a n d p r o g r a

of values, the success rate of the breast density estimation
technique was recorded:

• hsize: 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11 (pixels × pixels)
• sigma: 0.1, 0.4, 0.7, 1.0
• alpha: 0.1, 0.4, 0.7, 1.0

The values that achieved the best success rate were:
hsize = 7 × 7, sigma = 0.4 and alpha = 0.7; these optimal values
were used as the baseline for enhancing all the images in the
database prior to any breast segmentation and parenchymal
analysis.

For the estimation of the features used for the breast
density classification scheme, we start from the complete
segmentation technique described above. According to this
process, each mammogram is analyzed to the following
regions, as Fig. 6 shows:

• The initial I image (Fig. 6a).
• The background area, labels and artifacts have been

excluded, to obtain the Back area (Fig. 6b).
• The human-tissue HuT area (Fig. 6c), which has been

obtained after extracting background, labels, artifacts and
noise from the initial image.

• The segmented breast tissue BrT area (Fig. 6d), which has
been obtained after extracting the pectoral muscle from the
human-tissue HuT area.

The first two features, used for breast density estimation,
are extracted from the Back area (no tissue or artifacts). They
analyze and model the overall noise levels of the image by
estimating the mean and variance of the pixel intensity values
of this specific area, as Eqs. (1) and (2) show:

F1 = �Back =

∑
(i,j) ∈ Back

I (i, j)

N (Back)
(1)

F2 = �2
Back =

∑
(i,j) ∈ Back

(I (i, j) − �Back)2

N (Back)
(2)

where N (R) is the number of pixels in region R.
The features F3 and F4 are estimated from the breast tissue

(BrT) area, according to Eqs. (3) and (4):

F3 = SBrT

N (BrT)
(3)

F4 = PBrT

�2
BrT

(4)

where SBrT is the graylevel-sensitive surface and PBrT the power
of the BrT area (Eqs. (5) and (6)):

(

SBrT =

∑
(x,y) ∈ BrT

I (x, y) + 1 +
∣∣I (x + 1, y) − I (x, y)

∣∣

+
∣∣I (x, y + 1) − I (x, y)

∣∣) (5)
background Back, (c) tissue-rich area HuT and (d) breast
tissue area BrT.

PBrT =
∑

(x,y) ∈ BrT

∣∣I (x, y)
∣∣2

(6)

Next, an algorithm based on the power spectrum is
employed for the computation of a fractal-related feature, as
described in Refs. [27,28]. The initial image is resized from
0.4 mm/pixel to the lower resolution of 1.6 mm/pixel (Fig. 7a),
after placing black (zero-valued) pixels to the non-HuT area.
The absolute values of the Discrete Fourier Transform (DFT)
of the derived image are estimated and averaged over the

four 2-D spectrum quarters. The estimated image is cropped
to become square and the logarithmic values over the main
diagonal of the spectral image are extracted (Fig. 7b). An expo-
nential function f (x) = A exp (Bx) + C is fitted to the extracted
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Fig. 7 – The estimation of the fractal-related feature: (a)
Initial image resized to lower resolution, (b) logarithmic
values of the cropped image of the absolute values of the
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• ROI4: the pixels I (x, y) with T1 < I (x, y) ≤ 2q − 1.
• ROI5: the pixels I (x, y) with T1 < I (x, y) ≤ T2.
ourier transform, (c) fitting an exponential function to the
ata.

-D data as Fig. 7c shows and the feature F5 = B is obtained, as
he feature related to the fractal exponent of the texture of the
uman tissue according to Kaplan [29].

Next, an inner-breast segmentation technique is per-
ormed, in order to detect the fibroglandular tissue and its
roportion to the whole breast area. For this procedure,
he human tissue area HuT is used to perform the mini-

um cross entropy (MCE) thresholding, provided by Brink
nd Pendock [24], three times, according to the following
cheme:

T is the (baseline) threshold derived from MCE at gray level
range [1, 2q − 1]
T1 is the threshold derived from MCE at gray level range
[T + 1, 2q − 1]
T2 is the threshold derived from MCE at gray level range
[T1 + 1, 2q − 1], where q is the current graylevel depth (q = 8)
The value of the threshold T2 is used to segment the main
ore of the glandular tissue from the remaining breast area,
s Fig. 8b shows. The lower threshold T1 results to a larger,
ore detailed description of the glandular tissue, as observed
b i o m e d i c i n e 1 0 2 ( 2 0 1 1 ) 47–63 55

at Fig. 8c. Note that all the possible regions combining the two
thresholds T1 and T2 are extracted, as Fig. 8a shows. This is due
to the importance of the remaining fatty tissue after each seg-
mentation (corresponding to the two thresholds), with regard
to shape and size information of the glandular tissue com-
pared to the remaining breast area. Thus, we extract the
following regions:

• ROI1: the pixels I (x, y) with 0 ≤ I (x, y) ≤ T2.
• ROI2: the pixels I (x, y) with T2 < I (x, y) ≤ 2q − 1.
• ROI : the pixels I (x, y) with 0 ≤ I (x, y) ≤ T .
Fig. 8 – Inner-breast segmentation scheme: (a) threshold
selection, (b) ROI1 and ROI2, (c) ROI3 and ROI4 and (d) ROI5.
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Table 1 – Features used for breast density estimation.

F1 = �Back F8 = �ROI2 F15 = �2
ROI4

F2 = �2
Back

F9 = �2
ROI2

F16 = r4

F3 = SBrT
N(BrT) F10 = r2 F17 = wr4

F4 = PBrT

�2
BrT

F11 = wr2 F18 = �ROI5

F5 = FE (HuT) F12 = �ROI3 F19 = �2
ROI5

pixels in ROIi as ‘on’ pixels. In order to find the x-axis cum-
mulative projection in the form of a histogram, estimate
the number (sum) of ‘on’ pixels in every row of the image. In
the same way, we obtain the y-axis histogram (cummulative

Table 2 – Features used for asymmetry detection.

F1 = FBRD
10 F14 = �Y−AXIS

ROI2
F27 = kuY−AXIS

ROI4

F2 = FBRD
11 F15 = �Y−AXIS

ROI2
F28 = mY−AXIS

ROI4

F3 = FBRD
16 F16 = skY−AXIS

ROI2
F29 = �X−AXIS

ROI5

F4 = FBRD
17 F17 = kuY−AXIS

ROI2
F30 = �X−AXIS

ROI5

F5 = FBRD
20 F18 = mY−AXIS

ROI2
F31 = skX−AXIS

ROI5

F6 = FBRD
21 F19 = �X−AXIS

ROI4
F32 = kuX−AXIS

ROI5

F7 = FBRD
5 F20 = �X−AXIS

ROI4
F33 = mX−AXIS

ROI5

F8 = N (BrT) F21 = skX−AXIS
ROI4

F34 = �Y−AXIS
ROI5

F9 = �X−AXIS
ROI2

F22 = kuX−AXIS
ROI4

F35 = �Y−AXIS
ROI5

F10 = �X−AXIS
ROI2

F23 = mX−AXIS
ROI4

F36 = skY−AXIS
ROI5
F6 = �ROI1 F13 = �2
ROI3

F20 = r5

F7 = �2
ROI1

F14 = �ROI4 F21 = wr5

Finally, for each one of the above regions ROIi, the mean
�ROIi and the variance �2

ROIi
of the pixel intensities are esti-

mated, according to Eqs. (1) and (2); for the regions ROI2, ROI4
and ROI5 a set of features are also estimated using Eqs. (7)
and (8):

ri = N (ROIi)
N (BrT)

(7)

wri =

∑
(x,y) ∈ ROIi

I (x, y)

∑
(x,y) ∈ BrT

I (x, y)
(8)

where BrT is the segmented breast tissue referred above. This
results to a total number of 21 features, as Table 1 shows. For
the classification of the images according to the breast den-
sity, Classification and Regression Trees (CARTs) as described
by Breiman [30] are used. The main motivation for adopting
this base classifier was the simplicity of these decision trees.
We used three CARTs, equal to the number of the classes.
The CART Tri is trained to output the value 1 for the images of
class i and the value 0 for all the remaining images. Thus, we
use an unknown pattern as input to all the CARTs and classify
to class j, so that output(Trj) = max{output

1≤k≤3
(Trk)}, according to

the “one-against-all” classification scheme as described by
Theodoridis and Koutroumbas [31]. Another classifier used is
the k nearest neighbor classifier, as described by Theodoridis
and Koutroumbas [31], whose results are compared with the
previous one.

Besides the CARTs and k-nn, the SVM classifier, as pre-
sented algorithmically by Mavroforakis and Theodoridis [32]
and Mavroforakis [33], was used, in order to classify all the
images to the three breast density classes. This classifier maps
the data to a high-dimensional space, where the training data
are expected to be linearly separable with high probability,
and the goal is to design an optimal hyperplane that separates
them so that the margin between classes is maximized. SVMs
present attractive advantages, such as the uniqueness and
sparseness of the solution, and have therefore been success-
fully applied to a number of applications in various fields, as
described by Byun and Lee [34] and Mavroforakis [35], includ-
ing medical diagnosis, face detection and signal processing.

For the SVM classification task, the radial basis function
(RBF) kernel was selected. The one-against-one approach was
adopted in order to deal with a 3-class problem, using the
two class SVM classifier, as described by [31]. For choice of the
b i o m e d i c i n e 1 0 2 ( 2 0 1 1 ) 47–63

hyperparameters �2 (for the RBF) and the C constant associ-
ated with the terms in the SVM’s loss function, a grid search
tecnhique was adopted.

In order to evaluate the proposed procedure, the leave-
one-out methodology was implemented, as described by
Theodoridis and Koutroumbas [31]. Accordingly, each one pat-
tern is selected as the unknown one and extracted from the
data, resulting to the training set. The classifier is trained and
then tested for the unknown pattern. The previous procedure
is repeated for all the available data, obtaining the classifica-
tion results. Apart from the leave-one-out methodology, the
leave-one-woman-out algorithm is also used for the evalua-
tion of the system, as presented by Bosch et al. [16]. According
to this technique, we leave the two images (left and right
breasts) from the same woman out of the training set and use
them as the testing set, based on the assumption of the similar
tissue features of the both breasts of one woman.

For the sake of reproducibility of the results we men-
tion the optimal values of the parameters � = (1/2�2) and C,
associated with the SVM classifier. Using the leave-one-out
evaluation technique we selected � = 2−3 and C = 8 for the auto-
matic segmentation and � = 2−2 and C = 10 for the manual
segmentation method correspondingly. Using the leave-one-
woman-out evaluation technique the values are � = 2−3 and
C = 8 for the automatic segmentation and � = 2−6 and C = 16 for
the manual segmentation method.

3.3.2. Asymmetry detection
The basic idea in the feature extraction phase is to use
the inner segmentation of the breast, already obtained from
the mammographic breast density estimation steps, to pro-
vide the necessary means for detecting possible asymmetry
between a pair of mammograms. For each mammogram, the
features described in Table 2 are calculated. Note that:

• For each one of the regions ROI2, ROI4, ROI5, consider the
F11 = skX−AXIS
ROI2

F24 = �Y−AXIS
ROI4

F37 = kuY−AXIS
ROI5

F12 = kuX−AXIS
ROI2

F25 = �Y−AXIS
ROI4

F38 = mY−AXIS
ROI5

F13 = mX−AXIS
ROI2

F26 = skY−AXIS
ROI4
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Fig. 9 – The segmentation mask and the x-axis (red) and
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Fig. 10 – One-class classification at a 2-dimensional feature
space (x1, x2). The classifier is trained according to the
-axis (blue) generated histograms. (For interpretation of
he references to color in text, the reader is referred to the
eb version of the article.)

projection), as shown in Fig. 9. Subsequently, estimate the
first-order statistics for each of these histograms, meaning
the mean value �, the standard deviation �, the skewness
sk, the kurtosis ku and the median m.
The value FBRD

i
corresponds to the feature i of the mammo-

graphic breast density estimation step (Table 1).

The feature vector of length N = 38, described in Table 2,
s estimated for each mammogram. However, in our case, we
re interested in detecting asymmetry between a pair of mam-
ograms. Thus, we should detect the cases where the values

orresponding to the left and the right mammograms differ
ignificantly. Suppose that for the left breast mammogram we
ave estimated the feature vector f and for the corresponding
ight breast mammogram the feature vector g. Then, we con-
truct the following differential features of Eqs. (9)–(11), that
an be used to detect possible asymmetry between a pair of

ammographic images:

ASYMMD
1−38 =

∣∣fi − gi

∣∣
max (fi, gi)

(9)
target patterns (yi = + 1); everything outside is considered as
an outlier (yi = − 1).

FASYMMD
39−76 =

∣∣fi − gi

∣∣ (10)

FASYMMD
77−114 =

∣∣fi − gi

∣∣3
(11)

where 1 ≤ i ≤ 38, resulting to a feature space of 114 features in
total.

For the classification of a pair of mammograms according
to a possible asymmetry, one-class classification is adopted, as
described by Tax [36]. An example of the one-class classifica-
tion scheme, using a 2-dimensional feature space, is shown in
Fig. 10. One-class classification has been used in other appli-
cations successfully, e.g., in audio classification, described by
Rabaoui et al. [37]. We train the one-class SVM classifier using
the patterns of the asymmetric cases; then, we classify all the
patterns using the trained classifier.

Using this classification scheme we try to model the class
containing the asymmetric cases, as the patterns of this
class tend to be close between themselves. All the symmetric
cases can be considered as outliers and generally as non-
asymmetric cases.

The features were processed through univariate signifi-
cance analysis, specifically T-test, as stated by Cooley and
Lohnes [38], resulting to a feature vector of pre-defined length
of 18. For the one-class SVM classification, the libSVM software
was used, as given by Chang and Lin [39]. For the kernel con-
figuration, the radial basis function (RBF) was used. In order to
test our system, the leave-one-out methodology was imple-
mented, as described by Theodoridis and Koutroumbas [31].

4. Experiments and results

4.1. Mammogram pre-processing

The pre-processing techniques were applied to the images
of the database. All the steps were successful, except for the

image orientation algorithm, which failed in 3 of the images,
where the breast was cut off, meaning that a large part of
breast tissue is not included in the image, as Fig. 1b shows.
However, this is a case of a non-acceptable mammographic
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Fig. 11 – Segmentation scheme: (a) initial image and (b)
breast boundary, pectoral muscle and nipple detected.

image. The noise is correctly detected and the tape artifacts
are excluded from the subsequent processing of the image.

4.2. Mammogram segmentation

4.2.1. Breast boundary detection
The fully automatic breast boundary detection algorithm was
tested on the images of the complete miniMIAS database.
For the evaluation of the results, the images in Wirth [40]
were used, as they correspond to the manual segmentation
masks of the same images. The statistical measures adopted
are the Tannimoto Coefficient (TC), as provided by Duda and
Hart [41] and the Dice Similarity Coefficient (DSC), as pro-
posed by Dice [42]. Considering two overlapping regions, A
and B, these indices can be defined as TC = (N(A ∩ B))/(N(A ∪ B))
and DSC = (2N(A ∩ B))/(N(A) + N(B)), having unity as the opti-
mal value. A search area of 10mm around the “ground truth”
boundary is defined, using the morphological operation of
dilation and the TC and DSC metrics between the ground truth
mask and the mask, obtained by the fully automatic breast
border detection method, are estimated, at the search area
defined before. In this way, only the region around the bound-
ary is considered, so that to obtain a more reliable measure.
We obtained the mean values of 0.900 and 0.945, for the TC and
DSC respectively, for the 322 images of the database, whereas
the corresponding standard deviations were 0.079 and 0.055.
In other words, the fully automated segmentation algorithm
gives significant results, similar to the manual segmentation
method. An example is shown in Fig. 11b.

In order to ensure the fact, that the results of this
stage are acceptable, we perform a direct comparison with
the work of Wirth et al. [43]. There, a new algorithm

for breast region segmentation using fuzzy reasoning was
proposed. The evaluation is performed by comparing the
extracted results with the same ground truth masks that
we used. The metrics that are estimated in this work are
b i o m e d i c i n e 1 0 2 ( 2 0 1 1 ) 47–63

completeness, correctness and quality, which are defined as
completeness = TP/(TP + FN), correctness = TP/(TP + FP) and qual-
ity = TP/(TP + FP + FN) correspondingly, where TP, FN and FP are
the True-Positive, False-Negative and False-Positive pixels of
the boundary. The mean values of the previous metrics of the
results of the work of Wirth et al. [43] on the 322 images of the
miniMIAS database were estimated as: completeness = 0.996,
correctness = 0.981 and quality = 0.980. The corresponding val-
ues for the algorithm that we adopted are: completeness = 0.993,
correctness = 0.996 and quality = 0.989. The obtained values are
very similar and we will employ the method of Section 3.2.1
for the remaining processing steps.

4.2.2. Pectoral muscle detection
The pectoral muscle detection algorithm described in Section
3.2.2 was tested on the images of the database and the results
were very promising. From Fig. 4, we can observe the output
obtained via the already existing algorithm. Obviously, the ini-
tial straight line approximation (Fig. 4a) is refined to a more
detailed estimate (Fig. 4b). However, the bottom end obtained
is still not aligned with the actual boundary. Using our pro-
posed modification, we achieve the estimate shown in Fig. 4c,
which improves the detection of the boundary at this specific
area. The difference of the pixels of the existing methodology
and our approach is shown at Fig. 4d from which it is readily
observer that our modified algorithm improves the estimate
at the bottom end of the curve.

For the evaluation of the proposed algorithm, the follow-
ing scheme is adopted: The existing algorithm is performed
on the image i of the database, resulting to an estimate Pi,1.
Then, our modified algorithm is performed on the same image,
resulting to another estimate Pi,2. If the difference Di of the
two estimates is more than a specific number of pixels, Diff-
Pxls, then the image is added to a set of images DiffImgs,
which, at the end, corresponds to the images on which the
proposed pectoral muscle detection algorithm gives signif-
icantly different results compared to the existing one. We
chose to set the value of DiffPxls to 20 pixels and, as the
image resolution used is 0.4mm /pixel, this results to an area of
E = 20 × 0.4 × 0.4 = 3.2mm2, which is an adequate and reason-
able threshold area to differentiate between the two methods.
At the end of this procedure, the DiffImgs set has a size of
ND = 79 images. All these images were given to an expert
radiologist for evaluation. For each image i of this set, the
radiologist gave a value to the variable Marki, according to the
following marking scheme:

• Marki = − 2, in case that the existing algorithm achieved
surely a better pectoral estimate.

• Marki = − 1, in case that the existing algorithm achieved a
slightly better pectoral estimate.

• Marki = 0, in case that both algorithms succeeded or failed
at the detection of the pectoral muscle.

• Marki = + 1, in case that the proposed algorithm achieved a
slightly better pectoral estimate.

• Mark = + 2, in case that the proposed algorithm achieved
i

surely a better pectoral estimate.

Then, the values of the metrics of average a =
(1/ND)

∑ND

i=1Marki and weighted average wa = (1/ND)
∑ND

i=1Di ·
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Table 3 – Truth table of the nipple detection algorithm.
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Table 4 – Classification results of each classifier for the
breast density estimation step using the leave-one-out
evaluation methodology.

Segmentation method Classifier used

CART k-nn SVM

Automatic 67.39% 78.57% 85.71%
Manual 68.01% 78.57% 84.16%

Table 5 – Results of the proposed breast density
estimation algorithm using the leave-one-out evaluation
methodology. Values inside parentheses are the results
obtained when using the manual segmentation method.

Breast density True class

F G D

Predicted class F 95 (92) 5 (9) 1 (1)
G 11 (11) 89 (85) 19 (17)
D 0 (3) 10 (10) 92 (94)

Table 6 – Classification results of each classifier for the
breast density estimation step using the
leave-one-woman-out evaluation methodology.

Segmentation method Classifier used

CART k-nn SVM

Automatic 65.84% 76.40% 77.02%
Manual 65.84% 76.40% 77.33%

Table 7 – Results of the proposed breast density
estimation algorithm using the leave-one-woman-out
evaluation methodology. Values inside parentheses are
the results obtained when using the manual
segmentation method.

Breast density True class

F G D

sented in Table 4. It is noteworthy that the SVM classification
scheme outperformed by far the rest of the classifiers used,
achieving a success rate of 85.71% for the automatic segmenta-
tion and 84.16% for the manual segmentation method. Table 5.

Table 8 – Results of the proposed asymmetry detection
algorithm. Values inside parentheses are the results
obtained when using the manual segmentation method.

Breast pair True class
Nipple Not visible Visible

Not detected 189 30
Detected 15 88

arki are estimated. The corresponding values are a = 0.6329
nd wa = 62.2 pixels. The fact that both metrics are clearly
ositive, results to an evidence of the better performance of
he proposed algorithm.

.2.3. Nipple detection
or the evaluation of the nipple detection algorithm, expert
adiologists annotated all the images in the database with
egard to the visibility of the nipple. If it is in profile and visible,
ts exact location was given, using a customized user inter-
ace program. The proposed nipple detection algorithm, which
hould detect a nipple, in case it is in profile, was tested and
he corresponding truth table is presented in Table 3. From
he 118 mammograms, with a visible nipple, the nipple was
orrectly detected in the 88 of them, whereas in 30 mammo-
rams no nipple was detected. These 30 mammograms were
arefully observed and in 25 of them the nipple was recognized
artly in profile (less than 1 mm). In these cases, the already
etected breast boundary has succeeded in segmenting the
ipple, i.e., including it inside the breast boundary itself. From
he 204 mammograms with no nipple in profile, a nipple was
etected to only 15 of them, resulting to false positive cases.
fter careful observation of these cases, it became apparent

hat the algorithm failed primarily due to the presence of very
igh noise levels.

An example of the results from the nipple detection pro-
ess is shown in Fig. 11b. In order to evaluate the improvement
btained by the nipple detection technique, we estimate the
ew values of the TC and DSC measures, after including the
etected nipple to the breast boundary estimation; their val-
es were 0.903 and 0.947 with standard deviations 0.078 and
.055, respectively. Although the increase with respect to val-
es derived previously, is not large in absolute value, it must
e noted that the boundary changes only in cases where the
ipple is detected (103 images) and the area of the boundary
hange, due to the nipple presence, is too small compared to
he whole breast boundary of the image.

.3. Mammogram classification

.3.1. Breast density estimation
he proposed mammographic breast density estimation algo-
ithm was tested on all the images of the miniMIAS database,
ully annotated according to the 3 breast density classes, as in
ection 2 was explained. We preserved the initial classification
cheme of 3 classes of the experts, in order to be able to com-
are directly with the algorithms of the literature. Note that
asks capable of extracting the background, obtained by man-

al segmentation of the tissue-related areas given by Wirth
40], have been used. Thus, it was possible to compare the

esults derived by the fully automated and the manually seg-

entated techniques. For the evaluation of the algorithm, the
ork in Masek [15] was used, where the Closest Point Distance
lgorithm achieved 66.15% success rate, while a previous work
Predicted class F 93 (94) 11 (15) 3 (4)
G 12 (12) 72 (70) 26 (23)
D 1 (0) 21 (19) 83 (85)

of Blot and Zwiggelaar [44] reported 65%, when applied to a
selected subset of the miniMIAS database. Both of these tech-
niques use the leave-one-out methodology for the evaluation,
so for the sake of a fair comparison we selected, in the first
stage, this technique. For the classification step, we used sev-
eral classifiers. The success rate for each one of the different
classifiers, using the leave-one-out evaluation criterion is pre-
Symm. Asymm.

Predicted class Symm. 124(119) 3 (4)
Asymm. 22(27) 12 (11)

dx.doi.org/10.1016/j.cmpb.2010.11.016
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Table 9 – Average processing time needed for each step of the algorithm for each mammogram of the database.

Step of the algorithm Average processing time (s)

1. Image preprocessing 1.1. Image orientation 0.3254
1.2. Noise estimation 1.7020 2.0394

1.3.Image enhancement 0.0120

2. Image segmentation 2.1. Breast boundary detection 5.0522
2.2. Pectoral muscle segmentation 8.2395 17.9203

2.3. Nipple detection 4.6286

3. Image classification 3.1. Breast density estimation image preprocessing 0.0043
Feature extraction 1.0689 1.0885
Classification 0.0153 1.5583

3.2. Asymmetry detection feature extraction 0.4695 0.4698
Classification 0.0003
Processing time (all steps)

The SVM classifier continues to achieve the best -among the
other classifiers- success rates of 77.02% for the automatic
and 77.33% for the manual segmentation methods, while the
corresponding truth tables are provided at Table 7 provides
the respective truth table of the SVM classifier; values inside
the parentheses correspond to the manual segmentation
method. When using the leave-one-woman-out evalua-
tion technique, the corresponding results are presented in
Table 6.

4.3.2. Asymmetry detection
The proposed asymmetry detection algorithm was applied
to all the images of the miniMIAS database, which is fully
annotated, by characterizing each pair of mammograms as
symmetric (SYMM) or asymmetric (ASYMM). Breasts in mam-
mograms are considered as symmetric organs; although they
may differ in size, the internal structures are, usually, quite
symmetric over broad areas of analysis. When true asym-
metry (i.e., real 3-dimensional asymmetry, present in both
projections, which is not the result of differences of posi-
tioning or compression) is present (either focal or global), it
may be indicative of the presence of a mass or other abnor-
mality, requiring further evaluation, as stated by Kopans [45].
The results of the algorithm are shown in Table 8. Simi-
larly to the breast density estimation algorithm, the results
derived by the fully automated and the manual segmenta-
tion techniques are presented together. The values, which
are given in the parentheses are the corresponding results
when using the manual segmentation technique. The eval-
uation of the algorithm is based on the work of Ferrari
et al. [19], where an asymmetry detection technique using
Gabor wavelets, described by Mallat [46], was presented and
tested on a custom subset of 80 images of the miniMIAS
database. The images were selected in such a way, so that
to have equal number of symmetric and asymmetric cases
and the average classification accuracy achieved was 74.4%.
Moreover, the work of Rangayyan et al. [20] presents tech-
niques to analyze bilateral asymmetry in mammograms by

combining directional information, morphological measures,
and geometric moments related to density distributions.
The techniques were applied to 88 mammograms from the
miniMIAS database, achieving classification accuracies of
21.518

up to 84.4%. The results obtained using our new proposed
algorithm were 80.75%, for the manual segmentation, and
84.47% for the automatic method. Note that our method
is computationally much simpler and, more importantly, it
is based on feature values that have already been com-
puted and used in Section 4.3.1. Thus, our method addresses
the tasks of mammographic breast density estimation and
asymmetry detection in an automatic, unified and generic
way.

4.4. Processing time

The processing time of all the previously reported steps is
estimated and presented at Table 9. The experiments were
carried out on a personal computer, equipped with an Intel
Core 2 E6600 processor at 2.4GHz and 2GB of RAM. The soft-
ware is developed on Matlab of version R2009b with no use
of specific libraries or toolboxes. The average processing time
of each mammographic image, for the whole described sys-
tem, is 21.518 s; according to our experience, this time can be
dramatically decreased if the system is written in a compiled
programming language and using speed optimization tech-
niques..

5. Discussion and conclusion

The complete system described in this paper and pre-
sented schematically in Fig. 12 was used for processing all
the images of the miniMIAS database. All the intermedi-
ate results, i.e., breast boundary detection, pectoral muscle
detection, nipple detection, asymmetry detection and breast
density estimation, were examined in detail and evaluated
by expert radiologists. It should be noted that the high level
of noise, added to the images during the digitization pro-
cess and the creation of the initial database images, makes
the fully automated segmentation process a very challenging
task.

The pre-processing techniques, which were selected to be

applied in this work, were in general proved to be effective
and successful, as the noise is correctly detected in most cases
and sufficiently removed from the remaining stages of pro-
cessing the images. The breast orientation algorithm failed

dx.doi.org/10.1016/j.cmpb.2010.11.016
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Fig. 12 – The complete system described.

n only three images, because in these cases the breast tis-
ue is cut off from the image, as already explained in Section
.1. These cases, however, are non-acceptable mammographic
mages, according to best practice and to the radiologist’s
pinion.

The implemented breast boundary detection technique,
hich is based on a simple inference, gives satisfactory

esults. This is obvious by a careful observation of the detected
oundary of the images and also verified accordingly, using
pecific statistic measures. The pectoral muscle estimate is accu-
ate and further improved, according to specific statistical

easures, through the modification we propose. The new nip-
le detection technique tries to overcome the drawback of the
reast boundary estimation method, i.e., not detecting the
ipple, when this is in profile. In this way, it can serve as
n improvement for the already established breast bound-
ry, and in addition as a key point for further processing of
he image, due to the importance of the nipple area in a

ammographic image. Note that this technique can not be
bjectively compared to the algorithms proposed in the pre-

iously published relevant literature, since the most similar
ne is the work by Chandrasekhar and Attikiouzel [11], which
ses only a small subset of the miniMIAS database and has
different target than ours. The results were evaluated by
b i o m e d i c i n e 1 0 2 ( 2 0 1 1 ) 47–63 61

expert radiologists and are promising enough to expect even
better results, when applied to high quality digital mammo-
grams.

The proposed algorithm for mammographic breast density
estimation achieves better results compared to the work of
Masek [15] and of Oliver et al. [17], although the latter one uses
only a selected small portion of the miniMIAS database. The
work of Bosch et al. [16] achieves higher success rates, albeit it
uses a different approach with higher-order textural features,
which are computationally very expensive. The work we pro-
pose in this paper uses simple first-order statistical features
and a new technique for the power spectrum estimation, mak-
ing the whole process suitable for on-line training updates and
real-time applications.

The asymmetry detection scheme uses the segmentation
already obtained via the breast density estimation procedure.
It achieves a success rate similar to or even higher than the
levels reported in the relevant literature, although it uses the
complete set of images of the miniMIAS database, instead of
a small subset, as the work of Ferrari et al. [19] and Rangayyan
et al. [20]. Therefore, our experimental results can be consid-
ered more reliable and consistent. Furthermore, the use of the
one-class classification algorithm turned out to be a simple
yet effective way to overcome the problem of the imbalanced
classes, as the asymmetric cases are about 10% of the symmet-
ric cases. The idea of the classification is to model as “target”
the asymmetric cases and consider as “outliers” all the other
cases, leading to an one-class scheme. The symmetric cases
are not specifically modelled, but simply considered as non-
asymmetric.

All the previously reported techniques can be combined
and integrated to a clinical-level CAD system. All the algo-
rithms are fully-automated and there is no need for external
assistance. In addition, the processing time is not large
enough, so each mammogram can be analyzed online; that
is, on the fly as it is inserted the system. Moreover, the pro-
posed scheme is considered to be robust against noise, as it
has been verified by its application to the miniMIAS mammo-
graphic images database, in which the noise levels are very
high and of varying nature.
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