
The Dilemma Between Arc and Bounds

Consistency

Nikolaos Pothitos and Panagiotis Stamatopoulos

Department of Informatics and Telecommunications
National and Kapodistrian University of Athens

Panepistimiopolis, 157 84 Athens, Greece
{pothitos,takis}@di.uoa.gr

Abstract

Consistency enforcement is used to prune the search tree of a Constraint
Satisfaction Problem (CSP). Arc Consistency (AC) is a well-studied con-
sistency level, with many implementations. Bounds Consistency (BC), a
looser consistency level, is known to have equal time complexity to AC.
To solve a CSP, we have to implement an algorithm of our own or employ
an existing solver. In any case, at some point, we have to decide between
enforcing either AC or BC. As the choice between AC or BC is more or
less predefined and currently made without considering the individualities
of each CSP, this work attempts to make this decision deterministic and
efficient, without the need of trial and error. We find that BC fits better
while solving a CSP with its maximum domains’ size being greater than
its constrained variables number. We study the behavior of Maintaining
Arc or Bounds Consistency during search, and we show how the overall
search methods complexity is affected by the employed consistency level.

Keywords: propagation, search, MAC, bounds consistency, constraint
satisfaction

1 Introduction

Constraint Programming (CP) aims at solving Constraint Satisfaction Problems
(CSPs) in a transparent way: the user simply states the problem and the com-
puter solves it.12 The consequence of this “motto” is that the solver should
decide automatically on its own which algorithm will solve a given CSP without
human intervention; the role of the user is limited just to define the CSP.

This elegant separation of the user experience and the internal solving pro-
cess is what makes Constraint Programming an intelligent paradigm, and this
is the motivation behind this work. We focus on an essential part of the solving
process called consistency enforcement and develop criteria that help Constraint
Programming solvers select the fastest between arc consistency (AC) and bounds
consistency (BC), without human intervention.

1



1.1 Constraint Satisfaction Problems

CSPs cover a wide range of problems, including planning and scheduling,4 logic
puzzles,14 all Boolean satisfiability problems,19 circuit design,24 robotics,17 and
many others. CSPs are widespread because they express many problems that
occur in real life.

Definition 1. A binary Constraint Satisfaction Problem (CSP) consists of

• a set of constrained variables X = {X1, X2, . . . , Xn},

• the corresponding set of domains D = {D1, D2, . . . , Dn} which are finite
sets (of integer values in this work) and

• the set of constraints between the variables C = {Cij |Xi, Xj ∈X , i 6= j}.

– If i < j, then Cij = (i, j, Rij) with Rij ⊆ Di × Dj . An assignment
of a value vi to Xi and vj to Xj is valid with respect to Cij , if and
only if (vi, vj) ∈ Rij .

– If i > j, then Cij is equivalent to Cji, in the sense that if an assign-
ment of a value vi to Xi and vj to Xj is accepted by Cji, then it is
accepted by Cij too.

If we assign a value to every variable, and the assignments are valid with
respect to every constraint, then the assignment is a solution.

As implied in the above definition, in this work we consider only binary
CSPs, plainly for the sake of simplicity. Each constraint of a binary CSP affects
no more than two variables. However, our scope is not limited to binary CSPs,
because it has been proved that any non-binary CSP can be transformed into
an equivalent binary one.25

We do not also refer to unary constraints in this work, due to their triv-
iality. A unary constraint applies onto a single variable. The initial domain
of each variable should be shrunk to include only the values permitted by the
corresponding unary constraint. This action can be performed as a single pre-
processing step, before proceeding to actually solve a CSP.

1.2 The Intelligence behind Constraint Propagation

Let us say that we have to crack a password 〈X1, X2, X3〉 consisting of three
decimal digits. In order to guess them, we are given hints for five combinations.

1 〈6, 8, 2〉 One number is correct and well placed
2 〈6, 1, 4〉 One number is correct but wrongly placed
3 〈2, 0, 6〉 Two numbers are correct but wrongly placed
4 〈7, 3, 8〉 Nothing is correct
5 〈7, 8, 0〉 One number is correct but wrongly placed

We can naturally model this puzzle as a constraint satisfaction problem of three
variables X1, X2, X3, with initial domains D1 = D2 = D3 = {0, 1, 2, . . . , 9}.

To solve this puzzle, it is not necessary to iterate through all the 1,000 can-
didate passwords and check them against the given constraints. An intelligent
method would propagate the constraints of the above table.

2



• From the 4th constraint, we conclude that the domains of the variables do
not contain 7, 3, and 8.

• From the above and the 5th constraint, we conclude that X1 = 0 or X2 = 0.
After all, the values 7 and 8 are incorrect, so 0 is correct, but wrongly
placed.

• From the above and the 3rd constraint, we conclude that X1 = 0, as we
are told that 0 is wrongly placed as the second digit.

• From the first two constraints, 6 cannot be a correct digit.

• Therefore, from the 1st constraint, X3 = 2, as neither 6 nor 8 can be
correct digits.

• Finally, from the 2nd constraint, X2 = 4, because if 1 was correct, we
should assign it either to X1 or to X3, which would contradict the above.

This was a constraint propagation example that directly gave the solution
〈X1, X2, X3〉 = 〈0, 4, 2〉. Normally, in other CSPs, constraint propagation should
be combined with a search method. But in any case, it is apparent that propaga-
tion can dramatically reduce the search space, i.e. the set of candidate solutions
that we should check.

Constraint propagation is a form of inference5 and reasoning,6 and, as such,
it is an intelligent methodology incorporated in intelligent constraint program-
ming solvers. Consistency enforcement is a formalized way of constraint prop-
agation.

1.3 Consistency Enforcement

Consistency is a very useful property in the road to solve a CSP. It implies that
the values of the domains of each variable have a kind of support with respect
to the CSP constraints.

Definition 2. An arc (Xi, Xj) is arc consistent iff for each vi ∈ Di there exists
a vj ∈ Dj with (vi, vj) not violating Cij .

Example 1. Let X1 and X2 be two constrained variables with domains D1 =
{1, 2, 3} and D2 = {2, 3, 4, 5, 6, 7}. Let us assume that the constraint between
the variables is X2 = 2 ·X1.

(X1, X2) is arc consistent, as for each of the values 1, 2, 3 in D1, the corre-
sponding values 2, 4, 6 belong to D2.

On the other hand, (X2, X1) is not arc consistent. To prove this, we need
just one value from D2 that does not have any support in D1. Indeed, for the
value 3 in D2, there is not any v1 in D1 with 2 · v1 = 3.

If we want to make (X2, X1) arc consistent, we should remove the values 3,
5, 7 out of D2 as they do not have any supports in D1.

This example also illustrates that consistency is not a symmetric property.

In order to check if an arc (Xi, Xj) is arc consistent, we have to iterate
through all the values of Di. The function that does this and removes the
unsupported values from Di is called Revise. A faster yet looser alternative
would be to check if the arc is bounds consistent.

3



Definition 3. An arc (Xi, Xj) is bounds consistent iff for the minDi and
maxDi values, there exist some va, vb ∈ Dj with (minDi, va) and (maxDi, vb)
not violating Cij .

Formally, Definition 3 is about the so-called bounds(D) consistency and not
the bounds(Z) and bounds(R) variants.5

In this case, Revise has to check and update only the two bounds of Di.
But, in the worst case, when no support is found, it has to iterate through all
Di values too.

Example 2. Again, let X1 and X2 be two variables with D1 = {1, 2, 3}, D2 =
{2, 3, 4, 5, 6, 7}, and X2 = 2X1.

(X1, X2) is bounds consistent, as for each of the bounds 1 and 3 in D1, the
corresponding values 2 · 1 = 2 and 2 · 3 = 6 belong to D2.

Nevertheless, (X2, X1) is bounds inconsistent, as the upper bound 7 of D2

has not any support in D1.
If we want to enforce bounds consistency to (X2, X1), we should remove 7 out

of D2. Note that only one removal is needed in the case of bounds consistency
enforcement in contrast to the three removals needed in the arc consistency
enforcement for the same domains in Example 1.

Lemma 1. Both arc and bounds consistency enforcement have equal time com-
plexities in the worst case.

Proof. Time is measured by counting the number of elementary steps that each
algorithm takes. We use the common uniform unit system in which every algo-
rithm’s operation takes the same constant time.30

In order to compute the worst-case complexity of enforcing arc consistency,
we consider the following procedure.

1 function ReviseAC(Xi, Xj)
2 for each vi ∈ Di do
3 value is supported← false
4 for each vj ∈ Dj do
5 if (vi, vj) ∈ Rij , with Cij ∈ C then
6 value is supported← true
7 break
8 end if
9 end for

10 if value is supported then
11 continue
12 else
13 Remove vi out of Di

14 end if
15 end for
16 end function

Let d be the maximum domain size. Then, line 2 performs at most d iter-
ations. Line 3 is 1 elementary operation. The loop in line 4 performs at most
d iterations. The statements inside this inner loop are at most 3 elementary
operations. Finally, lines 10–14 consist at most 4 elementary operations.

Overall, we have at most d · (1 + d · 3 + 4) elementary operations, which is
O(d2).

Bounds consistency enforcement is a variation of the above.

4



function ReviseBC(Xi, Xj)
for each vi ∈ Di in ascending order do

value is supported← false
for each vj ∈ Dj do

if (vi, vj) ∈ Rij , with Cij ∈ C then
value is supported← true
break

end if
end for
if value is supported then

break
else

Remove vi out of Di

end if
end for
for each vi ∈ Di in descending order, with vi > minDi do

value is supported← false
for each vj ∈ Dj do

if (vi, vj) ∈ Rij , with Cij ∈ C then
value is supported← true
break

end if
end for
if value is supported then

break
else

Remove vi out of Di

end if
end for

end function

Typically, ReviseBC is similar to ReviseAC, but contains two loops in-
stead of one. The number of elementary steps inside each loop is still at most
(1 + d · 3 + 4).

The number of iterations of the first loop plus the number of iterations of
the second loop is at most d, because, in the worst case, the algorithm iterates
through all the values of Di. Each respective value of Di is visited at most once.

Overall, similarly to ReviseAC, the number of elementary operations is
again d · (1 + d · 3 + 4) which is O(d2).

To put it straight, enforcing arc or bounds consistency between a pair of
constrained variables (Xi, Xj) takes the same time if Xi has not any support in
Xj , which results in removing every value out of Di. This is the worst case.

Nevertheless, in a better case, if ReviseBC finds a support, it stops the
corresponding iteration through Di values, while ReviseAC always iterates
through all of them.

1.4 Our Contribution and Alternative Approaches

From Constraint Programming early years, developers of solvers such as Ilog
have observed empirically that there is a trade-off between arc and bounds

5



consistency in terms of time and space, and bounds consistency is preferable in
many cases.27

In alternative approaches to this work, in current constraint programming
solvers, the choice between AC and BC is not justified theoretically but only
empirically. In our work, apart from wide experimental results, we provide theo-
retical analysis for the AC vs. BC trade-off so as to predict when arc consistency
becomes a bottleneck. We show that bounds consistency is usually more efficient
when dealing with CSPs having large domains.

This could be thought of as a paradox, because AC and BC have equal worst-
case complexities, and AC is stronger than BC, in the sense that it removes more
inconsistent values out of the domains of constrained variables. This is true,
but only when we study the constraint propagation algorithms isolated, inde-
pendently of the search methods. In this work, we try to see the big picture:
constraint propagation integrated into backtracking search methods. We com-
pute the overall time complexity and focus on how it is affected by the choice
between AC and BC.

1.5 More Related Work

There are various Constraint Programming methodologies and areas. Each
different area has been created to serve a different category of CSPs.

1.5.1 Complete and Incomplete Search

Local search and, more specifically, large neighborhood search has been inte-
grated into Constraint Programming to solve difficult CSP instances.20 In such
CSPs, we are happy just to find a solution, without usually caring if all candidate
solutions will be examined.

Nevertheless, at the beginning, given a specific CSP, one would normally like
to make sure if it has any solution or not. This information will be available
only by using a standard backtracking search method, elaborated in the next
Section 2. As, in the worst case, these methods may exhaust all the candidate
solutions of a CSP, it is important to make them more intelligent and prune the
search space.

1.5.2 Learning from Mistakes or Preventing Them?

Look back techniques in backtracking search methods aim to avoid repeating
the invalid assignments of the past. Backjumping is a well-known look back
technique, but it is not used in solvers, as other techniques clearly outperform it
even in simple CSPs.1 Nogood learning is a more promising look back technique
that, based on the invalid assignments of the past, adds new constraints to avoid
the invalid combination of assignments in the future.28 However, these new
constraints have the drawback of making the constraint network increasingly
complex.

On the other hand, look ahead techniques are more proactive in the sense
that they remove values out of the domains of the constrained variables before
reaching an inconsistent assignment. Maintaining arc consistency (MAC) dur-
ing search is the queen of all look ahead techniques.6 According to MAC, each

6



assignment to a domain of a variable is followed by an arc consistency enforce-
ment method, such as the known optimal AC-2001 algorithm.7 The optimality of
AC-2001 was proven for enforcing arc consistency after a single assignment. But
when we call repeatedly AC-2001 during search, after each single assignment,
in order to maintain arc consistency, there is still room for improvements.16

1.5.3 The Importance of Arc Consistency

Arc consistency also plays a key role in splitting the CSPs into two large cate-
gories.6

1. The tractable ones that can be solved in polynomial time, simply by main-
taining arc consistency.

2. The intractable ones that are NP-complete problems and require an expo-
nential backtracking algorithm to prove whether they have a solution or
not.

Related work has defined the properties of the constraint network that suffice to
categorize a CSP as tractable or intractable.10 Furthermore, it has been recently
proven that a CSP is tractable only if it contains specific types of constraints.8,33

In our work, for the sake of simplicity, we consider arc consistency only for
binary constraints. The extension of arc consistency for constraints involving
more than two variables is called generalized arc consistency (GAC). Contrary
to conventional wisdom, there are studies that we can transform non-binary
constraints into binary ones and enforce plain AC to them without losing the
efficiency of GAC.29

1.5.4 Higher-Level Consistencies

As illustrated in Section 1.3 and the included examples, arc consistency is
stronger than bounds consistency in the sense that it filters a greater num-
ber of futile values out of the domains of the constrained variables. But there
are even stronger consistency levels than arc consistency.

These are the so-called higher-level consistencies (HLCs) and, while AC ex-
amines one constraint at a time, HLCs consider two or more constraints simulta-
neously. This makes them too expensive to be used in practice.3 To mitigate the
HLC overhead, there are hybrid strategies that go back and forth from HLC to
AC.32 Even machine learning has been employed to dynamically choose which
consistency level is more efficient.2

1.5.5 Toward More Relaxed Consistencies

In this work, we do not change consistency levels on the fly. We stick to one
consistency level at a time (AC or BC) in order to keep the overall search
algorithm that maintains consistency as simple as possible. This enables us to
shed a more theoretical light to the integration of consistency into search and
study the overall consistency complexities, not isolated but always in the context
of search methods that maintain them. Our computations are backed by wide
experimental data.

7



Instead of swapping HLCs and AC, we choose AC and BC, as bounds con-
sistency is naturally used to describe constraints in Constraint Programming
solvers.15

In a previous work,23 instead of switching between different consistency
types, consistency was enforced not to all (n) constrained variables but to a
varying (k) number of them. However, there was not developed a criterion to
guess the best k number of variables a priori.

In Section 2 we present the backbone of constructive search and the related
mathematical notation. In Section 3 we compute the upper bounds of the
complexities of search methods that traverse a path and maintain either AC or
BC. In Section 4 we check in practice if the theoretically computed complexities
can predict which methodology, AC or BC, fits better a given CSP.

2 Constructive Search

A typical backtracking/constructive search method iterates through the con-
strained variables of a CSP: it assigns to the first variable a value and proceeds
to the second variable, it assigns a value to it and, if the constraints are not
violated, proceeds to the third variable and so on. Backtracking occurs if any
of the constraints is violated: the current assignment is undone, and a different
value is assigned to the variable. If all alternative values from the variable’s do-
main are exhausted, we go to the previous variable and assign a different value
to it and so on.

2.1 The Standard Backtracking Search Method

Figure 1 illustrates the recursive search method DFS (Depth First Search).
Each DFS(`) call corresponds to the variable X`. In order to solve a CSP,
we call DFS(1), to begin with instantiating the first variable X1. This call
attempts to assign to X1 a value from D1; hence, we may have at most d
different attempts to assign a value to X1, where d is the maximum size of all
the domains. Therefore, we have at most d subsequent calls of DFS(2). Each
DFS(2) calls DFS(3) and so on.

This algorithm forms a search tree, as in Figure 2. The indicative CSP
used in this figure contains three variables X1, X2, X3, with the corresponding
domains D1 = D2 = D3 = {1, 2}. Each level ` of the tree refers to a DFS(`)
call, and each node of the same level represents an iteration of its for loop.
More specifically, each node is labeled with the assignment done in line 4.

We have at most dn leaves representing the lowest level DFS(n) calls, where
n is the number of the constrained variables.

Apart from DFS, there are many other backtracking constructive search
methods.22 In any case, DFS is the basis to describe most of them.

2.2 A Search Tree Path

We denote as Tpath the total time spent in the nodes that belong to the same
path. A path begins from the root node and descends to a leaf node. The dotted
line in Figure 2 is a path.

8



1 function DFS(`)
. The method reached the search tree level `:

2 D′
` ← D`

3 for each v ∈ D′
` do

4 D` ← {v} . Assign v to X`

5 if no constraint is violated then
. Proceed to the next variable/level:

6 if ` = n then
7 return success
8 else if DFS(` + 1) = success then
9 return success

10 end if
11 end if
12 end for
13 D` ← D′

`

14 return failure
15 end function

Figure 1: A typical search method

root

level 1: D1 ← {1} D1 ← {2}

level 2: D2 ← {1} D2 ← {2} D2 ← {1} D2 ← {2}

level 3: D3 ← {1} D3 ← {2} D3 ← {1} D3 ← {1} D3 ← {2}

Figure 2: An incomplete binary search tree

9



Tpath(`) is a part of Tpath and denotes the time spent in a node of level `
while traversing a path.

In the rest of the paper, the “AC” or “BC” exponents in the above symbols
refer to the corresponding AC or BC methodology. For example, TAC

path(`) is the
time spent in a node of level ` while maintaining AC.

2.3 Paths vs. Trees

Throughout the rest of the theoretic part of this paper, we measure the time
spent in search tree paths, instead of focusing on the time spent while traversing
all the paths of a complete search tree. This is done on purpose, just to simplify
our computations.

After all, as it will be proved in the last theoretic section 3.4, if we manage
to bound the time needed to traverse a search tree path, we are able to bound
the time needed to traverse the whole search tree.

Therefore, we are going to compute respectively an upper bound for travers-
ing a search tree path while maintaining AC or BC, and then multiply it by the
maximum number of paths to get an upper bound for the whole search tree.

3 Maintaining Consistency during Search

Depth-first-search method complexity is exponential; we cannot actually de-
crease its complexity class, but it is possible to limit the number of nodes. In
other words, we have to prune the tree to make search more efficient, and this
can be done via enforcing and maintaining consistency.

3.1 Time Complexity in a Search Tree Node

Figure 3 illustrates a search method with an integrated consistency algorithm
that can maintain either arc or bounds consistency. We break up the time spent
by DFS CONS(`) when it is on the top of the call stack into four crucial parts.

• Tprop(`) refers to the propagation algorithm in lines 2–4 and 8–14 respec-
tively.

• Tstore(`) corresponds to line 5 of the algorithm and represents the time
needed to store all the initial states of the domains.

• Trestore(`) corresponds to line 22 and represents the time needed to restore
all the domains. We claim that the time it takes to store the domains is
equal to the time it takes to restore them, i.e. Tstore = Trestore.

After all, storing the value of a variable requires transferring a specific
number of bytes from one place of the memory to another. Re-storing
the value back to the variable (the original place of memory) involves the
same number of bytes and, therefore, the same number of operations to
transfer them back.

• Tconst corresponds to lines 7 and 15–21. These statements take constant
time.

10



1 function DFS CONS(`)
. Initially, enqueue all arcs and make them consistent:

2 if ` = 1 then
3 CONS . See Figure 4
4 end if

. Store a copy of the domains in D for a future backtrack:
5 {D′

1, . . . , D
′
n} ← {D1, . . . , Dn}

6 for each v ∈ D′
` do

7 D` ← {v}
. Only the arcs toward X` are enqueued:

8 Q← {(Xi, X`) | Ci` ∈ C }
9 while Q 6= ∅ do

10 Remove an arc (Xi, Xj) out of Q
. Make (Xi, Xj) arc or bounds consistent:

11 if Revise(Xi, Xj) modified Di then
. Enqueue the arcs toward Xi:

12 Q← Q ∪ {(Xk, Xi) | Cki ∈ C , k 6= j}
13 end if
14 end while
15 if not exists empty Di ∈ D then

. Proceed to the next level:
16 if ` = n then
17 return success
18 else if DFS CONS(` + 1) = success then
19 return success
20 end if
21 end if

. Restore the previous state of domains:
22 {D1, . . . , Dn} ← {D′

1, . . . , D
′
n}

23 end for
24 return failure
25 end function

Figure 3: A search method that maintains consistency

function CONS
Q← {(Xi, Xj) | Cij ∈ C }
while Q 6= ∅ do

Remove an arc (Xi, Xj) out of Q
if Revise(Xi, Xj) modified Di then

Q← Q ∪ {(Xk, Xi) | Cki ∈ C , k 6= j}
end if

end while
end function

Figure 4: A pure coarse-grained propagation algorithm

11



In order to get the aggregate Tpath time, we are going to compute the overall
propagation and store-restore time for a search tree path, which is a route from
the root of the tree (` = 1) to any of its leaves (` = n). This means that we will
study the overall time of DFS CONS(1), DFS CONS(2), . . . , DFS CONS(n)
consecutive calls, each of them executing only one iteration of the for loop in
line 6. The overall path time is at most

Tpath =

n∑
`=1

Tpath(`)

=

n∑
`=1

Tprop(`) +

n∑
`=1

Tstore(`) +

n∑
`=1

Trestore(`) +

n∑
`=1

Tconst

=

n∑
`=1

Tprop(`) + 2 ·
n∑

`=1

Tstore(`) + n · Tconst, (1)

as Tconst remains the same for each `, and, as previously explained, Tstore =
Trestore.

This formula applies both to maintaining arc and bounds consistency algo-
rithms. Nevertheless, according to the following table, there are some differen-
tiations that are going to be elaborated on in the following sections.

Path time terms

n∑
`=1

Tprop(`) 2

n∑
`=1

Tstore(`) n · Tconst

Maintaining AC n2d3 2nd n · constant

Maintaining BC 2n2

Section 3.2 Sections 3.3.1
and 3.3.2

3.2 The Constraint Propagation Aggregate Complexity

Consistency enforcement algorithms are divided into two large categories: the
coarse-grained and fine-grained algorithms.5 The best algorithms from the two
categories have been proven to have equal time complexities.7 Therefore, with-
out loss of generality, in order to study consistency enforcement as a whole, it
suffices to simply focus on a typical coarse-grained algorithm, such as CONS in
Figure 4.

CONS is initially called by DFS CONS (Figure 3, lines 2–4) before actual
search begins. The other propagation section (Figure 3, lines 8–14) is also a
CONS extension: These lines keep executing the CONS while loop by inserting
some more arcs into the Q.

By replacing CONS call (line 3) by its pseudocode in Figure 4, we are able to
compute the overall time for the two propagation sections (lines 2–4 and 8–14)
of DFS CONS as the product of the number (Etotal) of the inserted-removed
arcs out of the Q and the time that Revise takes.

We may have at most Etotal = n2 · d entry operations into the queue Q,
where n2 denotes the maximum number of the arcs (Xi, Xj) with Xi, Xj ∈X .
After all, each specific arc (Xi, Xj) is initially inserted into the queue and also
when a value is deleted out of Dj . Therefore, a specific arc is inserted at most

12



1 + d ≈ d times into the queue, as a value cannot be deleted more than once
while descending a search tree path.

In a search tree path, the domains gradually shrink, until they contain just
one value in the last level or until a domain is “wiped out.” An arc (Xi, Xj) is
enqueued when Revise deletes a value from Dj , and also when Xj is assigned a
value. An assignment is equivalent to deleting all the values in Dj , apart from
one.

To conclude, we may have at most d deletions of values out of a domain,
which can enqueue a specific arc. In sum, we may invoke at most d Revise
calls for a specific arc.

Following Section 1.3, a Revise call takes approximately d2 elementary
steps. Overall, the propagation part of DFS CONS will take approximately

n∑
`=1

Tprop(`) = Etotal · d2

= n2d · d2

= n2d3, (2)

which is the product of how many insertions we may have into the queue (Etotal)
and the Revise function operations needed when an arc is popped out of the
queue (d2).

The same reasoning applies to faster—yet more complex—propagation algo-
rithms.7 The only difference is that these algorithms implement faster Revise
functions that still take the same time either for AC or BC.

Again, the important thing for the current theoretical analysis is that, in
the worst case, the propagation time complexity remains the same, either while
enforcing AC or BC. However, there are significant differences regarding the
domains store and restore mechanism.

3.3 Backup and Restore Aggregate Complexity

In the general case, constraint propagation cannot guide us directly to a solution.
However, it can be a critical component of a backtracking search method: each
assignment made is followed by consistency enforcement and each consistency
enforcement is followed by an assignment.

If the constraints are violated, the last assignment is undone. This is a
constant-time operation in a consistency-enforcement-free search method. But
while a search method maintains consistency, the undo operation involves not
only undoing an assignment, but also restoring the domains affected by the
consistency enforcement after the assignment.

3.3.1 Storing Domains while Maintaining Arc Consistency

AC enforcement may remove every value out of the domains of the n variables.
The maximum domain size is d; hence, we may have at most nd value removals.
As we descend a search tree path (from ` = 1 to n), each value can be only
removed and not added back to a domain. Thus, the total values removed and

13



stored for backtracking purposes in a single path is also bounded by

n∑
`=1

TAC
store(`) = nd , (3)

which is the number of all the domain values in a CSP.

Example 3. Let us have four constrained variables X1, X2, X3, X4 with domains
D1 = {3, 4}, D2 = {3, 5, 6}, D3 = {0, 1, 2, 3, 4, 5}, and D4 = {0, 2, 4, 6, 8, 10}.
The constraints are X1 6= X2, X1 6= X3, X2 6= X3, and X4 = 2X3.

The following table contains the changes that take place in the above do-
mains, while searching for a solution to the problem.

Assignments Updates in domains
D2 D3 D4

D1 ← {3} 6 3, 5, 6 0, 1, 2, 6 3, 4, 5 0, 2, 4, 6 6, 8, 10
D2 ← {5} 0, 1, 2, 6 3, 4, 6 5 0, 2, 4, 6 6, 8, 6 10
D3 ← {0} 0, 6 2, 6 4, 6 6, 6 8, 6 10
D4 ← {0}

Searching for a solution includes an assignment (first column) and enforcing
consistency to the rest of the domains.

First, in the first row, we make the assignment D1 ← {3}. As X1 6= X2, we
should remove 3 out of D2. Similarly, in the same row, we remove 3 out of D3

as the second constraint is X1 6= X3. And as X4 = 2X3 and 2 · 3 = 6, we also
remove 6 out of D4.

This was a practical example of arc consistency enforcement after an assign-
ment takes place. We are still at the first level of the search tree.

As we proceed to the second row of the table, we make the assignment
D2 ← {5}. When we make an assignment, we proceed one level deeper into
the search tree. Every assignment is followed by constraint propagation. In our
case, we enforce arc consistency. As X2 6= X3, we should remove 5 out of D3.
And as 2 · 5 = 10, we remove 10 out of D4.

In the third row, we make the assignment D3 ← {0}. The values 2, 4, and
8 are removed out of D4, as they do not have any support in D3 anymore.

The last row is trivial, as we assign {0}, containing the only remaining value,
to D4.

This was an example on how assignments interchange with constraint propa-
gation during search. In the case of arc consistency constraint propagation, the
domains eventually lose all their values. This is done gradually, while traversing
the search tree levels. As we should be able to restore the domains in the state
that they were in each search tree level, while descending a search tree path, we
need to store every value of every domain (nd values).

3.3.2 Storing Domains while Maintaining Bounds Consistency

Bounds consistency can alter only the bounds of a domain. In order to store
the previous bounds of a domain, we need 2 operations: to record the domain’s
lower bound and to record the domain’s upper bound. At a search path node
of level `, the 2 operations can be repeated for every variable’s domain; except

14



for the variables that have been already instantiated, i.e. the variables having
only one value in their domains.

These domains are excluded because there are not any other values in them
that can be removed; if the last value is removed, we do not proceed, and we
backtrack to a previous search tree level. In a search level `, the instantiated
variables are at least `− 1. Therefore, the uninstantiated variables are at most
n− ` + 1. The overall time needed to store the initial domains in a search tree
node in level ` is

TBC
store(`) = 2(n− ` + 1) , (4)

which is the product of the two operations needed to store the two bounds of a
variable, and the number of uninstantiated variables.

For all the nodes of the search tree path it holds

n∑
`=1

TBC
store(`) =

n

2

(
TBC
store(1) + TBC

store(n)
)

=
n

2
(2 · n + 2 · 1)

= n(n + 1) ≈ n2 . (5)

After all, TBC
store(`) is an arithmetic progression a`. The sum of its n first

terms is known to be n
2 (a1 + an).

Example 4. Let us consider the same constraint satisfaction problem as in the
previous Example 3.

The following table depicts the state of the domains during search. Each
row corresponds to a search tree level. The table is different from the one in
Example 3, in the sense that it does not contain every value of every domain,
but only their bounds.

Assignments Updates in domains bounds
D2 D3 D4

min max min max min max

D1 ← {3} 5 6
D2 ← {5} 0 4 0 8
D3 ← {0} 0 0
D4 ← {0}

Again, the assignments interchange with constraint propagation. After the
first assignment D1 ← {3}, we have to enforce bounds consistency. This means
that the minimum and maximum values of every domain should have supports
to the other constrained variables. If a bound of a domain does not have any
support, it is trimmed.

The initial minimum value of D2 is 3. But as X1 6= X2 and D1 = {3},
this value is not supported. Therefore, it should be removed out of D2 and 5
becomes its new minimum value.

Then, we make the assignment D2 ← {5}. As it holds that X2 6= X3, the
upper bound of D3 which is 5, is not supported anymore. That is why in the
second row of the table, maxD3 has been trimmed to 4. Subsequently, due to
the X4 = 2X3 constraint and as the maximum value 10 of D4 is not supported
now, we delete it, and 8 becomes the new maxD4.

15



In the third row, we assign {0} to D3. In this case, maxD4 should become
0 too, as this is the only supported value through the X4 = 2X3 constraint.

This example illustrates that, in every search tree level, we need to store
only the bounds of the domains of the unassigned constrained variables, which
is the meaning of the above equation (4).

3.4 Will AC or BC be faster?

The answer to this question is unknown before we actually start and finish
solving a given arbitrary CSP. There is not any exact mathematical form to
know a priori how much time each search methodology will take either while
maintaining AC or BC.

Nevertheless, we can bound the time needed by these search methodologies
using the above equations to compute the respective path times TAC

path and TBC
path.

These two path times allow us not to compute the exact times for AC and
BC (that will be simply denoted as TIMEAC and TIMEBC in the rest of the
paper) but at least to get the respective upper bounds TIMEAC BOUND and
TIMEBC BOUND.

Proposition 1. If n < d, then TIMEAC BOUND > TIMEBC BOUND, else if
n > d, then TIMEAC BOUND < TIMEBC BOUND.

Proof. TIMEAC and TIMEBC is bounded by Tpath if we multiply it by the
maximum number of paths. The maximum number of paths is equal to the
maximum number of leaves dn. Therefore,

TIMEAC BOUND = dn · TAC
path , (6)

TIMEBC BOUND = dn · TBC
path . (7)

By combining (1) and (2) we get

Tpath = n2d3 + 2

n∑
`=1

Tstore(`) + n · Tconst. (8)

We specialize the above equation for AC and BC via (3) and (5).

TAC
path = n2d3 + 2nd + n · Tconst, (9)

TBC
path = n2d3 + 2n2 + n · Tconst, (10)

which leads to Proposition 1, because

n < d

⇔ 2n · n < 2n · d
⇔ n2d3 + 2n2 + nTconst < n2d3 + 2nd + nTconst

⇔ TBC
path < TAC

path

⇔ dnTBC
path < dnTAC

path

⇔ TIMEBC BOUND < TIMEAC BOUND.

16



0.0001

0.001

0.01

0.1

1

10

100

1000

10000

0.001 0.01 0.1 1 10

T
IM

E
A
C
/T

IM
E
B
C

d/n

Figure 5: The time needed to solve the CSPs while maintaining AC divided to
the time spent while maintaining BC

4 Empirical Evaluations

All the above theory was inspired by observations while solving artificial and
real-life constraint satisfaction problems. To test the theoretical results of this
work in practice, we consider all standard CSP instances taken from the First
XCSP3 Constraint Mini-Solver Competition.11 The specific instances used in
the mini-solver track are available under the respective link in the competition
site http://www.cril.univ-artois.fr/XCSP17

Table 1 displays raw experimental results, while Figure 5 depicts them graph-
ically. But, before going through all these empirical results, let us describe how
one can reproduce them.

4.1 Methodology

In order to make comparisons, we had to employ two different solvers: one that
maintains arc consistency (AC) and another that maintains bounds consistency
(BC). Therefore, we took the open source Naxos Solver21 and created its AC
and BC variants.

Note that the original Naxos Solver implements several consistency levels
for various constraints. Consequently, we created two sets of patches, one that
implements pure arc consistency and another for pure bounds consistency for
every constraint employed. All patches are available at https://github.com/

pothitos/ACvsBC-Solver-Patches

Similarly to the theory of this work, we considered only binary constraints
(that apply between two constrained variables) to simplify consistency enforce-

17

http://www.cril.univ-artois.fr/XCSP17
https://github.com/pothitos/ACvsBC-Solver-Patches
https://github.com/pothitos/ACvsBC-Solver-Patches


Table 1: CSP attributes and solution times while maintaining AC and BC

CSP n d TIMEAC TIMEBC CSP n d TIMEAC TIMEBC

aim-50-2-0-unsat-2 50 2 0.71 0.65 MarketSplit-09 152 100 570.38 270.14
AllInterval-007 25 13 0.07 0.07 MarketSplit-10 151 100 243.32 142.11
AllInterval-012 45 23 0.14 0.13 MultiKnapsack-1-03 235 2536 14.62 0.87
AllInterval-016 61 31 0.20 0.19 MultiKnapsack-1-5 X2 239 4106 X 95.23
AllInterval-035 137 69 0.65 0.91 MultiKnapsack-2-16 274 1181 X 76.94
AllInterval-050 197 99 1.42 5.27 MultiKnapsack-2-21 342 1361 X 46.15
AllInterval-080 317 159 6.65 203.52 MultiKnapsack-2-22 342 1501 X 163.88
bdd-15-21-2-2713-79-08 21 2 41.39 40.37 MultiKnapsack-2-41 136 1126 73.21 2.90
bdd-15-21-2-2713-79-16 21 2 2326.85 X MultiKnapsack-2-48 180 1126 811.88 43.36
bqwh-15-106-35 X2 106 6 0.43 4.53 Nonogram-018-table 576 2 3.14 2.98
bqwh-15-106-36 X2 106 6 0.21 1.46 Nonogram-035-table 576 2 2.48 2.49
bqwh-18-141-09 X2 141 6 7.99 597.87 Nonogram-096-table 576 2 5.79 5.73
bqwh-18-141-31 X2 141 7 0.33 828.42 Nonogram-168-table 400 1 1.20 1.04
bqwh-18-141-83 X2 141 6 5.18 837.63 Nonogram-177-table 1024 2 2.57 2.69
color X2 500 5 68.21 X Nonogram-180-table 1024 2 32.95 34.15
ColouredQueens-03 9 3 0.01 0.01 Pb-queen-0974553 1137 39 25.70 3.47
composed-25-01-25-3 33 10 0.09 0.04 pigeonsPlus-07-05 42 7 17.76 8.76
composed-25-01-25-4 33 10 0.09 X pigeonsPlus-08-04 40 8 52.36 28.48
composed-25-10-20-5 105 10 0.31 1481.76 pigeonsPlus-09-03 36 9 239.93 143.16
composed-75-01-25-6 83 10 0.22 X Primes-10-20-3-3 213 784 10.79 0.04
cril-5 X2 42 81 55.06 X Primes-10-60-3-3 444 784 46.51 659.36
Crossword-m1c-lex-h1501 225 26 11.34 X Primes-15-20-2-5 219 2116 168.98 0.16
Crossword-m1c-ogd-h2310 529 26 40.89 83.52 Primes-20-40-2-1 241 3574 71.23 0.05
Crossword-m1c-uk-vg-4-8 32 26 11.39 14.81 PropStress-0020 293 24 1297.90 1.30
Crossword-m1c-words-p20 81 26 0.65 0.58 qwh-10-57-7 X2 100 5 0.11 0.10
driverlogw-01c 71 4 0.02 0.02 rand-2-23-23-253-131-0 23 23 673.35 X
driverlogw-02c 301 8 110.01 X rand-2-23-23-253-131-1 23 23 663.37 X
driverlogw-04c 272 11 3.03 50.28 rand-2-30-15-306-230f-09 30 15 8.51 65.62
driverlogw-08c 408 11 263.16 X rand-2-40-11-414-020-23 40 11 46.38 328.02
driverlogw-08cc 408 11 254.62 X rand-2-40-11-414-020-35 40 11 4.67 68.40
Dubois-021 63 2 149.08 140.53 rand-5-12-12-200-12442-38 12 12 642.24 846.58
Dubois-022 66 2 303.95 291.51 rand-5-12-12-200-t95-3 12 12 701.10 803.31
ehi-85-297-30 297 7 84.50 0.33 rand-5-2X-05c-15 12 12 558.94 1837.32
ehi-85-297-98 297 7 0.32 0.34 Renault 101 42 3.87 3.66
ehi-90-315-13 315 7 0.27 0.30 Renault-medium-pos 148 20 0.27 0.30
ehi-90-315-37 315 7 0.34 0.33 Renault-megane-pos 99 42 3.05 3.53
geometric-50-20-d4-75-03 50 20 0.50 0.51 Renault-mgd 101 42 3.74 3.48
geometric-50-20-d4-75-46 50 20 13.79 X Renault-small 139 16 0.08 0.06
geometric-50-20-d4-75-54 50 20 0.30 0.66 Renault-souffleuse 32 12 0.01 0.02
jnh-012 100 2 0.17 0.12 RenaultMod-09 111 42 740.11 1032.59
jnh-213 100 2 0.12 0.08 Sat-flat200-06-dual 2237 4 470.44 261.04
jnh-302 100 2 0.09 0.13 Sat-flat200-14-dual 2237 4 1.34 179.40
Kakuro-easy-015-sumdiff 194 9 0.07 0.05 Sat-flat200-32-dual 2237 4 130.75 13.55
Kakuro-easy-079-sumdiff 344 9 0.13 0.11 Sat-flat200-55-dual 2237 4 146.12 1147.39
Kakuro-easy-084-ext 240 9 0.48 0.40 Sat-flat200-65-sum 6911 3 127.33 117.12
Kakuro-easy-109-ext 256 9 0.97 1.15 Sat-flat200-67-dual 2237 4 138.31 688.10
Kakuro-easy-150-ext 256 9 0.79 0.78 Sat-flat200-80-dual 2237 4 X 1574.29
Kakuro-easy-164-sumdiff 344 9 0.30 0.30 SchurrLemma-mod-012-9 12 9 6.88 39.40
Kakuro-hard-179-sumdiff 996 9 2.02 666.57 SchurrLemma-mod-015-9 15 9 9.45 37.19
Kakuro-medium-016-ext 140 9 0.15 0.15 SchurrLemma-mod-020-9 20 9 11.85 42.86
Kakuro-medium-020-ext 140 9 0.09 0.09 SchurrLemma-mod-030-9 30 9 17.74 58.30
Kakuro-medium-055-sumdiff 234 9 0.09 0.05 SchurrLemma-mod-050-9 50 9 33.20 100.52
Kakuro-medium-162-ext 256 9 13.81 14.25 SchurrLemma-mod-100-9 100 9 116.89 301.21
Langford-3-05 25 11 0.12 0.12 Subisomorphism-A-15 180 200 2.61 13.11
Langford-4-04 28 9 0.13 0.15 Subisomorphism-g07-g39 20 1 0.06 0.05
Langford-4-05 35 14 0.17 0.17 Subisomorphism-g08-g31 30 100 4.83 7.06
MagicHexagon-02-0000 18 7 0.14 0.09 Subisomorphism-g10-g35 41 120 0.05 0.04
MagicSquare-3-sum 17 9 0.02 0.01 Subisomorphism-si2-b09-m200-02 40 200 0.30 0.21
MagicSquare-3-table 9 9 0.01 0.01 Subisomorphism-si6-b03-m800-07 480 800 1.23 1.43
MagicSquare-4-table 16 16 0.24 0.11 TravellingSalesman-20-076 X2 61 70 50.54 1407.10
MagicSquare-5-table 25 25 139.94 1627.44 TravellingSalesman-20-142 X2 61 115 1640.18 X
MarketSplit-03 151 100 1149.24 264.75 TravellingSalesman-25-003 X2 76 62 190.14 X
MarketSplit-05 153 99 674.29 309.90 TravellingSalesman-25-066 X2 76 62 28.76 224.92
MarketSplit-07 152 100 595.51 148.30 TravellingSalesman-4-20-001-a4 X2 61 52 60.84 448.12
MarketSplit-08 154 100 292.73 115.03 TravellingSalesman-4-20-727-a4 X2 61 74 708.48 X

18



ment. Therefore, we binarized the global constraints (that apply to more than
two variables) that exist in some CSP instances by substituting them by groups
of equivalent binary constraints.

Finally, it is worth noting that, in order to be more accurate, the illustrated
CSP parameters n and d (number of constrained variables and maximum domain
cardinality in the CSP) are not taken directly from the CSP definition; they
are reported by the solver itself. Consequently, n is reported only after the
binarization of the constraints has been completed, possibly by adding more
constrained variables.

Also, we enforce bounds consistency for the first time, before displaying the
maximum domain cardinality d. This means for example that if we have two
constrained variables X1 and X2, with X1 ≤ X2 and D1 = {1, 2, . . . , 100} and
D2 = {25, 26, . . . , 50}, the maximum cardinality will not be computed as 100.
Bounds consistency will be enforced first, and D1 will be limited to {1, 2, . . . , 50}.
The maximum domain cardinality d will be eventually displayed as 50. In this
way we “normalize” redundant domains.

4.2 Execution

In order to construct Table 1 with the experimental results, we follow the above
methodology and display n and d for each CSP instance. If n is greater than
d, we display it bold, else d is displayed bold. In theory, when d is greater
than n, we expect that maintaining bounds consistency is more efficient than
maintaining arc consistency.

Using the above methodology, we created two separate solvers, one that
maintains arc consistency and one that maintains bounds consistency. Each of
them was assigned to solve the First XCSP3 Constraint Mini-Solver Competition
CSPs.11 Each CSP instance has to be solved within 40 minutes according to
the competition requirements. If a solver cannot solve an instance within this
time frame, it is marked with an “X” in the table. Otherwise, the elapsed time
in seconds is written. Please note that only the CSP instances that were solved
at least from one solver are displayed in the table.

4.3 Visualization

In order to make comparisons more easily, we depicted graphically the ratio
TIMEAC/TIMEBC versus d/n in Figure 5 using the � symbol.

When the AC solver does not produce a solution, we have an undefined
TIMEAC denoted as “X” in the table. In the figure, the corresponding point is
depicted with a 4 symbol. This represents a very high TIMEAC/TIMEBC ratio,
which means that maintaining BC is much more efficient than AC in this case.

On the other hand, when TIMEBC is “X,” the ratio TIMEAC/TIMEBC is
depicted with a 5 symbol. This denotes a very low ratio, which means that AC
is much more efficient than BC in this case.

It may be obvious that the above 4 and 5 points do not correspond to real
values. They are used in the margins of Figure 5 to represent marginal ratios,
as described above.

As the � points in the figure are somehow sparse, the results become more
intuitive if we draw a smooth curve between them. Therefore, the curve in
Figure 5 has been derived by the LOESS method9,31 and is representative of

19



the � points. LOESS method does not consider the marginal 4 and 5 points
because they do not depict real values.

4.4 Observations

In Figure 5 we compare the times for solving a CSP instance via maintaining
AC and BC. A first conclusion is that BC can be better than AC for many
instances. This is an important observation, as, due to the fact that AC enforces
a stronger consistency level than BC, and both AC and BC have equal worst-
case complexities (Lemma 1), there is the misconception that AC is always
better than BC.

However, the conclusion about the occasional superiority of BC over AC
has no practical use, if we do not know when it happens. We have to find the
appropriate conditions to know a priori if a CSP instance will be solved faster
by maintaining AC or BC.

In theory (Proposition 1) the relation between n and d defines the relation be-
tween the upper limits of TIMEAC and TIMEBC. To put it simply, the d/n ratio
affects the TIMEAC/TIMEBC ratio, and this is evident in practice in Figure 5:
On average, TIMEAC/TIMEBC < 1 if d/n < 1 and TIMEAC/TIMEBC > 1 if
d/n > 1. This becomes clearer if we observe the smooth curve constructed by
the LOESS method, which represents the “average” of the � points.9

Of course, there is some deviation between our theoretic expectations and
the observed results. This is due to the fact that in theory we studied the worst
case of complete search trees for both maintaining AC and BC, while in practice
the two methodologies may produce incomplete search trees that are different
between them.

Regarding the 4 points (that represent the cases when only the maintaining
BC method found a solution while maintaining AC did not find one) they are
apparently more on the right side, i.e. when d/n > 1. On the other hand, the
5 points are gathered mostly on the left side of Figure 5. This means that for
d/n < 1, the maintaining BC methodology is usually not only less efficient than
AC, but it may produce no solution for a CSP, while AC is able to solve it.

5 Conclusions and Future Perspectives

The main contribution of this work is to give focus on the weaker consistency
levels (BC) in Constraint Programming and to highlight their advantages over
“stronger” consistency levels (AC). If we take it for granted that arc and bounds
consistency have both equal asymptotic time complexities, then two questions
arise.

1. Why BC is often used in practice in Constraint Programming solvers?

2. When should we prefer BC over AC?

In current bibliography, answers to the first question are scarce and only
based on unpublished empirical observations. In any case, one can answer to
the first question by conducting experiments and finding examples where BC
is more efficient than AC. Indeed, in this work, we experimented with a broad

20



range of official CSPs and found many cases where BC is more efficient in
practice.

The second question is more difficult, as it is addressed for every possible ad
hoc CSP. Our approach to answer it included the following steps.

• Introduce the algorithms for arc and bounds consistency enforcement and
prove that they take the same time in the worst case.

• Introduce a basic backtracking search algorithm and the search tree and
search path notions.

• Integrate consistency enforcement algorithms into the backtracking search
method.

• Compute the overall time complexity while descending a search tree path
and find the differentiations between maintaining AC and BC.

• Project the complexity to traverse a search path to the overall search tree
complexity.

Following this approach, we produced some tight upper limits for AC and
BC time complexities in the context of search methods. We defined a criterion
which, based on the attributes of a CSP, predicts which of the two methodologies
is likely to solve it faster.

This new criterion gives us the freedom to select the consistency level (AC
or BC) just before solving a specific CSP. We are not obliged to use default
consistency levels when we build a Constraint Programming solver anymore.
We are now able to tailor the AC vs. BC selection to the particular parameters
of each CSP and thus make the overall search process more efficient.

In the future, this work can be naturally extended to answer the question
why even higher consistency levels than AC are “seldom used in practice”.3

This is another paradox, as there are a lot of very important publications for
sophisticated higher consistency levels. Just like in this work, we should develop
criteria about when to use higher consistency levels than AC and not completely
ignore them.

Another natural future extension of this work will be to compare the main-
tenance of generalized arc and bounds consistencies during search, which are
enforced to non-binary constraint networks. In this work, we considered only
binary constraints, i.e. only constraints between two variables. This was done
for the sake of simplicity, as every constraint involving more than two variables
can be converted to binary constraints.25 After all, the notion of the arc, e.g.
(X1, X2), includes only two variables.

On the other hand, n-ary constraints with n > 2, i.e. constraints that involve
more than two variables, are quite common in practice and can be exploited to
speed up search. Such constraints are often expressive in the sense that it is more
elegant for example to mention AllDifferent(X1, X2, X3) than X1 6= X2 ∧X2 6=
X3 ∧X3 6= X1.

For n-ary constraints, we enforce either generalized arc consistency (GAC)
or generalized bounds consistency. It would be interesting to see if the behavior
of maintaining AC vs. BC during search remains the same for their generalized
variants.

21



In 1997, Eugene Freuder, a Constraint Programming pioneer, stated that its
“holy grail” is that the user simply states the problem and the computer solves
it.12 This, obviously, emphasizes on user experience. Today, after two decades of
theoretical advances, the community still pursuits this “holy grail”.13 If we want
to contribute toward this direction in the future, we should integrate and test
the existing theory (e.g. about various consistency levels, search methodologies,
etc.) into user-friendly solvers and take the decision to use a common testbed
with emphasis on real-life CSPs over artificial ones with obfuscated modelings.

References

1. Ayub MA, Kalpoma KA, Proma HT, Kabir SM, Chowdhury RIH. Exhaus-
tive study of essential constraint satisfaction problem techniques based on
N -queens problem. In ICCIT:1–6 IEEE 2017.

2. Balafrej A, Bessiere C, Paparrizou A. Multi-armed bandits for adaptive
constraint propagation. In IJCAI 2015:290–296 2015.

3. Balafrej A, Bessiere C, Paparrizou A, Trombettoni G. Adapting consistency
in constraint solving. In Data Mining and Constraint Programming (Bessiere
C, De Raedt L, Kotthoff L, Nijssen S, O’Sullivan B, Pedreschi D, eds.):226–
253 Springer 2016.

4. Barták R, Salido MA, Rossi F. Constraint satisfaction techniques in plan-
ning and scheduling. Journal of Intelligent Manufacturing. 2010;21(1):5–15.

5. Bessiere C. Constraint propagation. In Rossi et al.26:29–83.

6. Bessiere C. Constraint reasoning. In Marquis et al.18:153–183.

7. Bessiere C, Régin JC, Yap RHC, Zhang Y. An optimal coarse-grained arc
consistency algorithm. Artificial Intelligence. 2005;165(2):165–185.

8. Bulatov AA. A dichotomy theorem for nonuniform CSPs. In FOCS
2017:319–330 IEEE 2017.

9. Cleveland WS, Grosse E, Shyu WM. Local regression models. In Statistical
Models in S (Chambers JM, Hastie TJ, eds.) ch. 8:309–376 Chapman &
Hall 1991.

10. Cohen DA, Jeavons PG. The power of propagation: When GAC is enough.
Constraints. 2017;22(1):3–23.

11. First XCSP3 competition. http://xcsp.org/call2017.pdf 2017.

12. Freuder EC. In pursuit of the holy grail. Constraints. 1997;2(1):57–61.

13. Freuder EC. Progress towards the holy grail. Constraints. 2018;23(2):158–
171.

14. Howell I, Woodward RJ, Choueiry BY, Bessiere C. Solving Sudoku with
consistency: A visual and interactive approach. In IJCAI 2018:5829–5831
2018.

22

http://xcsp.org/call2017.pdf


15. Lallouet A, Moinard Y, Nicolas P, Stéphan I. Logic programming. In Mar-
quis et al.18:83–113.

16. Li H, Li R, Yin M. Saving constraint checks in maintaining coarse-
grained generalized arc consistency. Neural Computing and Applications.
2019;31(1):499–508.

17. Mackworth AK. Constraint-based design of embedded intelligent systems.
Constraints. 1997;2(1):83–86.

18. Marquis P, Papini O, Prade H, eds. A Guided Tour of Artificial Intelligence
Research, Volume II: AI Algorithms. Springer 2020.

19. Petke J. Bridging Constraint Satisfaction and Boolean Satisfiability.
Springer 2015.

20. Pisinger D, Ropke S. Large neighborhood search. In Handbook of Meta-
heuristics (Gendreau M, Potvin JY, eds.):99–127 Springer 2019.

21. Pothitos N. Naxos Solver. http://github.com/pothitos/naxos 2018.

22. Pothitos N, Stamatopoulos P. Building search methods with self-confidence
in a constraint programming library. IJAIT. 2018;27(4):1860003.

23. Pothitos N, Stamatopoulos P, Zervoudakis K. Course scheduling in an ad-
justable constraint propagation schema. In ICTAI 2012:335–343 IEEE 2012.

24. Puget JF, Van Hentenryck P. A constraint satisfaction approach to a circuit
design problem. Journal of Global Optimization. 1998;13(1):75–93.

25. Rossi F, Petrie C, Dhar V. On the equivalence of constraint satisfaction
problems. In ECAI 1990:550–556 1990.

26. Rossi F, Beek P, Walsh T, eds. Handbook of Constraint Programming. El-
sevier 2006.

27. Smith BM. Modelling. In Rossi et al.26:377–406.

28. Veksler M, Strichman O. Learning general constraints in CSP. Artificial
Intelligence. 2016;238:135–153.

29. Wang R, Yap RHC. Arc consistency revisited. In Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research:599–
615 Springer 2019.

30. Wegener I. Complexity Theory ch. 2:20. Springer 2005.

31. Wilcox R. The regression smoother LOWESS: A confidence band that allows
heteroscedasticity and has some specified simultaneous probability coverage.
Journal of Modern Applied Statistical Methods. 2017;16(2):29–38.

32. Woodward RJ, Choueiry BY, Bessiere C. A reactive strategy for high-level
consistency during search. In IJCAI 2018:1390–1397 2018.

33. Zhuk D. A proof of CSP dichotomy conjecture. In FOCS 2017:331–342 IEEE
2017.

23

http://github.com/pothitos/naxos

	Introduction
	Constraint Satisfaction Problems
	The Intelligence behind Constraint Propagation
	Consistency Enforcement
	Our Contribution and Alternative Approaches
	More Related Work
	Complete and Incomplete Search
	Learning from Mistakes or Preventing Them?
	The Importance of Arc Consistency
	Higher-Level Consistencies
	Toward More Relaxed Consistencies


	Constructive Search
	The Standard Backtracking Search Method
	A Search Tree Path
	Paths vs. Trees

	Maintaining Consistency during Search
	Time Complexity in a Search Tree Node
	The Constraint Propagation Aggregate Complexity
	Backup and Restore Aggregate Complexity
	Storing Domains while Maintaining Arc Consistency
	Storing Domains while Maintaining Bounds Consistency

	Will AC or BC be faster?

	Empirical Evaluations
	Methodology
	Execution
	Visualization
	Observations

	Conclusions and Future Perspectives

