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Abstract 

A PErsonalized Tourist INformation Advisor is presented, 
called PETINA, which is a system aiming at constructing 
tours that satisfy conswaints specified by tourists. The sys- 
tem consults a database which contains information about 
activities, events and sites that refer to Greece. PETINA 
takes as input user wishes about tour generation expressed 
as constraints over visits' properties and its output is tours 
satisfying these conslraints. The user wishes may be stated 
using either a formal language or a graphical interface. The 
method of computation applies to any problem domain, in 
case the problem involves combinatorial searching under 
some kinds of constraints that can be classified into some 
well defined categories. Although a logic programming 
approach is suitable and valuable for the formulation of 
combinatorial search problems, conventional Prolog sys- 
tems fail to cope with them efficiently. PETINA has been 
implemented in the ElipSys language, which is a parallel 
logic programming system extended with various powerful 
mechanisms to allow efficient execution. Most of the Elip- 
Sys" features were proved to be indispensable for handling 
the complexity of the encountered problems. 
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Introduction 

Combinatorial search problems are computationally inten- 
sive, especially if they address a significantly large search 
space. Unfortunately, no general and efficient algorithm 
exists to solve them. Many combinatorial search problems 

involve user defined constraints over their search space, so 
the slraighfforward and classical method to cope with them 
is to employ the traditional generate-and-test method. The 
declarative formulation of  this method can be achieved in 
a logic programming environmenL via the Prolog language 
[3, 19]. However, due to the inefficiency of the exhaustive 
search of Prolog, real-life problems cannot be solved in this 
basic framework. 

In this paper, a specific combinatorial search problem is 
presented. The application that exemplifies the problem is 
called PETINA [6, 7, 18], which is a PErsonalized Tourist 
INformation Advisor about Greece. Its purpose is to con- 
struct tours that satisfy constraints specified by tourists. Al- 
though PETINA refers to Greece, the system is generic and 
can be used as a tourist information advisor for any country. 

A parallel logic programming language, ElipSys [1 ], is used 
for the implementation of PETINA. ElipSys provides, apart 
from various kinds of parallelism, such as OR-parallelism, 
AND-parallelism and data-parallelism, other additional fea- 
tures which are exploited to attack the encountered prob- 
lems and to make the application useful in a real-world en- 
vironment. These features consist of the introduction of  a 
data driven computation rule on top of the usual depth-first 
left-to-right execution strategy of Prolog and the incorpora- 
tion of constraint satisfaction techniques over finite domains 
into the language. Another useful facility that ElipSys pro- 
rides is its extension with the appropriate tools which fa- 
cilitate the development of graphical user interfaces. Both 
PETINA and ElipSys were developed in the context of  the 
ESPRIT II EDS (European Declarative System) project by 
the University of Athens and ECRC respectively. 

The previous work in the tour generation problem domain 
comprises two prototypes, namely TIA [11] and TInA [12], 
which were implemented in the PEPSys parallel logic pro- 
gramming language [16]. Although these prototypes had 
to deal with similar problems to the ones of PETINA, 
they cannot be considered as real-life applications, since 
they addressed limited amount of data. Moreover, the eg- 
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tended database structure and the advanced functionality of  
PETINA, with respect to the ones of  TIA and TInA, require 
more power by the underlying implementation framework 
than the one of  PEPSys'  parallel execution. 

In the following, a brief description of  the ElipSys lan- 
guage is given as well as PETINA's database structure, the 
functionality of  the system's tour generation facility and 
the slructural specification of  the whole application are pre- 
sented. Emphasis is put on the method employed by t h e  
Tour Generation Engine in conjunction with the exploited " 
ElipSys features. Finally, implementation issues are dis- 
cussed and performance measurements are presented. 

ElipSys Language 

ElipSys [1] is a parallel logic programming language, which 
has been extended to incorporate various powerful execu- 
tion mechanisms. The language supports OR-parallelism, 
AND-parallelism, data-parallelism, data driven computa- 
tion, constraint satisfaction techniques over finite domains 
and a facility for the development of user interfaces. Elip- 
Sys has greatly benefited by the Megalog [2], CHIP [4] and 
PEPSys [16] projects of  ECRC. 

OR-parallelism aims at the concurrent exploration of the 
various alternative clauses that define an ElipSys procedure. 
The programmer has to declare "good points" for efficient 
OR-parallel execution. If there are available resources, that 
is processing elements, a branch point is created with fer- 
tility equal to the number of  alternative clauses. 

AND-parallelism results from the concurrent execution of  
two goals in conjunction. This feature is not provided by the 
ElipSys execution model, neither it is supported by the run 
time environment of  the language. It resides only at the lan- 
guage level and is actually compiled into OR-parallelism. 

Data-parallelism [8] is a kind of parallelism arising from 
the concurrent treatment of  the elements of  a set of data. 
It is supported by various built-in predicates. If there are 
available resources, a branch point is created with fertility 
equal to the number of  the elements in the set. 

In addition, ElipSys supports a data driven computation rule 
[15] on top of  the usual depth-first left-to-right execution 
strategy of  Prolog. This rule modifies the reduction order of 
goals according to instantiations of  variables by declaring 
that every goal that refers to a specific predicate has to be 
delayed, if  its arguments are not adequately instantiated. 
A delayed goal is awakened when the desirable degree of  
instantiation is achieved. 

Constraint satisfaction techniques over finite domains [20] 
lead to a priori pruning of  the search space and thus, they 
result in more optimized execution. ElipSys provides this 
facility [21] by allowing the programmer to define domain 

variables which may range over integer intervals or enu- 
merated sets and to use a set of  built-in constraints on these 
variables. After stating the constraints that describe a prob- 
lem, the generation of  values for the domain variables must 
be triggered, via the appropriate built-in predicates, in or- 
der to start the constraint propagation and the pruning of  the 
search space. In addition, the constraint satisfaction mech- 
anism of  ElipSys supports a set of  higher order predicates 
useful for optimization problems. 

Finally, another feature of  ElipSys?concerus an object ori- " 
elated extension, named PCE [13], which was developed 
independently from the language. PCE allows to cream X- 
window based user interfaces easily and quickly. It provides 
a set of built-in classes and, in general, a small amount of 
ElipSys code suffices to adapt the built-in facilities to a 
particular application. 

PETINA's Database 

The PETINA system consults a database, implemented as 
a set of ElipSys facts, that contains information about ac- 
tivities, events and sites. Activities are considered to be 
the tourist's visits to various spots, while events are shows 
that may be attended. In addition, the sites refer to the 
geographical entities of  Greece. 

Three data structures are  defined in the system's database, 
namely the activity tree, the event tree and the site tree. 
However, the main part of  the database consists of the ac- 
tivity and event instances as well as the site ones. Every 
instance is identified by a unique key value. The activity 
and event instances are linked to nodes of the correspond- 
ing trees. On the other hand, the site instances themselves 
compose the site Iree. The activity, event and site instances 
are characterized by their attributes. 

The nodes of  the activity tree represent activity categories. 
The tree organization is based on interest hierarchy and the 
nodes of  a pan  of  the tree are considered as interest nodes, 
in terms of which specific interests may be expressed. Ac- 
tivity categories whose instances have various kinds of in- 
terest are represented by more than one tree nodes, de- 
noted with the same keyword but with different indices. In 
this way, a graph idea is implemented with a tree slruc- 
ture. In order to refer to an activity category regardless of  
type of  interest, a variable may be used in place of  the in- 
dex, e.g. m u s e u m ( X )  represents all the "museum" nodes 
of  the activity tree, i.e. m u s e u m ( l ) ,  m u s e u m ( 2 )  . . . . .  
museum(7). 

Activity instances can be linked to more than one nodes 
according to the categories they belong to and according 
to the types of  interest they present. Each type of interest 
corresponds to an interest node. An activity instance is 
linked either directly or indirectly to all, and only these, 
interest nodes that correspond to the types of  interest it 
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presents. 

An activity instance is characterized by its attributes, 
namely the site, the denomination, the duration, the cost, 
the time period, the closed days, the interest and the detail. 
The interest attribute is a special one in the sense that it 
collects as many values as the types of  interest the instance 
presents. 

Similar approaches have been followed for the event  and 
the site information. 

Functionality of PETINA 

PETINA takes as input user wishes about tour generation, 
named tour generation requests, expressed as constraints 
over visits' properties. Its output is tours satisfying the 
user 's constraints, as sets of activity instances or as sets 
o f  event instances. The user is also allowed to ask for 
information about activities, events and sites via informa- 
tion retrieval queries. Finally, management of PETINA's 
database is supplied by the system through database ad- 
ministration commands. The above three kinds of  requests 
may be expressed using a formal language close, however, 
to natural language. This language is defined by a Definite 
Clause Grammar (DCG) [14] which offers the possibility to 
handle context sensitivity, transformation of  the input and 
procedure calls. Moreover, a graphical interface is provided 
that helps the user to formulate the requests. In this case, 
the user does not need to know anything about PETINA's 
formal language. 

The rest of  this section is devoted Io the tour generation re- 
quests giving a general description of  the constraints of  the 
language and presenting the functionality of  the graphical 
interface, as far as the tour generation facility of  the system 
is concerned. 

There are two kinds of tours that the system produces. Con- 
sequently, there are two kinds of  tour generation requests 
the user may express. The one concerns the activity tour 
generation and the other the event tour generation. In both 
cases, at the beginning of  the request, the user has to give a 
time constraint concerning the time period when the visit is 
going to take place, in order to avoid visiting spots that are 
inactive. The other part o f  the request is a set of activity 
constraints or a set of  event constraints. The answer to a 
tour generation request consists of  the tours which satisfy 
all the conswaints of  the request. 

A time constraint is satisfied by a tour, if the time period 
attribute of  every instance that belongs to the tour has a 
non empty intersection with the visit period defined in the 
time constraint. An example of  a time constraint is the 
following:. 

visit period ia 20 Jul 92 - i0 Sep 92 

An activity or event constraint may be either simple or ,  
cross. A simple constraint has the general form 

(condition) for (subtour) 

and is satisfied by a tour in case (condition) holds for the 
(subtour). 

The (condition) may be local, global, topological or com- 
plex. The latter involves the operators " a n d " ,  " o r "  and 
" n o t "  applied to the first three kinds of  conditions. Local 
conditions refer to every instance o f  the (subtour) indi- 
vidually. They  involve an attribute expression, i.e. either 
an arithmetic expression of  attributes or a single aUxibute. 
Global conditions refer to the entire (subtour) as a whole. 
They  involve an aggregate function C a  urn", " a v g " ,  "max",  
'~nin")  applied to an attribute expression. Topological con- 
ditions refer to the number of  instances in the (aubtour). 
In this case, the keyword " n u m b e r "  is used. 

A simple conslraint may be local, global or topological if  
its (conditlon) is local, global or topological respectively. 
In case a complex condition appears in a simple conswaint, 
the condition is transformed into conjunctive normal form. 
Then, the original constraint is substituted by one or more 
constraints whose conditions are the and-operands of  the 
normal form. If an and-operand involves only local condi- 
tions, the corresponding constraint is local. The same holds 
for global and topological conditions. Otherwise, if  no such 
classification can be done, the constraint is called mixed. 

As far as the (subtour) part of  a simple conslraint is con- 
cerned, this is defined in terms of  one or more tree nodes, 
possibly refined by the so called where-properties by using 
the keyword "where". In case of  an activity cons~alnt, an 
entire category (set of  activity nodes) may be referenced or 
a single activity n o d 6 b y  using the " w i t h "  specifier. 

The following are examples o f  simple activity constralnLs: 

|. duration*interest >= 600 
for plant (local cons~alnO 

2. max(religious place interest) >= 7 
for building with architectural 
place interest ~loba l  conslrainO 

3. number ffi 1 for picturesque spot where 
interest > 5 (topologicalconsWaint) 

4. rain(cost) =< 300 or duration > 180 
for holiday resort (mixed cons~'~nt) 

In the order they appear, each of  the previous consuaints is 
satisfied by a tour if: 

1. Considering the subtour of  the tour that contains the 
instances which are finally linked to a node of  the form 
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plant(X), for every instance in the submur, the prod- 
uct of  its duration and its interest attributes is greater 
than or equal to 600. 

2. Considering the subtour of  the tour that contains 
the instances which are finally linked to the node 
building(2), the maximum value of  the religious place 
interest attributes of  the instances in the subtour is 
greater than or equal to 7. 

3. Considering the subtour of  the tour that contains the 
instances which are finally linked to a node of the 
form pi~uresque_spot(X) and have interest attribute 
greater than 5, this subtour comprises only 1 instance. 

4. Considering the subtour of  the tour that contains the 
instances which are finally linked to a node of the 
form holiday_resort(X), either the minimum value 
of the cost attributes of  the instances in the subtour is 
less than or equal to 300 or for every instance in the 
subtoor, its duration attribute is greater than 180. 

. 

total cost of the instances in the first subtour is less 
than or equal to the total cost of  the instances in the 
second subtour. 

Considering the subtour of  the tour that contains the in- 
stances which are finally linked to a node of  the form 
modern_year_history.place(X) and the subtour o f  
the tour that contains the instances which are finally 
linked to a node of the form nature(Y), the first sub- 
tour comprises more instances than the second one. 

Since most users are not willing to learn and use a for- 
mal language and in PETINA's  case the user may be even 
a tourist, a graphical interface has been also developed, 
using the PCE extension of  ElipSys, that provides a user 
friendly way to access the system. This interface is de- 
signed in such a way that the user composes the request 
via a pointing device (mouse) and with a minimum use of  
the keyboard. Menus and buttons are used extensively, in 
order to minimize the possibility of  erroneous inputs. 

Apart from the usual comparisons operators, the "in" and 
between" operators may be used as well, which actually 
introduce complex conditions. 

As already mentioned, there arc cross constraints as well. 
A cross constraint has the general form 

(CUW1)l f o r  (aubtour)z (cmp_op) (cure)2 f o r  (subtour)2 

where (curn)x and (curn)2 are either aggregate functions 
applied to attribute expressions or the keyword " n u m b e r " .  
This constraint is satisfied by a tour if  the cumulative prop- 
erty (curn)x of  (subtour)z is related with the cumulative 
property (curn)2 of (subtour)z via the comparison oper- 
ator (cmp_op). According to the kind of  the cumulative 
properties, a cross constraint may be global or topological. 

The following are examples of  cross activity constraints: 

I. sum(cost) for ancient history 
place =< sum(cost) for middle 
age history place (globalconslrainQ 

2..number for modern year 
history place > number 
for nature (topolog~al constrainO 

Each of  the previous constraints is satisfied by a tour if: 

1. Considering the subtour of  the tour that contains the 
instances which are finally linked to a node of the form 
ancient_history_place(X) and the subtour of  the tour 
that contains the instances which are finally linked to a 
node of the form middle_age_history_place(Y), the 

As far as the tour generation facility of  PETINA is con- 
cerned, the graphical interface firstly asks the user about the 
choice between activity or event tour generation. Then, a 
time conslzaint is requested in a user friendly way. Next, the 
interface asks the user to give either a simple or a cross con- 
stralnt. In case of  a simple constraint, the (condition) part 
of  it is requested. The entry procedure of  the (subtour) part 
of  the constraint follows. Finally, the user is asked whether 
he/she wants to give a where-property for the (subtour). 
The procedure for giving an activity or event constraint ac- 
cordingly is repeated until no more constraints are desired 
by the user. In the case of  cross constraints, similar func- 
tionality is provided by the interface. 

PETINA's Structural Specification 

PETINA is a clearly modularized system. The modules it 
consists of  are the User Interface, the Language Analyzer, 
the Tour Generation Engine, the Information Retrieval En- 
gine and the Database Administration Engine. The User 
Interface module is responsible for the user-system commu- 
nication. It  takes as input a graphically stated request and 
produces the corresponding sentence of PETINMs formal 
language. The Language Analyzer transforms the input rec- 
quest expressed in PETINA's  formal language into a form 
suitable for further processing. The Tour Generation En- 
gine, the most important module of  the system, generates 
activity and event tours satisfying the user 's  conslraints. 
The Information Retrieval Engine supplies the information 
the user asked for. Finally, the Database Administration 
Engine manages the database contents. None of the above 
modules needs any change in case a different country than 
Oreece is to be considered. 

The Language Analyzer is further refined into the Tokenizer 
and the Parser. The Tokenizer transforms the input request 
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into a list of  tokens. This list is recognized by the Parser, 
in order 1o produce the formal representation o f  the request. 

This paper concentrates on the Tour Generation Engine 
(TGE) module o f  the system, as it has the most complex 
problem to solve and various mechanisms are required. The 
TGE consists o f  the Domains Creator, the Configurator, the 
Database Filter, the Tour Generator and the Tour Evalua- 
tor. The functionality of  these submodules as well as the 
method employed by each one are presented in the follow- 
ing section. 

M e t h o d  o f  C o m p u t a t i o n  in T G E  

Some of  the submodules of  TGE deal with exuemely  cum- 
berrsome tasks. The Tour Generator involves a combinato- 
rial search problem over  a large space. The  Configurator 
has to solve a system of  equalities and inequalities. More- 
over, the Database Filter has to handle a large amount o f  
data. 

Taking into consideration the above, a methodology that 
solves the various encountered problems in a systematic 
way is employed.  This methodology is a general one and 
can be applied to all problems that involve combinatorial 
searching under constraints that fall into the presented gen- 
eral categories. The approach taken for every submodule 
o f  TGE, is presented in the following. 

Firstly, the Domains Creator partitions the activity or event 
tree, depending on the type of  the request, into domains. 
This partitioning is based on global and topological con- 
straints, both simple and cross, as well as on the mixed 
ones, in such a way that no two domains have me same set 
o f  global, topological or mixed constraints applied to them. 
Each domain is further partitioned into fine domains, ac- 
cording to the local conslzaints. The partitioning is carried 
out by the Domains Creator in the following way. Starting 
from the root  o f  the relevant tree, either activity or event, 
all the nodes are visited in a depth-first left-to-right fashion. 
During e ,~h visit, the constraints that apply directly to the 
node are considered as well as the ones which are inherited 
from the ancestor nodes. The whole set of  conswaints that 
apply to the node is the criterion for embedding the node 
into a fine domain and, consequently, into a domain. 

The Configurator produces all possible configurations of  the 
requested tours. A configuration represents acceptable num- 
bers of  instances per domain in a tour satisfying the user 's 
constraints. This module, taking into account the simple 
and cross topological constraints, generates and solves a 
system of  finear equalities and inequalities. The solution of  
the sysmm is achieved by exploiting the conslraint satisfac- 
tion techniques that ElipSys offers. Firstly, a set of  ElipSys 
domain variables is generated, each one corresponding to 
a domain and representing the acceptable number of  in- 
stances from this domain in the requested tour. Then, for 

every topological constraint, a linear equality or inequality 
is formed, which is stated as an ElipSys constraint. Finally, 
the generation of  values for the created domain variables is 
triggered, which leads to the computation of  the solutions 
of  the system of  the finear equalities and inequalities. Each 
solution corresponds to a configuration. 

Next, the Database Filter selects the instances, either activ- 
ity or event, according to the type o f  the request, that sat- 
isfy the time constraint and the relevant local constraints. 
Theses instances are selected for every  node refined by  
its where-property to build the instances of  a fine domain. 
Then, such sets are slructured to form a domain. Finally, 
for every domain, the lists o f  instances corresponding to its 
fine domains are combined into a single list and any du- 
plicate instances are removed, leading to the composition 
of  the filtered database. Dupficate instances may occur in 
the case o f  an activity tour generation request due to the 
multiple links of  the activity instances with the nodes of  
the activity tree. Parallelism is exploited in the Database 
Filter. More  precisely, there are three levels of  exploita- 
tion, the concurrent processing of  domains, fine domains 
and nodes refined by their where-properties. Parallel exe- 
cution is carried out during the postprocessing phase o f  the 
filtered database as well. The kind o f  parallelism encoun- 
tered is data-parallelism. 

The Tour Generator is the module where the actual tours are 
constructed. The method used for the construction o f  tours 
is test-and-generate implemented using the delay mecha- 
nism of  ElipSys. For  every configuration, each one of  the 
simple global, cross global and mixed constraints is stated, 
though it is delayed until the subtours it applies to become 
ground. Next, the generation o f  instances for every  domain 
is ~iggered ex~acting them from the filtered database. Dur- 
ing this generation, a constraint is activated and checked as 
soon as all the subtours it involves become fully instanti- 
awed. The tour that is being built is rejected, if a conslraint 
is not satisfied. Then, each tour that is computed is pro- 
cessed in order to flatten its subtours, check for possible 
duplicate elements that might appear in different domains 
and lexicographically sort its elements. Possible duplicate 
tours are removed from the whole set o f  tours. The main 
source of  parallelism of  the whole system exists in the Tour 
Generator. Firstly, there is the parallel processing of  all 
configurations and secondly, the selection of  possible in- 
stances to build a subtour for the corresponding domain 
in parallel. In both cases, the kind o f  parallelism is again 
data-parallelism. This kind o f  parallelism is also exploited 
in the postprocessing of  the generated tours. 

Finally, the Tour EvaluaWr sorts the tours produced by the 
Tour Generator in descending order a c c e d i n g  to their av- 
erage interest. In addition, it replaces the key values of  the 
instances by the corresponding denominations. The quick- 
sort algorithm is used, which is a typical divide-and-conquer 
method. Thus, AND-parallelism is exploited, as it fits per- 
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P e r f o r m a n c e  M e a s u r e m e n t s  

O 
t . .  

m 
z 

The first implementation of  the tour generation facility of 
PETINA was carried out in Sepia Prolog [17]. Sepia is 
an advanced sequential Prolog system. Among the various 
features it offers, the delay mechanism was used in the 
Tour Generator as well as in the Configurator, in order to 
solve the system of  equalities and inequalities by a test-and- 
generate method. 

The current implementation has been carried out in the 
ElipSys version 0.3 [5]. The submodules which involve 
parallelism, namely the Database Filter, the Tour Genera- 
tor and the Tour Evaluator, were also implemented in the 
PEPSys language [16]. PEPSys is a parallel logic pro- 
gramming language that supports OR- and restricted AND- 
parallelism. The data-parallelism facility of  ElipSys was 
simulated by the PEPSys OR-parallelism. The COKE pre- 
processor [9, 10], that allows to measure the theoretical per- 
formance of  parallel execution of  PEPSys programs, was 
used. The Sepia, ElipSys and PEPSys/COKE work was 
carried out on SUN 3/60 workstations under SunOS 4.1.1. 
Moreover, the ElipSys version of  the implementation was 
tested on a Sequent Symmetry machine, the shared mem- 
ory multiprccessor of  ECRC. Thus, Irue parallel execution 
results were obtained as well. 

The above implementations gave the opportunity for com- 
paring various programming methodologies. The perfor- 
mance gain by using the delay mechanism of  ElipSys in 
the Tour Generator ranged from 3:1 to 5:1, for typical tour 
generation requests. As far as the use of  the consD'aint satis- 
faction techniques is concerned, a dramatical improvement 
was achieved by the ElipSys implementation of  the Config- 
urator with respect to the one in Sepia. In most cases, the 
performance gain was several orders of  magnitude. 

Finally, as mentioned above, parallelism was exploited in 
three submodules. For a complex request presented in 
[18], the speedup achieved by the Database Filter was 
40.11 ni/et (number of inferences / execution time), by 
the Tour Generator 825.41 ni/et and by the Tour Evalua- 
tot 7.46 ni/et. The COKE tool was used to obtain these 
measurements. This tool assumes that each goal executes 
in one time unit and unlimited resources (processors) are 
available. The graphs representing the number of  processes 
vs. execution time for the three submodules are presented 
in Figures 1, 2 and 3. 

It is worthwhile mentioning that the quality of  the graph 
that corresponds to the Tour Generator, which is the most 
computationally intensive part of  the system, is very good. 
The shape of  this graph is fiat rather than peaky, which 
means that the exploitation of  parallelism in this submodule 
is promising. As far as the graphs that correspond to the 
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Figure 1: Database Filter graph 
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Figure 2: Tour Generator graph 

other two submodules are concerned, their shapes are not 
as good as the Tour Generator's one, but, anyway these 
submodules may conuibute to the overall acceleration of  
• e system. 

Using the SymmeU7 as a platform, the system was tested on 
a true parallel machine, which provided the opportunity to 
check the degree of  real parallelism exploitation. In order 
to get sequential results, ElipSys was used with one worker 
and the various submodules of  the tour generation facil- 
ity ran separately on the request into consideration. Table I 
presents the corresponding execution times in CPU seconds. 
In addition, the total execution time was computed. Paral- 
lel execution results were obtained for the Database Filter 
(DF), the Tour Generator (TG) and the Tour Evaluator (TE) 
submodules, where parallelism is exploited, using a num- 
ber of  two to six workers. The CPU times (in seconds) of  
the longest processes are shown in Table 2 for each of  the 
previous submodules. The constant sum of  the CPU times 
for the sequential submodules (Seq), i.e. Tokenizer, Parser, 
Domains Creator and Configurator, as well as the total exe- 
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Figure 3: Tour Evaluator graph 

cution results, that is the ones which are related to the whole 
tour generation facility, are also shown in Table 2, consid- 
ering a number of two to six workers. Finally, Table 3 
presents the speedups achieved for the parallel submodules 
as well as the total speedups of the whole execution. These 
results arc also graphically presented in Figure 4. 

, -  II 
Tok~izer 8.29 

Parser 4.23 

Domains Creator 18.61 

Conjigarmor 0.55 

Database Filler 23.87 

Tour Generator 540.57 

Tour Evalumor 1.58 

Total II 597.70 I 

Table 1: Sequential execution resulLs on the Symmetry 

Seq 31.68 31.68 31.68 31.68 31.68 

DF 12.50 8.68 6.62 5.53 4.77 

TG 277.61 184.33 138.40 112.39 94.59 

TE 1.24 1.04 0,90 0.80 0,82 
I 

II ro,  II 3 03 [2,,.73 1177.60 I 15040 13 a6 H 

Table 2: Parallel execution results on the Symmelry 

To comment  on the above, the theoretically good results 
obtained by the COKE tool were verified by the true par- 
allel execution. The Tour Generator, where the bulk of  

I DF 1.91 2.75 3.61 4.32 5.00 

TG 1.95 2.93 3.91 4.81 5.71 

• T E  1.27 1.52 1.76 1.98 1.93 

I I I I I I II 

Table 3: Speedups for parallel execution 
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Figure 4: Speedup vs. number of  workers 

the computational load appears, presents a curve that ap- 
proximates significantly the ideal linear curve. As it was 
expected, the overall speedup is mainly affected by the one 
o f  the Tour Generator, thus the corresponding curve is very 
close to the ideal one. The reason why the Tour Evaluator 
does not seem to present good speedups is that, for the spe- 
cific request, this submodule has to sort just  13 tours. So, 
parallelism is not highly exploitable in this case. 

C o n c l u s i o n s  an d  F u t u r e  W o r k  

In this paper, the most significant part o f  PETINA, that is 
the one which carries out its tour generation facility, was 
presented. PETINA is a PErsonalized Tourist INforma- 
tion Advisor consulting a database that contains tourist data 
about Greece. Thus, by changing the database the system 
can be used for any country. 

The problem of  tour generation is a combinatorial search 
one, thus advanced mechanisms are required to cope with 
it efficiently. The ElipSys parallel logic programming lan- 
guage is a suitable vehicle in this direction, since, apart from 
the parallel execution, it offers the possibility of  declarative 
formulation of  the problem as well as it provides various 
extended features, such as data driven computation, con- 
straint satisfaction techniques and a platform for developing 
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graphical interfaces. 

Although PETINA's tour generation problem addresses a 
large search space, it was shown that ElipSys features help 
to attack the complexity of the algorithms needed. Par- 
allelism was highly exploitable, as it was proved by the 
presented performance measurements. Moreover, the data 
driven computation was found useful and the constraint sat- 
is faction facilities of ElipSys were found indispensable. Fi- 
nally, PETINA, as it is a real-life application, provides a 
graphical and friendly way to allow causal users to access 
the system, exploiting the appropriate facility offered by 
ElipSys. 

An interesting characteristic of the system is that the method 
employed for the tour construction is a general one and can 
be applied to any problem domain which involves combi- 
natorial searching under constraints that fall into some well 
defined categories. 

The objective of the future work in the tour generation fa- 
cility of PETINA is to reduce the execution time of the Tour 
Generator that presents the bulk of the computational load. 
More precisely, a more profitable use of the delay mecha- 
nism of ElipSys is envisaged. Alternatively, the consWaint 
satisfaction techniques may be exploited into the Tour Gen- 
erator as well. 
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