
A TOUR ADVISORY SYSTEM

USING A LOGIC P R O G R A M M I N G APPROACH

Panagiotis Stamatopoulos Isambo Karali Constantin Halatsis

University of Athens, Department of Inforrnatics

Abstract

A PErsonalized Tourist INformation Advisor is presented,
called PETINA, which is a system aiming at constructing
tours that satisfy conswaints specified by tourists. The sys-
tem consults a database which contains information about
activities, events and sites that refer to Greece. PETINA
takes as input user wishes about tour generation expressed
as constraints over visits' properties and its output is tours
satisfying these conslraints. The user wishes may be stated
using either a formal language or a graphical interface. The
method of computation applies to any problem domain, in
case the problem involves combinatorial searching under
some kinds of constraints that can be classified into some
well defined categories. Although a logic programming
approach is suitable and valuable for the formulation of
combinatorial search problems, conventional Prolog sys-
tems fail to cope with them efficiently. PETINA has been
implemented in the ElipSys language, which is a parallel
logic programming system extended with various powerful
mechanisms to allow efficient execution. Most of the Elip-
Sys" features were proved to be indispensable for handling
the complexity of the encountered problems.

Keywords

combinatorial search, tour construction, parallel logic pro-
gramming, constraint satisfaction, data driven computation

Introduction

Combinatorial search problems are computationally inten-
sive, especially if they address a significantly large search
space. Unfortunately, no general and efficient algorithm
exists to solve them. Many combinatorial search problems

involve user defined constraints over their search space, so
the slraighfforward and classical method to cope with them
is to employ the traditional generate-and-test method. The
declarative formulation of this method can be achieved in
a logic programming environmenL via the Prolog language
[3, 19]. However, due to the inefficiency of the exhaustive
search of Prolog, real-life problems cannot be solved in this
basic framework.

In this paper, a specific combinatorial search problem is
presented. The application that exemplifies the problem is
called PETINA [6, 7, 18], which is a PErsonalized Tourist
INformation Advisor about Greece. Its purpose is to con-
struct tours that satisfy constraints specified by tourists. Al-
though PETINA refers to Greece, the system is generic and
can be used as a tourist information advisor for any country.

A parallel logic programming language, ElipSys [1], is used
for the implementation of PETINA. ElipSys provides, apart
from various kinds of parallelism, such as OR-parallelism,
AND-parallelism and data-parallelism, other additional fea-
tures which are exploited to attack the encountered prob-
lems and to make the application useful in a real-world en-
vironment. These features consist of the introduction of a
data driven computation rule on top of the usual depth-first
left-to-right execution strategy of Prolog and the incorpora-
tion of constraint satisfaction techniques over finite domains
into the language. Another useful facility that ElipSys pro-
rides is its extension with the appropriate tools which fa-
cilitate the development of graphical user interfaces. Both
PETINA and ElipSys were developed in the context of the
ESPRIT II EDS (European Declarative System) project by
the University of Athens and ECRC respectively.

The previous work in the tour generation problem domain
comprises two prototypes, namely TIA [11] and TInA [12],
which were implemented in the PEPSys parallel logic pro-
gramming language [16]. Although these prototypes had
to deal with similar problems to the ones of PETINA,
they cannot be considered as real-life applications, since
they addressed limited amount of data. Moreover, the eg-

1 8

tended database structure and the advanced functionality of
PETINA, with respect to the ones of TIA and TInA, require
more power by the underlying implementation framework
than the one of PEPSys' parallel execution.

In the following, a brief description of the ElipSys lan-
guage is given as well as PETINA's database structure, the
functionality of the system's tour generation facility and
the slructural specification of the whole application are pre-
sented. Emphasis is put on the method employed by t h e
Tour Generation Engine in conjunction with the exploited "
ElipSys features. Finally, implementation issues are dis-
cussed and performance measurements are presented.

ElipSys Language

ElipSys [1] is a parallel logic programming language, which
has been extended to incorporate various powerful execu-
tion mechanisms. The language supports OR-parallelism,
AND-parallelism, data-parallelism, data driven computa-
tion, constraint satisfaction techniques over finite domains
and a facility for the development of user interfaces. Elip-
Sys has greatly benefited by the Megalog [2], CHIP [4] and
PEPSys [16] projects of ECRC.

OR-parallelism aims at the concurrent exploration of the
various alternative clauses that define an ElipSys procedure.
The programmer has to declare "good points" for efficient
OR-parallel execution. If there are available resources, that
is processing elements, a branch point is created with fer-
tility equal to the number of alternative clauses.

AND-parallelism results from the concurrent execution of
two goals in conjunction. This feature is not provided by the
ElipSys execution model, neither it is supported by the run
time environment of the language. It resides only at the lan-
guage level and is actually compiled into OR-parallelism.

Data-parallelism [8] is a kind of parallelism arising from
the concurrent treatment of the elements of a set of data.
It is supported by various built-in predicates. If there are
available resources, a branch point is created with fertility
equal to the number of the elements in the set.

In addition, ElipSys supports a data driven computation rule
[15] on top of the usual depth-first left-to-right execution
strategy of Prolog. This rule modifies the reduction order of
goals according to instantiations of variables by declaring
that every goal that refers to a specific predicate has to be
delayed, if its arguments are not adequately instantiated.
A delayed goal is awakened when the desirable degree of
instantiation is achieved.

Constraint satisfaction techniques over finite domains [20]
lead to a priori pruning of the search space and thus, they
result in more optimized execution. ElipSys provides this
facility [21] by allowing the programmer to define domain

variables which may range over integer intervals or enu-
merated sets and to use a set of built-in constraints on these
variables. After stating the constraints that describe a prob-
lem, the generation of values for the domain variables must
be triggered, via the appropriate built-in predicates, in or-
der to start the constraint propagation and the pruning of the
search space. In addition, the constraint satisfaction mech-
anism of ElipSys supports a set of higher order predicates
useful for optimization problems.

Finally, another feature of ElipSys?concerus an object ori- "
elated extension, named PCE [13], which was developed
independently from the language. PCE allows to cream X-
window based user interfaces easily and quickly. It provides
a set of built-in classes and, in general, a small amount of
ElipSys code suffices to adapt the built-in facilities to a
particular application.

PETINA's Database

The PETINA system consults a database, implemented as
a set of ElipSys facts, that contains information about ac-
tivities, events and sites. Activities are considered to be
the tourist's visits to various spots, while events are shows
that may be attended. In addition, the sites refer to the
geographical entities of Greece.

Three data structures are defined in the system's database,
namely the activity tree, the event tree and the site tree.
However, the main part of the database consists of the ac-
tivity and event instances as well as the site ones. Every
instance is identified by a unique key value. The activity
and event instances are linked to nodes of the correspond-
ing trees. On the other hand, the site instances themselves
compose the site Iree. The activity, event and site instances
are characterized by their attributes.

The nodes of the activity tree represent activity categories.
The tree organization is based on interest hierarchy and the
nodes of a pan of the tree are considered as interest nodes,
in terms of which specific interests may be expressed. Ac-
tivity categories whose instances have various kinds of in-
terest are represented by more than one tree nodes, de-
noted with the same keyword but with different indices. In
this way, a graph idea is implemented with a tree slruc-
ture. In order to refer to an activity category regardless of
type of interest, a variable may be used in place of the in-
dex, e.g. m u s e u m (X) represents all the "museum" nodes
of the activity tree, i.e. m u s e u m (l) , m u s e u m (2)
museum(7).

Activity instances can be linked to more than one nodes
according to the categories they belong to and according
to the types of interest they present. Each type of interest
corresponds to an interest node. An activity instance is
linked either directly or indirectly to all, and only these,
interest nodes that correspond to the types of interest it

1 9

presents.

An activity instance is characterized by its attributes,
namely the site, the denomination, the duration, the cost,
the time period, the closed days, the interest and the detail.
The interest attribute is a special one in the sense that it
collects as many values as the types of interest the instance
presents.

Similar approaches have been followed for the event and
the site information.

Functionality of PETINA

PETINA takes as input user wishes about tour generation,
named tour generation requests, expressed as constraints
over visits' properties. Its output is tours satisfying the
user 's constraints, as sets of activity instances or as sets
o f event instances. The user is also allowed to ask for
information about activities, events and sites via informa-
tion retrieval queries. Finally, management of PETINA's
database is supplied by the system through database ad-
ministration commands. The above three kinds of requests
may be expressed using a formal language close, however,
to natural language. This language is defined by a Definite
Clause Grammar (DCG) [14] which offers the possibility to
handle context sensitivity, transformation of the input and
procedure calls. Moreover, a graphical interface is provided
that helps the user to formulate the requests. In this case,
the user does not need to know anything about PETINA's
formal language.

The rest of this section is devoted Io the tour generation re-
quests giving a general description of the constraints of the
language and presenting the functionality of the graphical
interface, as far as the tour generation facility of the system
is concerned.

There are two kinds of tours that the system produces. Con-
sequently, there are two kinds of tour generation requests
the user may express. The one concerns the activity tour
generation and the other the event tour generation. In both
cases, at the beginning of the request, the user has to give a
time constraint concerning the time period when the visit is
going to take place, in order to avoid visiting spots that are
inactive. The other part o f the request is a set of activity
constraints or a set of event constraints. The answer to a
tour generation request consists of the tours which satisfy
all the conswaints of the request.

A time constraint is satisfied by a tour, if the time period
attribute of every instance that belongs to the tour has a
non empty intersection with the visit period defined in the
time constraint. An example of a time constraint is the
following:.

visit period ia 20 Jul 92 - i0 Sep 92

An activity or event constraint may be either simple or ,
cross. A simple constraint has the general form

(condition) for (subtour)

and is satisfied by a tour in case (condition) holds for the
(subtour).

The (condition) may be local, global, topological or com-
plex. The latter involves the operators " a n d " , " o r " and
" n o t " applied to the first three kinds of conditions. Local
conditions refer to every instance o f the (subtour) indi-
vidually. They involve an attribute expression, i.e. either
an arithmetic expression of attributes or a single aUxibute.
Global conditions refer to the entire (subtour) as a whole.
They involve an aggregate function C a urn", " a v g " , "max",
'~nin") applied to an attribute expression. Topological con-
ditions refer to the number of instances in the (aubtour).
In this case, the keyword " n u m b e r " is used.

A simple conslraint may be local, global or topological if
its (conditlon) is local, global or topological respectively.
In case a complex condition appears in a simple conswaint,
the condition is transformed into conjunctive normal form.
Then, the original constraint is substituted by one or more
constraints whose conditions are the and-operands of the
normal form. If an and-operand involves only local condi-
tions, the corresponding constraint is local. The same holds
for global and topological conditions. Otherwise, if no such
classification can be done, the constraint is called mixed.

As far as the (subtour) part of a simple conslraint is con-
cerned, this is defined in terms of one or more tree nodes,
possibly refined by the so called where-properties by using
the keyword "where". In case of an activity cons~alnt, an
entire category (set of activity nodes) may be referenced or
a single activity n o d 6 b y using the " w i t h " specifier.

The following are examples o f simple activity constralnLs:

|. duration*interest >= 600
for plant (local cons~alnO

2. max(religious place interest) >= 7
for building with architectural
place interest ~loba l conslrainO

3. number ffi 1 for picturesque spot where
interest > 5 (topologicalconsWaint)

4. rain(cost) =< 300 or duration > 180
for holiday resort (mixed cons~'~nt)

In the order they appear, each of the previous consuaints is
satisfied by a tour if:

1. Considering the subtour of the tour that contains the
instances which are finally linked to a node of the form

2 0

plant(X), for every instance in the submur, the prod-
uct of its duration and its interest attributes is greater
than or equal to 600.

2. Considering the subtour of the tour that contains
the instances which are finally linked to the node
building(2), the maximum value of the religious place
interest attributes of the instances in the subtour is
greater than or equal to 7.

3. Considering the subtour of the tour that contains the
instances which are finally linked to a node of the
form pi~uresque_spot(X) and have interest attribute
greater than 5, this subtour comprises only 1 instance.

4. Considering the subtour of the tour that contains the
instances which are finally linked to a node of the
form holiday_resort(X), either the minimum value
of the cost attributes of the instances in the subtour is
less than or equal to 300 or for every instance in the
subtoor, its duration attribute is greater than 180.

.

total cost of the instances in the first subtour is less
than or equal to the total cost of the instances in the
second subtour.

Considering the subtour of the tour that contains the in-
stances which are finally linked to a node of the form
modern_year_history.place(X) and the subtour o f
the tour that contains the instances which are finally
linked to a node of the form nature(Y), the first sub-
tour comprises more instances than the second one.

Since most users are not willing to learn and use a for-
mal language and in PETINA's case the user may be even
a tourist, a graphical interface has been also developed,
using the PCE extension of ElipSys, that provides a user
friendly way to access the system. This interface is de-
signed in such a way that the user composes the request
via a pointing device (mouse) and with a minimum use of
the keyboard. Menus and buttons are used extensively, in
order to minimize the possibility of erroneous inputs.

Apart from the usual comparisons operators, the "in" and
between" operators may be used as well, which actually
introduce complex conditions.

As already mentioned, there arc cross constraints as well.
A cross constraint has the general form

(CUW1)l f o r (aubtour)z (cmp_op) (cure)2 f o r (subtour)2

where (curn)x and (curn)2 are either aggregate functions
applied to attribute expressions or the keyword " n u m b e r " .
This constraint is satisfied by a tour if the cumulative prop-
erty (curn)x of (subtour)z is related with the cumulative
property (curn)2 of (subtour)z via the comparison oper-
ator (cmp_op). According to the kind of the cumulative
properties, a cross constraint may be global or topological.

The following are examples of cross activity constraints:

I. sum(cost) for ancient history
place =< sum(cost) for middle
age history place (globalconslrainQ

2..number for modern year
history place > number
for nature (topolog~al constrainO

Each of the previous constraints is satisfied by a tour if:

1. Considering the subtour of the tour that contains the
instances which are finally linked to a node of the form
ancient_history_place(X) and the subtour of the tour
that contains the instances which are finally linked to a
node of the form middle_age_history_place(Y), the

As far as the tour generation facility of PETINA is con-
cerned, the graphical interface firstly asks the user about the
choice between activity or event tour generation. Then, a
time conslzaint is requested in a user friendly way. Next, the
interface asks the user to give either a simple or a cross con-
stralnt. In case of a simple constraint, the (condition) part
of it is requested. The entry procedure of the (subtour) part
of the constraint follows. Finally, the user is asked whether
he/she wants to give a where-property for the (subtour).
The procedure for giving an activity or event constraint ac-
cordingly is repeated until no more constraints are desired
by the user. In the case of cross constraints, similar func-
tionality is provided by the interface.

PETINA's Structural Specification

PETINA is a clearly modularized system. The modules it
consists of are the User Interface, the Language Analyzer,
the Tour Generation Engine, the Information Retrieval En-
gine and the Database Administration Engine. The User
Interface module is responsible for the user-system commu-
nication. It takes as input a graphically stated request and
produces the corresponding sentence of PETINMs formal
language. The Language Analyzer transforms the input rec-
quest expressed in PETINA's formal language into a form
suitable for further processing. The Tour Generation En-
gine, the most important module of the system, generates
activity and event tours satisfying the user 's conslraints.
The Information Retrieval Engine supplies the information
the user asked for. Finally, the Database Administration
Engine manages the database contents. None of the above
modules needs any change in case a different country than
Oreece is to be considered.

The Language Analyzer is further refined into the Tokenizer
and the Parser. The Tokenizer transforms the input request

2 1

into a list of tokens. This list is recognized by the Parser,
in order 1o produce the formal representation o f the request.

This paper concentrates on the Tour Generation Engine
(TGE) module o f the system, as it has the most complex
problem to solve and various mechanisms are required. The
TGE consists o f the Domains Creator, the Configurator, the
Database Filter, the Tour Generator and the Tour Evalua-
tor. The functionality of these submodules as well as the
method employed by each one are presented in the follow-
ing section.

M e t h o d o f C o m p u t a t i o n in T G E

Some of the submodules of TGE deal with exuemely cum-
berrsome tasks. The Tour Generator involves a combinato-
rial search problem over a large space. The Configurator
has to solve a system of equalities and inequalities. More-
over, the Database Filter has to handle a large amount o f
data.

Taking into consideration the above, a methodology that
solves the various encountered problems in a systematic
way is employed. This methodology is a general one and
can be applied to all problems that involve combinatorial
searching under constraints that fall into the presented gen-
eral categories. The approach taken for every submodule
o f TGE, is presented in the following.

Firstly, the Domains Creator partitions the activity or event
tree, depending on the type of the request, into domains.
This partitioning is based on global and topological con-
straints, both simple and cross, as well as on the mixed
ones, in such a way that no two domains have me same set
o f global, topological or mixed constraints applied to them.
Each domain is further partitioned into fine domains, ac-
cording to the local conslzaints. The partitioning is carried
out by the Domains Creator in the following way. Starting
from the root o f the relevant tree, either activity or event,
all the nodes are visited in a depth-first left-to-right fashion.
During e ,~h visit, the constraints that apply directly to the
node are considered as well as the ones which are inherited
from the ancestor nodes. The whole set of conswaints that
apply to the node is the criterion for embedding the node
into a fine domain and, consequently, into a domain.

The Configurator produces all possible configurations of the
requested tours. A configuration represents acceptable num-
bers of instances per domain in a tour satisfying the user 's
constraints. This module, taking into account the simple
and cross topological constraints, generates and solves a
system of finear equalities and inequalities. The solution of
the sysmm is achieved by exploiting the conslraint satisfac-
tion techniques that ElipSys offers. Firstly, a set of ElipSys
domain variables is generated, each one corresponding to
a domain and representing the acceptable number of in-
stances from this domain in the requested tour. Then, for

every topological constraint, a linear equality or inequality
is formed, which is stated as an ElipSys constraint. Finally,
the generation of values for the created domain variables is
triggered, which leads to the computation of the solutions
of the system of the finear equalities and inequalities. Each
solution corresponds to a configuration.

Next, the Database Filter selects the instances, either activ-
ity or event, according to the type o f the request, that sat-
isfy the time constraint and the relevant local constraints.
Theses instances are selected for every node refined by
its where-property to build the instances of a fine domain.
Then, such sets are slructured to form a domain. Finally,
for every domain, the lists o f instances corresponding to its
fine domains are combined into a single list and any du-
plicate instances are removed, leading to the composition
of the filtered database. Dupficate instances may occur in
the case o f an activity tour generation request due to the
multiple links of the activity instances with the nodes of
the activity tree. Parallelism is exploited in the Database
Filter. More precisely, there are three levels of exploita-
tion, the concurrent processing of domains, fine domains
and nodes refined by their where-properties. Parallel exe-
cution is carried out during the postprocessing phase o f the
filtered database as well. The kind o f parallelism encoun-
tered is data-parallelism.

The Tour Generator is the module where the actual tours are
constructed. The method used for the construction o f tours
is test-and-generate implemented using the delay mecha-
nism of ElipSys. For every configuration, each one of the
simple global, cross global and mixed constraints is stated,
though it is delayed until the subtours it applies to become
ground. Next, the generation o f instances for every domain
is ~iggered ex~acting them from the filtered database. Dur-
ing this generation, a constraint is activated and checked as
soon as all the subtours it involves become fully instanti-
awed. The tour that is being built is rejected, if a conslraint
is not satisfied. Then, each tour that is computed is pro-
cessed in order to flatten its subtours, check for possible
duplicate elements that might appear in different domains
and lexicographically sort its elements. Possible duplicate
tours are removed from the whole set o f tours. The main
source of parallelism of the whole system exists in the Tour
Generator. Firstly, there is the parallel processing of all
configurations and secondly, the selection of possible in-
stances to build a subtour for the corresponding domain
in parallel. In both cases, the kind o f parallelism is again
data-parallelism. This kind o f parallelism is also exploited
in the postprocessing of the generated tours.

Finally, the Tour EvaluaWr sorts the tours produced by the
Tour Generator in descending order a c c e d i n g to their av-
erage interest. In addition, it replaces the key values of the
instances by the corresponding denominations. The quick-
sort algorithm is used, which is a typical divide-and-conquer
method. Thus, AND-parallelism is exploited, as it fits per-

2 2

P e r f o r m a n c e M e a s u r e m e n t s

O
t . .

m
z

The first implementation of the tour generation facility of
PETINA was carried out in Sepia Prolog [17]. Sepia is
an advanced sequential Prolog system. Among the various
features it offers, the delay mechanism was used in the
Tour Generator as well as in the Configurator, in order to
solve the system of equalities and inequalities by a test-and-
generate method.

The current implementation has been carried out in the
ElipSys version 0.3 [5]. The submodules which involve
parallelism, namely the Database Filter, the Tour Genera-
tor and the Tour Evaluator, were also implemented in the
PEPSys language [16]. PEPSys is a parallel logic pro-
gramming language that supports OR- and restricted AND-
parallelism. The data-parallelism facility of ElipSys was
simulated by the PEPSys OR-parallelism. The COKE pre-
processor [9, 10], that allows to measure the theoretical per-
formance of parallel execution of PEPSys programs, was
used. The Sepia, ElipSys and PEPSys/COKE work was
carried out on SUN 3/60 workstations under SunOS 4.1.1.
Moreover, the ElipSys version of the implementation was
tested on a Sequent Symmetry machine, the shared mem-
ory multiprccessor of ECRC. Thus, Irue parallel execution
results were obtained as well.

The above implementations gave the opportunity for com-
paring various programming methodologies. The perfor-
mance gain by using the delay mechanism of ElipSys in
the Tour Generator ranged from 3:1 to 5:1, for typical tour
generation requests. As far as the use of the consD'aint satis-
faction techniques is concerned, a dramatical improvement
was achieved by the ElipSys implementation of the Config-
urator with respect to the one in Sepia. In most cases, the
performance gain was several orders of magnitude.

Finally, as mentioned above, parallelism was exploited in
three submodules. For a complex request presented in
[18], the speedup achieved by the Database Filter was
40.11 ni/et (number of inferences / execution time), by
the Tour Generator 825.41 ni/et and by the Tour Evalua-
tot 7.46 ni/et. The COKE tool was used to obtain these
measurements. This tool assumes that each goal executes
in one time unit and unlimited resources (processors) are
available. The graphs representing the number of processes
vs. execution time for the three submodules are presented
in Figures 1, 2 and 3.

It is worthwhile mentioning that the quality of the graph
that corresponds to the Tour Generator, which is the most
computationally intensive part of the system, is very good.
The shape of this graph is fiat rather than peaky, which
means that the exploitation of parallelism in this submodule
is promising. As far as the graphs that correspond to the

20o
150

0
0

100-

50-

. . . . | • . .

200

2000-

fecfly in this case.

I I

400 600

Execut ion t ime

Figure 1: Database Filter graph

0
0

1500 -
g

~ 1000-
O

500 -
Z

. . . . I I I I I

100 200 300 d00 500

Execut ion t ime

Figure 2: Tour Generator graph

other two submodules are concerned, their shapes are not
as good as the Tour Generator's one, but, anyway these
submodules may conuibute to the overall acceleration of
• e system.

Using the SymmeU7 as a platform, the system was tested on
a true parallel machine, which provided the opportunity to
check the degree of real parallelism exploitation. In order
to get sequential results, ElipSys was used with one worker
and the various submodules of the tour generation facil-
ity ran separately on the request into consideration. Table I
presents the corresponding execution times in CPU seconds.
In addition, the total execution time was computed. Paral-
lel execution results were obtained for the Database Filter
(DF), the Tour Generator (TG) and the Tour Evaluator (TE)
submodules, where parallelism is exploited, using a num-
ber of two to six workers. The CPU times (in seconds) of
the longest processes are shown in Table 2 for each of the
previous submodules. The constant sum of the CPU times
for the sequential submodules (Seq), i.e. Tokenizer, Parser,
Domains Creator and Configurator, as well as the total exe-

2 3

I0

g
1,1
eL

elm
O
Im

15-

10-

0
0

1.

I I ~
100 200

E x e c u t i o n t ime

I
30O

Figure 3: Tour Evaluator graph

cution results, that is the ones which are related to the whole
tour generation facility, are also shown in Table 2, consid-
ering a number of two to six workers. Finally, Table 3
presents the speedups achieved for the parallel submodules
as well as the total speedups of the whole execution. These
results arc also graphically presented in Figure 4.

, - II
Tok~izer 8.29

Parser 4.23

Domains Creator 18.61

Conjigarmor 0.55

Database Filler 23.87

Tour Generator 540.57

Tour Evalumor 1.58

Total II 597.70 I

Table 1: Sequential execution resulLs on the Symmetry

Seq 31.68 31.68 31.68 31.68 31.68

DF 12.50 8.68 6.62 5.53 4.77

TG 277.61 184.33 138.40 112.39 94.59

TE 1.24 1.04 0,90 0.80 0,82
I

II ro, II 3 03 [2,,.73 1177.60 I 15040 13 a6 H

Table 2: Parallel execution results on the Symmelry

To comment on the above, the theoretically good results
obtained by the COKE tool were verified by the true par-
allel execution. The Tour Generator, where the bulk of

I DF 1.91 2.75 3.61 4.32 5.00

TG 1.95 2.93 3.91 4.81 5.71

• T E 1.27 1.52 1.76 1.98 1.93

I I I I I I II

Table 3: Speedups for parallel execution

es_
[]

eL
fJ~

7

6

5

4

3

2

1

0
0

----¢--- Database Filter ./.~
- - -o- -- Tour Generator _1./. -
- ~ - Tour Evaluator . , ¢ ' - " ~

- ~-- - Total ,~ .-~e~- ~ " ""

I I I I I I I
1 2 3 4 5 6 7

N u m b e r o f w o r k e r s

Figure 4: Speedup vs. number of workers

the computational load appears, presents a curve that ap-
proximates significantly the ideal linear curve. As it was
expected, the overall speedup is mainly affected by the one
o f the Tour Generator, thus the corresponding curve is very
close to the ideal one. The reason why the Tour Evaluator
does not seem to present good speedups is that, for the spe-
cific request, this submodule has to sort just 13 tours. So,
parallelism is not highly exploitable in this case.

C o n c l u s i o n s an d F u t u r e W o r k

In this paper, the most significant part o f PETINA, that is
the one which carries out its tour generation facility, was
presented. PETINA is a PErsonalized Tourist INforma-
tion Advisor consulting a database that contains tourist data
about Greece. Thus, by changing the database the system
can be used for any country.

The problem of tour generation is a combinatorial search
one, thus advanced mechanisms are required to cope with
it efficiently. The ElipSys parallel logic programming lan-
guage is a suitable vehicle in this direction, since, apart from
the parallel execution, it offers the possibility of declarative
formulation of the problem as well as it provides various
extended features, such as data driven computation, con-
straint satisfaction techniques and a platform for developing

2 4

graphical interfaces.

Although PETINA's tour generation problem addresses a
large search space, it was shown that ElipSys features help
to attack the complexity of the algorithms needed. Par-
allelism was highly exploitable, as it was proved by the
presented performance measurements. Moreover, the data
driven computation was found useful and the constraint sat-
is faction facilities of ElipSys were found indispensable. Fi-
nally, PETINA, as it is a real-life application, provides a
graphical and friendly way to allow causal users to access
the system, exploiting the appropriate facility offered by
ElipSys.

An interesting characteristic of the system is that the method
employed for the tour construction is a general one and can
be applied to any problem domain which involves combi-
natorial searching under constraints that fall into some well
defined categories.

The objective of the future work in the tour generation fa-
cility of PETINA is to reduce the execution time of the Tour
Generator that presents the bulk of the computational load.
More precisely, a more profitable use of the delay mecha-
nism of ElipSys is envisaged. Alternatively, the consWaint
satisfaction techniques may be exploited into the Tour Gen-
erator as well.

Acknowledgements

The authors express their thanks to ECRC GmbH (Munich,
Germany), for providing access to its parallel machine and
the ElipSys language. Special thanks are directed to Mike
Reeve and Michael Rat~liffe from ECRC, for their encour-
agement, guidelines, feedback and valuable comments dur-
ing the development of PETINA in the context of the EDS
project.

References

[z] U. Baron, S. Bescos, S. Delgado-Rannauro, P. Heuz~,
M. Dorochevsky, M.-B. Ib~tflez-Espiga, K. Schuerman,
M. Rateliffe, A. V6ron, and J. Xu. The ElipSys logic
programming language. Technical Report DPS-81,
ECRC, December 1990.

[2] J. Bocca. Megalog - - A platform for developing
knowledge base management systems. Internal Re-
port KB-75, ECRC, October 1990.

[3] W. Clocksin and C. Mellish. Programming in Prolog.
Springer Verlag, New York, 1981.

[4] M. Dincbas, P. van Hentenryck, H. Simonis, A. Ag-
goun, T. Graf, and F. Berthier. The constraint logic
programming language CHIP. In International Con-
ference on Fifth Generation Computer Systems, pages
693-702, 1988.

[5] Elip~ys User Manual for release version 0.3, October
1991.

[6] C. Halatsis, M. Katzourald, M. Hatzopoulos, P. Stam-
atopoulos, I. Karali, C. Mourlas, M. Gergatsoulis, and
E. Pelecanos. PETINA m Implementation of the tour
generation. Project Deliverable EDS.WP.9E.A006,
University of Athens, December 1991.

[7] C. Halatsis, M. Katzouraki, M. Hatzopoulos, P. Stam-
atopoulos, I. Karali, C. Mourlas, M. Gergatsoulis,
and E. Pelecanos. PETINA m Performance eval-
uation of the tour generation. Project Deliverable
EDS.WP.9E.A007, University of Athens, December
1991.

[8] P. Heuz~. Using Data-Parallelism in the ElipSys. In-
ternal Report ElipSys-003, ECRC, June 1989.

[9] P. Heuz~ and B. Ing. COKE: User manual 1.0. Internal
report, ECRC, February 1989.

[1{3] B. Ing. COKE m An analysis tool for PEPSys pro-
grammes. Internal Report 23, ECRC, October 1987.

[11] B. Ing. Tourist information advisor:. A case study of
an application in PEPSys. Internal Report PEPSys/15.
ECRC, April 1987.

[12] B. Ing. Tourist information advisor - - A case study
of an application in PEPSys ~ Final report. Internal
Report PEPSys-32, ECRC, September 1988.

[13] PCE Reference Manual, October 1986.

[14] F. Pereira and D. Warren. Definite clause grammais
for language analysis m A survey of the formalism
and a comparison with augmented transition networks.
Artificiallntelligence, 13(3):231-278, 1980.

[15] M. Ratcliffe. On the use of the delay in ElipSys Pro-
log. Technical Report elipsys/001, ECRC, June 1989.

[16] M. Ratcliffe and J.-C. Syre. A parallel logic program-
ming language for PEPSys. In International Joint Con-
ference on Arti_/icial lntelligence, pages 48-55, 1987.

[17] Sepia 3.0 User Manual, June 1990.

[18] P. Stamatopoulos, I. Karali, and C. Halatsis. PETINA
Tour generation using the ElipSys inference sys-

tem. In Proceedings of the 1992 ACM/SIGAPP Sym-
posium on Applied Computing, volume 1, pages 320--
327, 1992.

[19] L. Stealing and E. Shapiro. The Art ofProlog. Mrr
Press, Cambridge, MA, 1986.

[20] P. van Hentenryck. Constraint Satisfaction in Logic
Programming. MIT Press, 1989.

[21] J. Xu and A. V6ron. Types and constraints in the
parallel logic programming system ElipSys. Technical
Report DPS-105, ECRC, March 1991.

2 5

