
International Journal on Arti�cial Intelligence ToolsVol. 7, No. 4 (1998) 415|442fc World Scienti�c Publishing CompanyNEARLY OPTIMUM TIMETABLE CONSTRUCTIONTHROUGH CLP AND INTELLIGENT SEARCHPANAGIOTIS STAMATOPOULOS, EFSTRATIOS VIGLAS, and SERAFEIM KARABOYASUniversity of Athens, Department of InformaticsPanepistimiopolis, 157 84 Athens, GreeceE-mail: ftakis,stratis,mkarag@di.uoa.grReceived 25 January 1998Accepted 20 July 1998The course timetable construction is a procedure that every academic department has tocarry out at least twice annually, more times if some of the requirements change. Theserequirements indicate that a collection of elements must be taken in mind in order foran acceptable solution to be found. They come either from the inherent constraints ofthe problem or from the involved parties, namely teachers and students. A requirementthat is very di�cult to satisfy is the one of optimality, which means that the constructedtimetable should be the best among the legal ones, according to some quanti�ed qualitycriteria. In this paper, a method for tackling the course timetable construction problemfor academic departments is presented, which is based on Constraint Logic Programming(CLP) for the early pruning of the search space and on the usage of intelligent heuristicsin order to guide the search to the generation of nearly optimum solutions. A speci�csystem is presented, named ACTS (Automated Course Timetabling System), which hasbeen implemented in the ECLiPSe language. This system is currently in use by theDepartment of Informatics of the University of Athens for the purpose of aiding thesemester course timetable construction.Keywords: scheduling, automated timetabling, constraint logic programming, heuristics1. IntroductionOne of the most common problems faced by man is the problem of scheduling. Itis a search problem that individuals are asked to tackle almost daily, whether theydo it consciously or not. For example, a student preparing for an examination hasto organize a study plan. This study plan is nothing more than the scheduling oflearning, practicing and revision processes. Generally, every problem that has theobjective of corresponding a set of time entities (beginning or ending time, duration)to a set of activities is characterized as a scheduling problem.A broad subclass of the scheduling problems is the one of the assignment-typeproblems.1 The timetabling problem2;3 is an instance of the assignment-type prob-lem. The objective of the timetabling problem is to place in time a set of events,which might also need the employment of speci�c resources, in such a way that allrequired constraints are satis�ed. Timetabling problems are faced extensively byeducational organizations, e.g. academic departments, schools, etc., either for the



416 P. Stamatopoulos, E. Viglas & S. Karaboyascourse or the examination scheduling requirements. Although the simple version ofthe timetabling problem may be solved in polynomial time, it has been proved thatwhen someone has to deal with preassignments and unavailabilities, which is theusual non-trivial case, the problem becomes NP-complete.4;5 This property is theone that makes the problem really hard.The work on automatic construction of timetables has started in the earlysixties6 and a lot of progress has been done since then. Various approaches havebeen followed, such as graph coloring algorithms,7 where each vertex in a graphrepresents a triplet (subject, teacher, room) and two vertices are connected if theycannot be scheduled simultaneously, that is, if they have a subject, teacher orroom in common. The problem is reduced to �nd a coloring of the graph witha number of colors less than a given number, if one exists. Various other Oper-ations Research (OR) approaches have been used as well,8 such as mathematicalprogramming algorithms,9;10 where the central idea is to solve an optimizationproblem whose purpose is to reduce constraint violations. Quite recently, a lotof Arti�cial Intelligence (AI) techniques have been employed, such as simulatedannealing,11;12 tabu search13;14 and genetic algorithms15;16;17;18 or, in general, evo-lutionary approaches.19 Finally, another AI approach, the constraint programmingidea, has been used extensively for tackling the timetabling problem,20;21;22 most ofthe times following a Constraint Logic Programming (CLP) methodology.23;24;25;26The procedure of solving a timetabling problem in a constraint programmingenvironment is usually carried out in two stages. The �rst stage has to do withthe discovery and the statement of the involved constraints. These constraints areexported from the concerned parties and have to be imposed over a set of variablesthat model the problem entities. The second stage has to do with the assignment ofvalues, and more speci�cally the proper values, to the above mentioned variables.The successful passage through both of the above stages results in the constructionof a timetable that can be characterized as admissible by all concerned parties.It is often argued that a timetabling problem either has a very large number ofsolutions or it has no solution. In the �rst case, the best, or a very good, solution hasto be recognized among all feasible solutions. On the other hand, if the problemis stated in such a way that no feasible solution exists, this has to be identi�ed,possibly through an exhaustive search of the problem space. In order to get anidea about the size of the search space of a real-life timetabling problem, considera semester at a university where 40 di�erent subjects have to be scheduled, eachsubject splitting into 4 teaching periods per week. Let us also assume that thereare 5 working days in a week with 9 possible teaching periods in every day andthat there are 4 rooms for hosting lectures. In this case, which is quite typical, thesearch space to be explored for the construction of a weekly timetable is as big as(5� 9� 4)4�40 ' 7� 10360.



Nearly Optimum Timetable Construction Through CLP and Intelligent Search 417The construction of a timetable is a process ever evolving and executed. Thisaspect puts forth another requirement of the timetabling problem, which refers tothe quite often arising need for rescheduling. It is not uncommon that a change inthe input data so slight has occurred, that it is not needed to create a new timetablefrom scratch. A few minor alterations are enough for an acceptable timetable to bethe case again. In these situations, the previously mentioned automated timetablingprocedure should be in a position to perform these alterations, thus generatinga timetable that has the smallest possible number of di�erences to the originaltimetable.A logical solution to the timetabling problem would be to �nd a way to directlyexpress and impose the constraints that model the requirements of a speci�c instanceof it. A mechanism capable of solving and satisfying these constraints has to beemployed. The framework for the development of such procedures is o�ered byCLP. The purpose of this paper is to exhibit the adequacy of CLP, enriched withintelligent search techniques, in solving the course timetabling problems of academicdepartments. In addition, a working example of the method discussed is presented,as this has been developed in an instance of CLP, namely the ECLiPSe language,and is being used in the Department of Informatics of the University of Athens(DI/UoA).In what follows, �rstly a speci�c instance of the timetabling problem is intro-duced. A brief description of CLP and the ECLiPSe language comes next. Then,the representation of the problem in the above mentioned real system is put forth,accompanied with a discussion on the developed intelligent search techniques. Fi-nally, the outcome of the system is considered, an evaluation of it is presented andvarious possible enhancements are outlined.2. Overview of the DI/UoA Timetabling ProblemBefore reaching the position where a solution for a speci�c timetabling problem isrequired, a few other prerequisites have �rst to be obtained. These prerequisitesare nothing more than the gathering of the data, over which the constraints will beimposed and the solution generating process will take e�ect.In what follows, a description of the data and why these are critical is given. Thediscussion concentrates on the university case, rather than the school one. Moreprecisely, one aspect of the university timetabling problem is considered, whichis known as course scheduling. The other aspect is characterized as examinationscheduling. Generally, the course scheduling problem is far more di�cult to solve,as it contains various elements not found in examination scheduling. In a nutshell,the basic di�erences concentrate on the fact that there can be various lectures ofa course in course scheduling, while only one instance of a course in examinationscheduling. In addition, some con
icts can be allowed to exist in a course schedule,while this is not the case in examination scheduling. Another factor to be consideredis that a course schedule generally spreads over a limited period of time, usually aweek, while an examination schedule, in the general case, can be constructed for an



418 P. Stamatopoulos, E. Viglas & S. Karaboyasarbitrary period, long enough for all the subjects to be scheduled without con
icts.This paper concentrates on weekly course scheduling. Finally, it has to be notedthat although the description is tailored to the needs of DI/UoA, few modi�cationsare needed to adapt the model to the cases of other academic departments.2.1. The problem data and constraintsThe �rst element that has to be considered in a discussion about the data involvedin course scheduling is the courses themselves. For each course, a number of mattershave to be taken in mind. Each course may or may not be split into lectures. Thenumber of overall hours in one week must be equal to the total duration of thesubject1 in question. This splitting up of a course into weekly lectures must beunique for this course, but not universal for all the courses of the same duration. Asubstantial amount of 
exibility is desired in this sector.Other properties of a given subject come from the persons involved in its teach-ing, namely the teacher and the students. A number of things must be known aboutthe faculty member in charge of teaching a given course. First of all, it must beknown when he or she is available, then, which other subjects he or she teaches.If there are more than one teacher for a subject, the overall availability should beset to the intersection of the availabilities of all the involved faculty members. Thestudent body can have constraints also. Availability is again one of them. A wholesemester might be unavailable to attend the lectures of a course if, for some reason,it is otherwise occupied (for example, in a laboratory).Returning to the courses' properties, a very important factor is that of theattendance for a given course. This is in close relation to spatial factors stemmingfrom the available classrooms. A given classroom can hold up to a certain amountof students. Surpassing this limit is unacceptable. Classrooms, on the other hand,can themselves have availability requirements. A classroom can be unavailable fora given period in the week, for example for a faculty meeting or for seminars.One �nal element revolving around the course properties is the type of thecourse. In some academic departments, each subject is given a type, according tothe nature of the material it covers, the number of prerequisites it has and thenumber of subjects for which it is a prerequisite. This is also the case in DI/UoA.The type of a course is the element by which con
icts can be resolved, i.e. avoidedor allowed. For example, courses of the same type cannot be scheduled on the sametime. On the other hand, lectures for courses of su�ciently di�erent types can beallowed to take place concurrently.In order to get a more precise idea about what is given and what is needed tobe computed in the speci�c timetabling problem which is being tackled, considerthe following.Assume that there are N subjects, M teachers and L classrooms. Consider, also,the set Days of the working days in a week and the set Periods of the (hourly)1In the following, the words \course" and \subject" will be used to denote the same timetablingentity.



Nearly Optimum Timetable Construction Through CLP and Intelligent Search 419teaching periods in every day. For example, it might be the case that Days =fmon; tue; : : : ; frig and Periods = f9:00-10:00; 10:00-11:00; : : : ; 19:00-20:00g.For the i-th subject (1 � i � N ) there exists a number of given parameters:vi: approximate number of students following the i-th subjectli: number of lectures of the i-th subjectpij: number of sessions (teaching periods) of the j-th lecture of the i-th subject(1 � j � li)ti: number of teachers of the i-th subjectnij: j-th teacher of the i-th subject (1 � j � ti, 1 � nij �M )di: number of disjunctive (not con
icting) subjects with the i-th subjectsij : j-th disjunctive subject with the i-th subject(1 � j � di, 1 � sij � N , sij 6= i)usi: number of unavailability slots (u-slots) of the i-th subjectdusij: day of the j-th u-slot of the i-th subject (1 � j � usi, dusij 2 Days)pusij: teaching period of the j-th u-slot of the i-th subject(1 � j � usi, pusij 2 Periods)In addition, for the i-th teacher (1 � i �M ) the existing parameters are:uti: number of u-slots of the i-th teacherdutij: day of the j-th u-slot of the i-th teacher (1 � j � uti, dutij 2 Days)putij: teaching period of the j-th u-slot of the i-th teacher(1 � j � uti, putij 2 Periods)Finally, the given parameters of the i-th classroom (1 � i � L) are:ci: capacity of the i-th classroomuci: number of u-slots of the i-th classroomducij: day of the j-th u-slot of the i-th classroom (1 � j � uci, ducij 2 Days)pucij: teaching period of the j-th u-slot of the i-th classroom(1 � j � uci, pucij 2 Periods)What has to be computed is the time and place that every session of the lecturesof each subject has to be scheduled in, that isxijk: day of the k-th session of the j-th lecture of the i-th subjectyijk: teaching period of the k-th session of the j-th lecture of the i-th subjectzijk: classroom of the k-th session of the j-th lecture of the i-th subjectwhere 1 � i � N , 1 � j � li, 1 � k � pij, xijk 2 Days, yijk 2 Periods and1 � zijk � L.The constraints that the solution has to satisfy are the following:(i) No two sessions can take place at the same time in the same classroom:xijk 6= xi0j0k0 _ yijk 6= yi0j0k0 _ zijk 6= zi0j0k08 i; j; k; i0; j0; k0 with 1 � i � N , 1 � j � li, 1 � k � pij , 1 � i0 � N ,1 � j0 � li0 , 1 � k0 � pi0j0 and i 6= i0 or j 6= j0 or k 6= k0.



420 P. Stamatopoulos, E. Viglas & S. Karaboyas(ii) The sessions of a lecture have to take place in consecutive teaching periods ofthe same day in the same classroom:xijk = xij(k�1)yijk = next(yij(k�1))zijk = zij(k�1)8 i; j; k with 1 � i � N , 1 � j � li and 2 � k � pij , wherenext(tp) is the teaching period immediately following teaching period tp, e.g.next(10:00-11:00) = 11:00-12:00.(iii) The lectures of a subject have to take place on di�erent days:xijk 6= xij0k08 i; j; j0; k; k0 with 1 � i � N , 1 � j � li, 1 � j0 � li, j 6= j0, 1 � k � pijand 1 � k0 � pij0 .(iv) The capacities of the classrooms have to be respected:vi � czijk8 i; j; k with 1 � i � N , 1 � j � li and 1 � k � pij.(v) No teacher can teach two subjects simultaneously:xijk 6= xi0j0k0 _ yijk 6= yi0j0k08 i; j; k; i0; j0; k0 with 1 � i � N , 1 � j � li, 1 � k � pij , 1 � i0 � N ,1 � j0 � li0 , 1 � k0 � pi0j0 , i 6= i0 and fnij00 j 1 � j00 � tig \ fni0j000 j 1 �j000 � ti0g 6= ;.(vi) The unavailability requirements of the teachers have to be respected:dutnijj0 6= xij00k _ putnijj0 6= yij00k8 i; j; j0; j00; k with 1 � i � N , 1 � j � ti, 1 � j0 � utnij , 1 � j00 � li and1 � k � pij00 .(vii) The unavailability requirements for the classrooms have to be respected:duczijkj0 6= xijk _ puczijkj0 6= yijk8 i; j; k; j0 with 1 � i � N , 1 � j � li, 1 � k � pij and 1 � j0 � uczijk .(viii) The unavailability requirements for the subjects have to be respected:dusij 6= xij0k _ pusij 6= yij0k8 i; j; j0; k with 1 � i � N , 1 � j � usi, 1 � j0 � li and 1 � k � pij0.(ix) The non-con
ict requirements among subjects have to be respected:xijk 6= xsij0j00k0 _ yijk 6= ysij0 j00k08 i; j; k; j0; j00; k0 with 1 � i � N , 1 � j � li, 1 � k � pij, 1 � j0 � di,1 � j00 � lsij0 and 1 � k0 � psij0j00 .



Nearly Optimum Timetable Construction Through CLP and Intelligent Search 421Note that the previous formulation does not encode the types of the courses. Itis assumed that this information has been preprocessed and the result is representedby the pairs of disjunctive subjects.2.2. Quality standardsA correct timetable is one that satis�es all the constraints imposed over its data,which were outlined in the preceding paragraph. As it has been stated, this is notenough for a timetable to be complete. For a rough idea to be given, a correcttimetable can be one that manages to somehow \compress" all the lectures in threedays in a �ve-day weekly basis. But a timetable of this nature is unacceptable.Although quality, as a concept, is purely subjective, a number of criteria ex-ist, the meeting of which leads to an objectively qualitative and, thus, acceptabletimetable.The �rst of these criteria has to do with the lecture balancing for all semesters.For example, if a semester has a total of thirty teaching periods weekly, then carehas to be taken, so that the daily teaching periods for this particular semester areas close as possible to the median, i.e. six. Moreover, the lectures of all the subjectsin one day have to be as concentrated as possible, so no idle time between lecturesof di�erent courses exists. Teaching load criteria also exist for faculty members. Forexample, the number of lectures a faculty member gives daily should not exceed agiven limit.Another criterion originates from the duration of a subject. A subject witha total of �ve teaching periods is best to be divided in two or three lectures. Ifthat is the case, then these lectures should have the greatest possible daily distancebetween them.The fourth standard has to do with the minimization of students' movementbetween lectures of di�erent subjects. That is, a particular semester should spendas much time as possible in the same classroom, for a given day. The capacityof classrooms creates another standard, which has to do with their utilization. Aclassroom should host courses for which their attendance is most closely to itscapacity. In this way, maximum utilization is achieved.The �nal two criteria have to do with the preferences of those who are a�ectedby the timetable. These preferences usually come from faculty members and thestudent body. For example, although a faculty membermay be available for teachingduring a speci�c period, nevertheless prefers for some reason not to teach. On theother hand, courses of di�erent types, that under normal circumstances might bescheduled simultaneously, are preferred by the student body not to be, perhapsbecause there is a great number of students who wish to attend both subjects.At this point, it must be stressed out that all criteria mentioned are preferencesand not constraints. This means that they can be relaxed or even disregarded inorder for a timetable of greater quality to be constructed. However, some of thequality standards are obviously opposed. For example, better utilization mightmean that students should be moved between di�erent classrooms. It is probably



422 P. Stamatopoulos, E. Viglas & S. Karaboyasimpossible for a timetable to be constructed in some way that all the criteria arerespected. This brings us back to the subjective nature of quality.2.3. The demands from a timetabling applicationA number of matters have to be taken in mind in order for a successful timetablingapplication to be constructed.First of all, the data representation should follow the nature of real-world dataas close as possible. There should be su�cient representation of courses, facultymembers and classrooms as well as their individual properties. These data shouldbe able to change on the user's demand to re
ect the changes of real data. Next, theconstraints concerning these data should be imposed over the problem representa-tion. This leads to a way of producing correct timetables. The following step has todo with the generation of a nearly optimum solution to the problem. This involvesthe satisfaction of as many as possible quality criteria. But, as any concerned usergives di�erent signi�cance to the quality standards, a way to assign priorities tothese standards should be provided. The higher the priority the more e�ort forsatisfaction should be made by the application.Rescheduling is another aspect. It should be created in such a way that a giventimetable could be regarded as an additional input. Then, it should attempt toreschedule this timetable, making the smallest possible number of alterations, ifany.An automated application cannot come close to the complexity, or maybe sim-plicity, with which a human tackles a complex problem like the timetabling one.This, in conjunction with the fact that the �nal solution might indeed be in need ofslight alterations, makes necessary the ability of post-editing a generated timetable.All of the above imply the construction of a complete and user friendly interface,through which the user will be in a position to input, save, retrieve and generallymanipulate the problem's data and results.Last, but certainly not least, comes the matter of execution time. This time canbe regarded as the time period needed for the application to generate a timetablefor real data, in volume as well as intricacy and values, starting from a zero basis.If a person needs an afternoon or a day or, even, a week to create a timetable, thenan application that does not reduce this time considerably is not of much use.An application that is built in a way to respect all the factors mentioned aboveis in a good path. But for an application of that kind to be developed, a consistentframework capable of accepting and resolving all the previously stated representa-tions and problems should exist. This framework is CLP. A successful applicationusing a speci�c instance of CLP has been developed. A conversation on that par-ticular instance, namely the ECLiPSe language, as well as CLP, follows in the nextsection.



Nearly Optimum Timetable Construction Through CLP and Intelligent Search 4233. Constraint Logic Programming and ECLiPSeLogic programming is a problem solving methodology, as opposed to traditional,procedural programming. The basic idea behind logic programming is that it isnot so much needed to materialize the procedures that lead towards the solutionof a problem, as it is needed to identify the entities involved and rather declarethe relations between them. The solution is then found by means of an inferencemechanism acting upon the previously mentioned relations. This is the notion ofdeclarative programmingand the best known representative of this class of computerlanguages is Prolog.It has been argued in the literature that an algorithm has two main components,namely logic and control.27 Logic is in charge of what the algorithm does, whilecontrol is in charge of how this is done. An ideal programming methodology should�rst be concerned with logic (what we want to compute) and then with control (howthe solution is achieved). The superiority of logic programming stems from the factthat it provides a means of dividing the two concepts mentioned previously.The logic programming approach is extremely applicable to solving search prob-lems that involve entities which are related through speci�c constraints. An internalresolution and inference mechanism is used to �nd the required solution. Most com-monly, the mechanism used is known as SLD-resolution. This leads to a depth-�rstsearch of the problem space, resulting in what is known as a generate-and-test strat-egy. Constraints can act as tests, eliminating from the search space paths that aredead-ends. However, this may not lead to acceptable e�ciency for large problems,so what someone might want to have is a more active exploitation of constraints.The purpose of CLP28;29 is now clear. It is an attempt to enrich logic pro-gramming in such a way that all of its unique properties are maintained, but a newmechanism, concerned with the imposition and solution of constraints is introduced.This mechanism's objective is to enhance logic programming in such a way that ef-�ciency is the main target. This kind of philosophy is known as CLP (X) scheme,where X can be instantiated to any possible set of entities, in accordance to theapplication under question. For example, if a program manipulates real numbers,CLP (<) is used.The required enhancements for CLP come from work that is done in the areas ofconsistency and constraint propagation techniques. The primary objective of thesemethods is to avoid the generate-and-test paradigm and prune the search spaceby solving the imposed constraints. In this way, less e�ort is needed to �nd thesolution, because the system itself rejects possible paths in the search space, bydeciding that they do not lead to a solution, sometimes even prior to initializingthe search procedure. This realization of search is called constrain-and-generate.With the introduction of CLP, the solution of a large class of problems has becomefeasible. This class of problems contains the scheduling problem and, thus, thetimetabling problem as well.ECLiPSe 30 is an instance of CLP. It has been created at the European Compu-ter-Industry Research Center (ECRC) as the successor of CHIP, the �rst CLP (FD)



424 P. Stamatopoulos, E. Viglas & S. Karaboyassolver. FD stands for Finite Domains. The constraint facilities of CHIP have beenintegrated into ECLiPSe.ECLiPSe is a Prolog system, enhanced with various extensions that providesu�cient 
exibility for the undertaking of a number of diverse problems. This
exibility stems from a particular data type supported by the language, namedmetaterm. The metaterm facility provides a basis for a number of libraries to bedeveloped. Examples are the constraint libraries and their speci�c instances, suchas the �nite domains library. The �nite domains library has been used in thecontext of the work related to this paper, so a brief discussion aiming at the betterunderstanding of its functionality follows.The �nite domains library of ECLiPSe contains a number of constraints to beimposed, mainly over integer, but also any other instance of atomic data. The basicconcept to be understood is that of a domain variable. The domain variable is onethat ranges over a �nite domain. This range is de�ned through the built-in ::/2predicate. For instance, the series of goals X :: 1..5, Y :: [red, green, blue],Z :: [1, 3, 5..8] de�nes the domain variables X, Y and Z ranging over the do-mains {1, 2, 3, 4, 5}, {red, green, blue} and {1, 3, 5, 6, 7, 8} respec-tively. Constraints can be one of two kinds, arithmetic and symbolic. An arithmeticconstraint is nothing more than a relation between linear terms. This relation canbe one of equality (#=/2) or inequality (##/2, #</2, #<=/2, #>/2, #>=/2). A linearterm is an arithmetic expression composed of numbers and domain variables, in sucha way that no multiplication or division between domain variables exists. For exam-ple 2*X-Z #< X-3 is an arithmetic constraint, while X*Z #> 3 is not, as it does notrespect linearity. Conjunction and disjunction of constraints is provided through theuse of the #/\ and #\/ predicates. Symbolic constraints are implemented throughspeci�c predicates such as element(I, List, X), stating that X should be the I-thelement of List. Both X and I are domain variables, while List is a list consistingof ground terms. Additional predicates are provided by ECLiPSe in order to supplyenumeration (indomain/1) and optimization (min_max/2, min_max/5) facilities.For a CLP language such as ECLiPSe, there exists a speci�c strategy underwhich constraint satisfaction problems should be tackled. This tactic consists ofthree basic steps:(i) Identify the domain variables and de�ne them and their domains. Thesevariables serve as the representation of the problem entities.(ii) Impose over these variables the constraints that state the relations betweenthem. These constraints are in fact used for the pruning of the search spaceand, thus, act as the limits of the territory inside which lay the solutions ofthe problem under consideration.(iii) Start an enumeration procedure, which, in cooperation with the internal con-straint propagation mechanism as well as the Prolog engine, returns the prob-lem solutions, if any. This step can also be found under the CLP nomenclatureas labeling. In case the optimum solution is required, additional care has to betaken. ECLiPSe provides a branch-and-bound method that computes the opti-



Nearly Optimum Timetable Construction Through CLP and Intelligent Search 425mum solution with respect to a given cost function. Another approach wouldbe to use some intelligent search technique based on the problem heuristics,in order to return a nearly optimum solution. This is the case of the workpresented in this paper and the topic under the following discussion.4. ACTS { Automated Course Timetabling SystemAn attempt to automate the timetable construction procedure has been made atDI/UoA. The outcome of this attempt is a system called ACTS (Automated CourseTimetabling System). In this section, the various elements of this attempt will behighlighted, paying particular attention to the intelligent search techniques devel-oped, in order to construct a real-life working system.4.1. The system dataFor a timetabling application to be built under CLP, a number of elements have tobe considered. The �rst of these are the data of the problem and the constraints,obvious or implied, which have to be imposed over them.The case that had to be considered in ACTS was the one concerning coursescheduling. Consequently, a representation had to be decided that would fullyre
ect upon the way these data are perceived by an individual that has been placedin charge of undertaking the timetable construction procedure.� The �rst group of elements that will be presented is that of real-world timeconcepts, namely days and teaching periods. In DI/UoA, timetables are con-structed on a weekly basis, therefore resulting in an encoding of days as num-bers, more precisely, 1 for Monday, 2 for Tuesday and so on. The numberof teaching periods per day are eleven, starting at nine in the morning andending at eight in the evening. The encoding is quite similar in this case,resulting in one number for every teaching period, for instance 1 for the �rstperiod, from 9:00 to 10:00, 2 for the teaching period starting at 10:00 andending at 11:00, etc. This encoding is quite important, as it is used in severalof the representations of the other structures identi�ed by the program.� The second element considered is that of teaching classrooms. These class-rooms have a number of properties. The �rst of these properties is their name,along with a unique number assigned to them by the program itself. The nextof their properties is their capacity, which translates in the number of studentsthey can accommodate and hence, the subjects they can host, as an expectedattendance is assigned to every subject. Their last property and probablythe most important one, as it leads to hard constraint imposition, is the oneconcerned with their availability. A classroom might be unavailable for somedays and teaching periods due to external factors, such as faculty meetings orseminars. In this case, these days and teaching periods should be excluded.A list is created in order to denote the days and periods that a classroom is



426 P. Stamatopoulos, E. Viglas & S. Karaboyasunavailable. Knowing when a classroom in not available is selected, becauseit is easier to impose the constraints. A Prolog fact, classroom/4, is usedeach time a classroom has to be encoded.� The next timetable element to be considered is that of the faculty members.Their �rst property is again their name, along with a unique number assignedto them by the program. The other two of their properties have to do withtheir unavailability. A faculty member can be unavailable, in which casethe speci�c days and teaching periods that he or she declares as unavailableare excluded, or can be available, but for some reason prefers not to have anyteaching obligations whatsoever. The di�erence between the above mentionedunavailability classes is that while the �rst one will be satis�ed, whateverthe cost, the second will be sacri�ced if the generation of a better timetableinstructs so. The latter has to do with the quality of the generated solution.A Prolog fact, teacher/4, is used to denote faculty members.� The other real-life entity that should be represented is that of the student bodyand more speci�cally the semesters involved in and a�ected by the timetableprocess. In DI/UoA, there exist four undergraduate and six postgraduateacademic years, the latter originating from three postgraduate curricula, twoyears in each curriculum. This means that a total of ten entries have to beexpressed. For each entry, its coded name is needed, along with a list instruct-ing when the semester under question is not available. This can be the case,because some of the above mentioned postgraduate academic years belong tojoint programs with other departments, which means that a fraction of theirtimetable can be �xed and thus unchangeable throughout the timetable pro-cess. For example, a postgraduate semester can give the requirement that itcan only attend lectures on two or three speci�c days of the week. This has tobe integrated into the knowledge of the program. The Prolog fact semester/2is used for semester information entries.� The last of the timetable elements that is needed is the one concerning thetaught courses in one semester. A number of properties have to be identi�edfor one course. Again, the �rst group of these has to do with its uniqueidenti�cation, consisting of a number assigned to the course by the program,as well as the course's name and code, as they appear in the department'scurriculum. The next property is the one concerning the expected audienceto the lectures of the course. For instance, this can be the median of studentsattending the course in the last years. The following property has to do withthe weekly duration of a subject and how this duration should be split into anumber of daily lectures. In DI/UoA, the total duration of a subject variesfrom three to �ve weekly hours. This duration can be split in a number ofways. For example a �ve-hour course can be split either in two two-hourlectures and a single one-hour one, or it can be split into one two-hour and



Nearly Optimum Timetable Construction Through CLP and Intelligent Search 427one three-hour lecture. In any case, the program is indeed concerned with theway the duration is split into lectures and not how long this duration is.An interesting property of a subject is the one concerned with what is knownas the subject's type. It is the case in DI/UoA, as well as other academicdepartments, that a characterization is given to each subject, according to thematerial it covers, the semester it is o�ered and the internal structure of thedepartment. For example, a subject of DI/UoA's undergraduate curriculumcan be compulsory, basic or optional. In the two latter cases, it belongs to oneof the department's three divisions. Moreover, it might be the case, that it isconsidered as basic or optional for more than one division and even belong tomore than one semester, furthermore, appearing in both undergraduate andpostgraduate curricula. It is clear that a very complex situation has to beacknowledged and integrated into the program. For these di�culties to beovercome, a demonstrable amount of 
exibility was chosen. In fact, a subjectcan appear under almost every category that was previously mentioned. Theprogram itself, is in such a position that, if asked, can clear the situation,deciding on the strongest of the categories, even �nding with which othercourses a particular course should not be scheduled simultaneously. A listis generated consisting of subject codes, denoting that there should exist nocon
icts between the subject under consideration and the members of the list.A similar list denotes a preference of avoiding con
icts between particularcourses. Both of the above mentioned lists can be universally created bymeans of default rules integrated into the program.A consequence of the subject's belonging to one or more curricula is the factthat unavailability factors have to be taken into consideration. This unavail-ability of a subject is nothing more than the union of the unavailabilities ofall the semesters and academic years to which the subject belongs.A subject is, of course, taught by some faculty member. This can be one,or more than one. Either case, it has to be re
ected upon the subject'sproperties. The �nal property is a 
ag. It denotes whether the subject willbe scheduled or not. It may be the case, under special circumstances, thata subject, although it appears in the department's curriculum, should not bescheduled.A subject is denoted by the Prolog fact subject/11.To sum up all the information given above, the following are examples of everydata entry to the program.� classroom(1, 'Informatics Room', 120,[na(1,9), na(1,10), na(1,11)])A classroom with a code of 1, named Informatics Room, a capacity of 120students, which is not available on Monday for the last three teaching periods.



428 P. Stamatopoulos, E. Viglas & S. Karaboyas� teacher(1, 'Stamatopoulos', [na(1,9), na(1,10), na(1,11)],[np(2,1), np(2,2)])A faculty member with a code of 1, named Stamatopoulos, who is not availablethe last three teaching periods of Monday and who prefers not to teach the�rst two periods of Tuesday.� semester('u/3', [na(2,1), na(2,2)])The third undergraduate semester, which is not available on the �rst twoteaching periods of Tuesday.� subject(1, 'CS10', 'Expert Systems', 80, 2+2, [['u/2', 'b/2'],['u/3, 'b/2']], [1], [5,6,7], [], [na(3,1), na(3,2)], 1)A subject with a code of 1, the curriculum code of CS10, named ExpertSystems, an expected audience of 80 students, a total duration of four hourssplit in two two-hour lectures, characterized as basic of the second divisionfor the second and third academic years, taught be the teacher with a codeof 1, not to be scheduled on the same time with subject under codes 5, 6 and7, no preference for avoidance of simultaneous scheduling, that should not bescheduled on the �rst two teaching periods of Wednesday and which shouldappear in the timetable under construction.4.2. The problem modelingAs it has been stated in a previous paragraph, the �rst step in tackling a constraintsatisfaction problem under a �nite domains implementation is to identify the domainvariables involved and de�ne their domains.In this speci�c problem, the problem variables constitute an hourly lecture, ora session, of a given subject. This modeling was favored, because this is whatis presented in a timetable. When someone reads a given timetable, he does notso much see lectures of subjects, as much as he sees sessions of a subject, thecombination and sequence of which create lectures. The creation of lectures out ofsessions is a matter of correct constraint imposition and it will be discussed shortly.In addition, this representation gives additional 
exibility to the user, in order toevade some of the constraints imposed by the program, in the process of post-editing.However, this is not recommended, as such an action may create potential problemsin a later executed rescheduling process. Another advantage of the selected decisionstems from the fact that a representation of this kind, although more expensive interms of memory than a representation that would concentrate on starting hoursof the lectures (the ending hour can be derived from the duration of the lecture),makes constraint imposition easier. For instance, a required constraint is that allthe sessions are assigned a di�erent triplet of day, teaching period and classroom.This kind of constraint is provided by ECLiPSe. In any other case, programmingwould have to be lowered to an inferior level, the level of designing and developingnew constraints.



Nearly Optimum Timetable Construction Through CLP and Intelligent Search 429The number of the variables used is in accordance to the number of coursesappearing in the timetable under construction and their duration. Example granted,if there are �ve subjects, each with a three-hour duration, �fteen domain variableshave to be created.Now that the variables are identi�ed, their domains have to be de�ned. Thesedomains are in close relation to the entity that the domain variables represent.It was mentioned before that every variable is assigned a triplet consisting of aday, a classroom and a teaching period. This is in fact the representation used,but not in this original form. The language has the ability to handle constraintsimposed over integer and atomic domains. A triplet of this kind is neither integernor atomic. So, this information had to be somehow compressed in a di�erent form,in order to use the high-end constraint mechanism of ECLiPSe. For that reason,every triplet, that is, of course, unique for a speci�c instance of the problem, wasuni�ed into an integer number. This approach seems to be slightly di�erent fromthe mathematical model presented earlier, where for each session of every lectureof all subjects three distinct variables are de�ned, however, it is easy to see thatthis, rather syntactic, change will serve a more e�cient encoding of the problemconstraints. Indeed, constraints that should be imposed over such a triplet wereeasily programmed under this representation. For instance, a constraint of thiskind would be that every session should be held on a di�erent combination of day,classroom and teaching period. This could be done with only one call, by use ofthe provided alldifferent/1 predicate. On the other hand, constraints that hadto be imposed over only one element of such a triplet could be programmed if thetriplet would be broken down in its constituents. A linear term can be assembledthat can analyze any number into a combination of days, classrooms and teachingperiods. This linear relation isN = (D � 1)� Rooms � Periods+ (R � 1)� Periods+ Pwhere N is the triplet number, D is the day number, R is the classroom numberas it has been assigned to the classroom by the program itself, P is the teachingperiod number, Rooms is the total number of classrooms and Periods is the overallnumber of teaching periods in one day.For instance, if there were �ve days, three classrooms and seven teaching periods,then the converted numbers would be as shown in Table 1.Table 1. Correspondence of (D;R;P ) triplets to triplet numbers.1st classroom 2nd classroom 3rd classroom1st day 1{7 8{14 15{212nd day 22{28 29{35 36{423rd day 43{49 50{56 57{634th day 64{70 71{77 78{845th day 85{91 92{98 99{105It becomes obvious from the previous example that the domain for every program



430 P. Stamatopoulos, E. Viglas & S. Karaboyasvariable ranges from 1 up to the product of days, classrooms and teaching periods(in the case above, 5� 3� 7 = 105). This is the original domain of every variable,since after the imposition of the availability constraints a number of elements will beexcluded. More speci�cally, the �rst values to be excluded have to do with the factthat some classrooms might not be available for individual combinations of daysand teaching periods. Other constraints are special for every course to be scheduled(for instance, faculty member unavailability).4.3. Imposed constraintsThe next step in dealing with a constraint satisfaction problem is the impositionof constraints over the identi�ed and de�ned variables. These constraints comefrom the nature of the problem faced. In the timetable construction case, theconstraints originate from the various discrete structures that constitute the dataof the problem.� The �rst of these constraints is derived from the teaching facilities of an aca-demic department, namely the classrooms. A classroom can be unavailablefor speci�c combinations of days and teaching periods. If that is the case,these values will have to be cleared o� the domains of the problem variables.In fact, in the actual implementation, these values do not even make it to thedomains. After computing all the possible values for a domain variable, thesevalues are inserted into a list. All the combinations of unavailable days andteaching periods, for every classroom, are deleted from the contents of thislist. This list is later used to de�ne the variables' domains. If all the variableswere to be initialized to the same domain and later, by means of constraintimposition, have some of the possible values excluded, it would result in un-necessary aggravation of the whole system. These values are universal and areknown a priori, so there is no need for them to be inserted into the domains.� The second type of constraints stems from the faculty members. As long asthere exists teacher unavailability, then the appropriate constraints have tobe imposed. A course, whose teacher denotes a speci�c day and teachingperiod as unavailable, cannot have any session take place at that time. Inthe event where more than one teacher exist for a subject, then the unionof their unavailabilities is needed. That is because although not both facultymembers are together in the classroom, it is commonpractice that they shouldboth be available in case a swapping of sessions has to occur for some reason.Given the fact that a faculty member characterizes only days and teachingperiods as unavailable, it is obvious that not only one value will be excludedfrom the possible solution set, but a number of values equal to the numberof available classrooms for the given combination. For instance, if there are�ve classrooms available for a session, for which the faculty member in chargeof teaching denotes a combination of day and teaching period as unavailable,then �ve possible values will be cleared.



Nearly Optimum Timetable Construction Through CLP and Intelligent Search 431The next constraint that faculty members introduce arises from their availabil-ity to teach a subject. This is because when a faculty member has a teachingsession, he or she is unavailable for any other session. The former is clearlyan implied constraint and one that can be missed if the problem is tackledwith inappropriate diligence. In this case, the possible value of this sessionhas to be excluded from the possible values of other sessions held by the samefaculty member. Propagation techniques are used in analogous circumstancesin order to clear the situation. These constraints are usually solved only aftera few values have been assigned to domain variables.� Courses are the source of another group of constraints. Given the fact thata course has a speci�c type, this implies that it should not be scheduled onthe same time with some other courses. This translates to the constraintthat the domain variables of these subjects should be di�erent in the aspectof the combination of day and teaching period. It was stated in a previousparagraph that the list of all the courses with which no con
ict is allowed fora given subject is known to the program and in any case can be created by theprogram, according to the subject's type. These constraints are imposed onlyover one of the subjects involved due to the re
exive nature of the di�erencerelation.The second constraint has to do with the splitting of a subject into lectures.Special constraints have to be imposed in order for the subject to be correctlysplit (each lecture on a di�erent day) as well as for the continuity of thesessions for a given lecture to be assured (each session follows the other onthe same day and classroom).The last constraint comes from the expected attendance of the subjects. Thelectures of every subject have to take place in classrooms that are large enoughto host them. All the values corresponding to classrooms of a smaller capacitythan the expected audience are cleared o� the variables' domains.� The last type of constraints is derived from the student body and has todo with the individual semesters' unavailability. A subject belonging to asemester that has declared some days and teaching periods unavailable shouldnot have any of its lectures held on these speci�c combinations.After the imposition of constraints, constraint solving techniques are initialized,in order to prune the search space. In special cases, of hard-constrained variables,this means that their domains have dramatically decreased, or even have beeninitialized to some value. This tactic reduces substantially the workload of theintelligent search procedure, analyzed in the next paragraphs.4.4. Solution generation { The scheduling processThe �nal step towards the solution of a CLP problem is to trigger a search procedurein order to locate and produce the desired solution (or solutions). The choice of a



432 P. Stamatopoulos, E. Viglas & S. Karaboyassearch procedure is undoubtedly the most sensitive and important of all the choicesmade during the development cycle of the application. And that is because witha correct decision, there can be an undisputed increase in the program's e�ciency.Note here, that in most cases only one solution is required, the one that respondsbetter to a speci�c collection of criteria. This solution, in the general case, is notthe �rst one to be found. In the timetabling problem, the di�erence between the�rst and the �nal solution is what might be characterized as the transition from acorrect to an acceptable solution.The �rst attempts toward the generation of an acceptable solution were basedon the provided facilities of the ECLiPSe language. These facilities are nothingmore than an implementation of blind search techniques (predicates indomain/1,deleteff/3, deleteffc/3, labeling/1) as well as a class of predicates aiming atthe blind generation of optimum solutions (predicates belonging in the min_max andminimize classes). The philosophy of such methods revolves around the creation of alinear expression, consisting of arithmetic constants and program variables, commonfor all solutions, that represents the cost of a given solution. An optimizationpredicate is then executed with a number of parameters, two of which are thecost expression and the labeling procedure. Lastly, a branch-and-bound process isinitialized, aiming to supply the lowest cost solution.Such methods proved to be inadequate for the solution of the timetabling prob-lem. Their failure was mainly due to the problem's complexity. As it has beenestablished, a number of quality standards exist. The above mentioned cost expres-sion had to encompass all of these standards. An optimization technique, like theone provided by ECLiPSe, implies that the cost expression has to be helpful towardthe separation of the solutions. But, because the problem was so complex and alarge number of criteria existed, the cost expression proved to be quite an in
exibleone. This had a dramatic e�ect on the execution time of the scheduling process.For the sake of argument, the program could blindly generate the �rst solution in,roughly, a few seconds. But when the cost expression and the optimization methodwere involved, the program needed about twenty minutes to calculate the cost ex-pression and would generate no more than four solutions in two hours. Clearly,a new search procedure had to be developed. This procedure should be one thatwould take into account all the special characteristics of the timetabling problemand would lead directly to the optimum solution. This was nothing more than anintelligent search procedure based on the problem heuristics.By developing an intelligent search procedure, an attempt was made to use thehuman knowledge and understanding of the timetabling problem to the highestdegree possible. The basic idea is that, if after the imposition of the constraintsand the application of consistency techniques, the possible values of every variableare known, then the problem heuristics can be energized in order to select themost promising value. Moreover, even the variable to be instantiated next can beselected. Additional information can be supplied during the scheduling process, asevery value assigned is known to the subsequent selections and assignments.



Nearly Optimum Timetable Construction Through CLP and Intelligent Search 433The developed scheduling process has two modes. It can either act upon indi-vidual semesters or spread over all of the courses. In any case, a selection is madeaiming to �nd which subject's variables will be instantiated next. The selection ismade as follows. First of all, each day is divided into morning (9:00 { 14:00) andafternoon (14:00 { 20:00) fragments. This is done because when people are asked todeclare their availability they tend to think in the more abstract level of morningsand afternoons. Next, the total number of mornings and afternoons where eachsubject can be scheduled is calculated and, after that, the subject with the leastpossible alternatives is selected. This is an implementation of what is known asthe �rst-fail tactic. When a subject has fewer alternatives, then the chance of anincorrect value assignment is minimized. Moreover, if a subject with more alterna-tives were to be selected, then its value assignment might have an unwanted e�ecton the possible values of the more constrained subject, making impossible its valueassignment and thus causing unnecessary, as well as predictable, backtracking in thewhole process. In case two subjects belong to the same category, then a tiebreakerprocedure is put in e�ect. This procedure shows a preference for stronger typedsubjects, i.e. compulsory subjects are to be scheduled before the division basics andso on.After the subject that will be scheduled is identi�ed, the scheduling processbegins. The �rst step is to retrieve all the possible values for a given lecture (theprovided predicate dvar_domain_list/2 is used for this purpose). One of thesevalues will be chosen as the most promising one. This choice is made according tothe quality standards:(i) Semesters' lecture balancing(ii) Faculty members' lecture balancing(iii) Student movement between lectures(iv) Idle time between lectures(v) Classroom utilization(vi) Distance between lectures of the same subject(vii) Faculty members' preference of not teaching(viii) No simultaneous subject scheduling preferenceThe decision process is quite simple. All possible values are sorted with theabove mentioned quality standards acting as the criterion. For each value, eightscores are assigned, denoting the corresponding criterion satisfaction degree. Thetime when the sorting process will decide that one value is better than the other iswhen it becomes possible to sever the values according to the criteria. This meansthat it might be the case for not all of the above mentioned criteria to be used. Anexample can clear this situation. If two values have scores X=[1,2,3,4,5,6,7,8]and Y=[1,2,3,5,6,7,8,9], then the sorting process will be able to decide once itreaches the fourth criterion. For the score calculation, knowledge extracted fromthe program data, as well as knowledge gathered during the scheduling process, isused.



434 P. Stamatopoulos, E. Viglas & S. KaraboyasFrom the discussion above, it becomes obvious that the order in which thesecriteria are declared in the scheduling process plays a signi�cant role. That is whyno static order of criteria exists. The user is in the position to assign prioritiesto these criteria. A direct consequence of this is that di�erent orders of criteriagenerate di�erent timetables for the same data. Experimentation in this sector canbe a guide by which the user can decide which order produces the best timetablesfor his or her purposes. Furthermore, when a timetable is stored, it contains theorder of criteria with which it was generated.4.5. The rescheduling processThe rescheduling process is quite similar to the scheduling one, as it is based onthe same heuristics. However, what is admitted here is the fact that, in order fora rescheduling process to be e�cient, a minimal number of alterations have to takeplace in the program's data. In case there are drastic changes in the input, thena rescheduling process is in danger of degenerating into a full-scale scheduling one,but somehow aggravated by all these actions that aim to construct a timetable witha minimum number of di�erences to the original one.In a nutshell, the course of a rescheduling process is the following. Again,variables have to be identi�ed, have their domains de�ned and constrained. But, asnow there might be courses that appear in the new curriculum and not appear in theformer (i.e. one of the changes might be the addition of courses to the curriculum),a rescheduling process has to take e�ect based on the common data of the twoproblems. This process will create a timetable with the least possible number ofchanges, which could be zero, if the only alterations on the input are limited tothe addition of new subjects. When the rescheduling process comes to an end, ascheduling process is initialized for the remaining subjects, obviously taking intoaccount the already rescheduled timetable. This process has the goal of insertingthe lectures of the new courses in speci�c voids in the rescheduled timetable. Thisapproximates the actions of a human if he or she was facing a similar problem.As stated, the rescheduling process is based on the admittance of a minimumnumber of changes. In the other aspects, it follows a process resembling the oneof the scheduling process. Again, a selection of the next subject to be processed ismade and, again, this selection can be made between subjects of the same semester,or between the heap of all of the subjects, regardless of semester. Once a subject isselected, the main procedure is put into e�ect. The algorithm used is quite simple.If the lectures of a given course can be held on the same time, then this is thechoice made. No changes are made. If for some reason this cannot be the case,then the scheduling procedure is triggered, sorting all the possible values, in orderto �nd the most promising one. Obviously, this alteration will create a di�erenceto the original program. The heuristic here is that if a small number of changesin the data exist, small enough for a rescheduling process to make sense, then themajority of the rest of the timetable will have the minimum number of changes.Furthermore, in case a change has to be made, then the use of the same heuristics



Nearly Optimum Timetable Construction Through CLP and Intelligent Search 435tends to ensure the least possible actual distance between the two timetables, theoriginal and the rescheduled one. A faculty member can accept the fact that oneof his or her lectures has shifted an hour earlier or later. Although this is a changeto the original timetable, it is not a big change. But if a faculty member is askedto adhere to a completely di�erent timetable, this cannot be easily accepted. Thevarious tests given on this sector to the rescheduling procedure have proved that itbehaves well enough under circumstances of this kind.The next step in the rescheduling process is the course addition process, which isa partial scheduling one. It is partial, because a timetable already exists, stemmingfrom the rescheduled version of the original timetable. The heuristics are the sameas in the scheduling process. In case the change in the application's input is onlythis addition of courses, then there is a great possibility that these courses willbe scheduled in existing voids of the timetable. This is actually what someonewould hope for, that is the same timetable only now enriched with the lecturesof the new subjects. Of course, for that to be the case, the new courses must beaccompanied with a real 
exible set of constraints. If changes have to be made,then the rescheduling process will make them, trying to keep the smallest possibledistance to the original timetable.The rescheduling process seems quite naive in its concept. But the fact is thatit works under real-world circumstances. Moreover, the time needed to reschedulean existing timetable, if the principle of a minimumnumber of changes is respected,can be limited to half of the time needed to construct a timetable from scratch withthe help of the previously mentioned scheduling process.5. ACTS at WorkFor an application to be used and widely accepted, a number of properties have toexist. The �rst of these properties is the implementation of an easy to use as wellas complete and 
exible interface. ACTS provides this interface, developed on aparticular extension of the ECLiPSe language, the ProTcXl library, based on thepopular scripting language Tcl and the Tk toolkit. This interface comes with anumber of interesting facilities.The �rst of these facilities is the fact that the user can input new data in an easyway. These data can be stored, retrieved and manipulated in any way possible. Allof the processes presented in the previous paragraphs are within the user's grasp.He can also change the order of the speci�ed quality criteria at will. When all thetimetable parameters are set, a scheduling process can be initialized (Fig. 1). Duringthis process, the user receives substantial information on what the program is doingat a given time (i.e. selecting a subject to be scheduled, imposing constraints orassigning values). Additional 
exibility is provided by the fact that the user cancombine a given set of data with di�erent timetables generated from this set of data,by di�erent criteria orders.When a timetable is created, it is presented to the user (Fig. 2). ACTS comesequipped with a complete, fully functional timetable editor. In this process, which
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(a) (b)(c)Fig. 1. A data �le is opened. ACTS awaits for classroom availability (a) and timetable parametersto be set (b). After that, the scheduling process is executed (c).was previously referred to as post-editing, the user can make changes to the gener-ated timetable, if he or she thinks that the outcome was not satisfactory. This editorcan also be used in order to create manually a timetable from scratch. However, themost unique feature of the timetable editor is the fact that it supplies a timetableveri�er, a process that checks the timetable for possible errors or misjudgments.If any errors are found, the user is informed about the number of errors and, foreach individual error, the day, teaching period, classroom and subject session thatgenerated it, accompanied by an explanation of the error and what must be donein order to �x it.Another important feature of ACTS is its ability to create ready-to-publishtimetables. After the user is satis�ed with the generated or altered timetables, heor she can save the timetables both in text format, as well as the more popular and
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Fig. 2. Timetable viewer and editor. The edit commands and the veri�cation facility are alsovisible.more detailed HTML format. A timetable can be saved in a \by day" or a \byclassroom" way. In any case, the generated timetable can be easily published bothon a bulletin board, if printed, or directly on the World Wide Web.The �nal feature of ACTS is that it comes with an on-line help facility, readyto guide the user through the whole process.6. ACTS EvaluationThe program's e�ciency is very high. It has been applied to real-world data sets,such as the ones of DI/UoA, consisting of �ve to six classrooms, roughly sixtycourses and �fty faculty members and teaching assistants. By use of a quite sat-isfactory priority assignment to the quality criteria, the developed application isin the position of generating the �nal solution in about twenty to thirty minutesrunning on a Sun SparcServer 1000. The timetable generated is a nearly optimumone, as it satis�es the quality standards to the highest possible degree.It should be stressed that the most sensitive of the decisions made during thedata inputting for a timetable under construction is the priority assignment to thequality criteria. These are the guides by which the intelligent search procedure



438 P. Stamatopoulos, E. Viglas & S. Karaboyasis directed. A \bad" choice in this sector is possible to result in a continuousbacktracking of the solution generating procedure, thus substantially increasing theprogram's execution time. There is no doubt that a solution will be generated even-tually, but it will not be such a good one and it will not be found in a reasonableamount of time. The system's monitoring facilities can be helpful in acknowledg-ing and overcoming such unfortunate decisions. As it was previously mentioned,the user has complete knowledge of the program's actions. Backtracking can beeasily realized. After experimentation, an empirical method of acknowledging suchproblems can be the fact that if backtracking occurs at the early or middle stagesof the search process, then no real problems exist. However, if the system startsto 
uctuate near the end of the search process (i.e. only with a couple of subjectsleft to be scheduled), this means that it is in trouble and most likely it will notovercome these di�culties. Experimentation acted in a useful way in �nding thedefault criteria order which the program starts with. It is an order that almostalways yields successful results, no matter how complex the data are and how hardto solve the constraints implied appear.The program's main disadvantage is its cost in system resources, both in memoryand in computational aspects. It must be understood that the timetabling problemis quite a di�cult one. A program made to automate this process has to dealwith an extremely large number of facts, an even larger number of variables arisingfrom these facts, as well as a number of constraints that have to be imposed andsolved. On the other hand, the quality of the generated solutions is quite high.The timetables generated can be used, either identical or with minor changes, withno apparent second thoughts. The program's ability to create di�erent solutionsthrough di�erent criteria orders allows the user a wide space for experimentation.Its monitoring facilities are quite helpful in order for the user to decide which criteriaorder suits him or her best.The rescheduling process has a solid and satisfactory behavior most of the time.For a minimum number of changes, the program resembles human action. Its 
ex-ibility and its ability to deal with almost any rescheduling requirement (i.e. dataalterations, curriculum changes, etc.) makes it quite a powerful tool in order totackle speci�c instances of the rescheduling problem in the construction of timeta-bles.The existence of an easy to use and substantially 
exible interface is anotherplus. The program's provided facilities of editing an already generated timetable,as well as the ability to verify any changes made, are two of its strongest properties.Particularly, the veri�er module is probably the most important one, as it givesthe user the chance of checking without problems all the changes made, as well asbeing able to acknowledge all the potential errors and the reasons that led to theirexistence. The timetable editor can in fact be regarded as an autonomous featureof the application, as it gives the user the framework for creating timetables evenfrom scratch.But the most powerful feature of ACTS is its ability to handle and work with



Nearly Optimum Timetable Construction Through CLP and Intelligent Search 439real-world data. Not only does it generate solutions, but also it generates them in avery short period of time. And what is more, these solutions are either completelyor nearly optimum ones, meaning that they are ready to be published. Its use inthe creation of the current academic year's timetable in DI/UoA o�ers evidenceconducive of the program's success. It is the authors' opinion that this successoriginates from the use of CLP in the solution process, as well as the close approx-imation of the human expert's actions, by use of the developed intelligent searchprocedure. All of the above make the authors believe that ACTS is on the rightpath toward fully automating the timetabling process.7. Conclusions and Further WorkIn this paper, a CLP based approach for tackling the university course timetablingproblem is presented. The aim has been to de�ne the set of feasible solutions througha number of constraints and to search for a near optimum solution, according tosome quality criteria, by applying intelligent techniques borrowed from the wayhuman experts deal with the problem. A speci�c system has been built, namedACTS (Automated Course Timetabling System), using the CLP language ECLiPSe.This system has been used in real-life for the satisfaction of the course timetablingneeds of the Department of Informatics of the University of Athens (DI/UoA). Anumber of possible enhancements can be made, though, to what has already beenestablished as a successful application.The �rst of these enhancements has to do with overcoming the program's \gree-dy" computational nature. A possible breakthrough in this area could be the changeof the program's lecture representation. Instead of using hourly sessions as theguide, lectures lasting more than one hour can be used. This means a demonstrabledecrease in the space needed to represent courses. For instance, if three four-hourcourses, to be split in two two-hour lectures, existed, then, while in the existingrepresentation twelve variables were needed, in the new one six would be used,meaning a �fty percent reduction in the memory requirements. However, this meansthat a whole new set of constraints would have to be developed in order to handlethe new representation. This would also result in changes in the search procedure.Whether a change this drastic will yield better results remains to be seen.The search procedure o�ers ground for substantial improvement. It has beenstated that the program o�ers a unique solution, the one that is characterized asthe best according to its integrated heuristics. However, such problems do notnecessarily have one solution that is far better by the others, but they rather havea group of satisfactory solutions. The backtracking mechanism of the Prolog enginecan be used in order to provide the possibility of other solutions making the wayto the user's knowledge. But this is not necessarily the case. In most cases, whatis needed is not just a di�erent solution. A di�erence can be just the swapping oftwo lectures, but that does not mean that there is a substantial di�erence betweenthe presentation of the two solutions. The quest is for a solution that is su�cientlydi�erent to the original one. This constitutes a solution that has a maximized
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