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Abstract. When dealing with large quantities of clauses, the use of persistent
knowledge is inevitable, and indexing methods are essential to answer queries
efficiently. We introduce PerKMan, a storage manager that uses G-trees and
aims at efficient manipulation of large amount of persistent knowledge.
PerKMan may be connected to Prolog systems that offer an external C language
interface. As well as the fact that the storage manager allows different
arguments of a predicate to share a common index dimension in a novel
manner, it indexes rules and facts in the same manner. PerKMan handles
compound terms efficiently and its data structures adapt their shape to large
dynamic volumes of clauses, no matter what their distribution. The storage
manager achieves fast clause retrieval and reasonable use of disk space.

1 Introduction

Efficient management of persistent knowledge in deductive database systems requires
the adoption of effective indexing schemes in order to save disk accesses, whilst
maintaining reasonable use of available space. Deductive database systems
incorporate the functionality of both logic programming and database systems. As
referred to [6], they have four major architectures: logic programming systems
enhanced with database functionality (NU-Prolog [11]), database access from Prolog
(BERMUDA [6], TERMdb [1]), relational database systems enhanced with
inferential capabilities (Business System 12 [4]), and systems from scratch (SICStus
[9], CORAL [10], Aditi [13], Glue-Nail [2], XSB [12], ECLiPSe [3]).

In multidimensional data structures, all attributes are treated in the same way and
no distinction exists between primary and secondary keys. This seems to be suitable
in a knowledge base environment, where queries are not predictable and clauses may
be used in a variety of input/output combinations.

The G-tree [8] is an adaptable multidimensional structure that combines the
features of B-trees and grid files. It divides the data space into a grid of variable size
partitions and adapts its shape to high dynamic data spaces and to non-uniformly
distributed data. Only non-empty partitions are stored in a B-tree-like organization.
The G-tree uses a variable-length partition numbering scheme. Each partition is
assigned a unique binary string of 0’s and 1’s. In [8], the G-tree arithmetic, algorithms
for update and search operations and the advantages of the G-tree over similar data
structures are examined. The Gr_tree [7] combines the features of metric spaces and
G-trees. It considers every data space as a metric space through the use of the
Euclidean norm and an algorithm that transforms strings to unsigned long integers.
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Although the Gr_tree requires distance computations and has the overhead of a small
amount of storage space, due to the introduction of active regions inside the partitions
of the data space, it reduces the accesses of partial match and range queries.

This work introduces PerKMan, a new storage manager that uses Gr_trees, makes
database access from Prolog and aims at efficient manipulation of large amount of
persistent knowledge. The rest of the paper is organized as follows: Section 2 deals
with the use of user-defined domains. Section 3 explains the data structures of the
storage manager. Section 4 gives experimental results and shows that PerKMan
achieves fast clause retrieval and good utilization of disk space. Section 5 concludes
this work with a summary and a future research issue.

2 User-Defined Domains

PerKMan provides persistent storage of any size of knowledge and may be connected
to Prolog systems that offer an external C language interface. The arguments of each
permanent predicate belong to predefined domains and this cannot be changed at run
time. From the Prolog point of view, the definition and manipulation of knowledge
may be achieved through appropriate built-in predicates that have to be defined, using
the external C language interface, in terms of the functions provided by PerKMan.

User-Defined (or custom) Domains (UDDs) are built up from simple (sdomain) or
complex (cdomain) domains. Domains are created with cr_dom/2. Its syntax is
cr_dom(cdomain, domain {; domain})
domain = cdomainÜ sdomainÜ ÆfunctorÖ (domain {, domain})Ü udom.
The universal domain udom incorporates any structure including lists. A basic unit

sdomain is one of the types atom, integer and real.
Apart from storing the data as an unsorted sequence of clauses (heap organization),

PerKMan supports the Gr_tree to store and retrieve clauses. A predicate definition is
added to a knowledge base with cr_pred/3. Its syntax is
cr_pred(predicate, ((argument, domain, yÜ n) {, (argument, domain, yÜ n)})).
The value y (n) means the participation (or not) of the argument in the index.

UDDs are distinguished between Non-Recursive Domains (NRD) and Recursive
Domains (RD). PerKMan does not  employ RDs in indices due to their unpredictable
number of elements. The following program udd_ex is an example of UDDs.
?- cr_dom(q,a(z,c)).
?- cr_dom(z,d(atom); e(integer)).
?- cr_dom(c,f(s,t); w(integer)).
?- cr_dom(s,s(integer)).
?- cr_dom(t,l(atom); v(atom)).
?- cr_pred(pr, ((name, q, y)), b(300)).
?- ins_c(pr(a(d(atm1),f(s(9),v(atm2))))).

A knowledge base is queried through PerKMan either with set-oriented or clause-
oriented operations. Clauses retrieval can be transparent if a permanent predicate
p(X,..) is defined as p(X,..):-sel_c(p(X,..)).  The predicates sel_c/1
and ins_c/1 selects and inserts clauses in a clause-oriented mode respectively.
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PerKMan flattens UDDs in order to handle them efficiently. Domain Trees (DTs)
of UDDs include functors and sub-terms and assists understanding. Figure 1 shows
the DT of q. We use dashed lines for disjunction and continuous for conjunction.

Fig. 1. The tree of the user-defined domain q.

DTs are unbalanced AND/OR-trees. sdomains reside on the leaf nodes of DTs and
the way we traverse them gives the form of the clauses. Possible paths are constructed
by successive replacements of UDDs. Because the hierarchical structure of cdomains
is flattened, they can be organized into Gr_trees. As an example, we decompose the
UDD q. The symbols + and ¼ denote disjunction and conjunction respectively.

q=z.c=(atom+integer)¼(integer¼(atom+atom)+integer)
 = atom¼integer¼atom+atom¼integer¼atom+atom¼integer+
   integer¼integer¼atom+integer¼integer¼atom+integer¼integer
The six components of the last equation span the space of the alternative

expressions and each one represents the ordered leaf nodes of a possible path.
For the storage of clauses involving UDDs, we use a Path Identity (PI) prefix that

declares the correspondence between arguments and used terms. In other words, PI is
the path of the DT that corresponds to the selected terms. Its use is necessitated by the
existence of disjunctions between sub-terms. We use the depth-first method to
traverse a DT. If there are alternatives, we select a node according to a number that
declares its position among the other nodes of the disjunction. The storage of a clause
includes its PI and the used terms. Only the arguments that participate in indices are
involved in PIs. The length of PIs is limited, for RDs are not included in indices.

We examine the PI of the clause of the program udd_ex. The first choice occurs
at node z. The d(atom) is chosen and thus 1 is the first element of PI. Next, at node c,
we select the f(s,t), and so the second element of PI is 1. The last decision concerns
node t, and the selection of v(atom) corresponds to number 2. We have, PI = 1,1,2.

3 Data Structures

The data structures that PerKMan uses to organize persistent knowledge form four
areas: User-Defined Domains (UDDA), Predicate Declarations (PDA), Index (IA) and
Clauses (CA) area. The first two are loaded into main memory when a knowledge
base is opened, whilst the other two remain on disk. Figure 2 shows the above areas.
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Fig. 2. Data structures of PerKM
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argument corresponds to the first dimension and the last argument to the fourth. The
second dimension takes the default value that is not necessary to be stored in the CA
due to the existence of PIs. The clause is stored as ‘1,1,2 (atm1,9,atm2)’ .

The retrieval procedure is analogous to the insertion one, e.g., the goal
?- pr(a(e(X),f(s(8),l(atm3)))).

triggers a search for clauses with PI = 2,1,1 and data (_,8,atm3). When a query does
not have an explicit functor declaration, it is replaced with the set of goals that
corresponds to the paths of the DT, e.g., the query

?- pr(a(X,w(7))).
is analyzed into the pr(a(d(Y) ,w(7))  and pr(a(e(Y) ,w(7)) . The first
corresponds to clauses with PI = 1,2 and data (_,7), whilst the second to clauses with
PI = 2,2 and data (_,7). Answers that have the form X=d(atm4) or X=e(9) .

Indexing the head of rules is achieved by inserting them into the Gr_trees. In order
to do that, PerKMan relates the declaration of variables in rules head to the lower
values of their domains. For integer and real numbers, ‘lower’ means the minimum
value that the variable could have, e.g., for integer it is -2147483647. For atoms, the
‘lower’ is NULL. Lower values are reserved by the manager and cannot be regarded as
data. For example, to retrieve rules with head gp(X,Y)the index is searched for the
partition where the entry gp(NULL,-2147483647) belongs (X stands for atoms
and Y for integers). The clauses block of this partition is accessed and rules like the
gp(X,Y):-sp(_,X,Y),Y<10 are found where they exist. Rules in secondary
storage are interpreted after their retrieval; that is, no compilation is needed at run
time. Non-ground facts are treated as rules, e.g., the gp(_,20) is indexed as
gp(NULL,20). The lower values of cdomains are constructed from the lower values
of the sdomains that reside in the leaf nodes of their DT.

In each recursive step of a rule application, PerKMan retrieves the first block that
includes at least one matching clause. The first matching clause is used for the next
step. Backtracking uses the second matching clause from the buffer and so on until all
the matching clauses are exhausted. Then, a second matching block comes into main
memory. We do not support the presentation of answers according to the insertion
order of clauses in order to avoid additional cost.

3.3 Clauses Area

CA includes the clauses of all persistent predicates. Each block in it is composed of a
header, a Clause Allocation Table (CAT), the clause declarations and the free space.

The header includes control information, the amount of free space, the number of
clauses in the block (NBC) and one pointer that connects blocks in case of overflow.
A block may overflow when its clauses have their arguments that participate in the
index identical. This means that the block cannot be split. This may occur when the
index includes only attributes that do not identify its predicate, or there are many rules
with variables in the same indexing arguments. The size of a clause cannot be larger
than the size of its block. A CAT contains NBC+1 pointers. The first NBC pointers
indicate the beginning of clauses whereas the last one indicates the end of the last
clause. The use of CAT is necessary due to the variable length of clauses.
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4 Experimental Results

In this Section we provide experimental results on the performance of PerKMan and
compare them to the corresponding performance of ECLiPSe.

ECLiPSe is a Prolog-based system, whose aim is to provide a platform for
integrating various extensions of logic programming. One of these extensions is the
persistent storage of clauses through the DataBase (DB) and the Knowledge Base
(KB) module [3]. The BANG file [5], a variant of the BD-tree, is used in both
modules to index on the attributes that the user indicates. The DB module does not
manipulate rules and non-ground facts, and attributes of type term cannot be included
in the index. The KB module supports the persistent storage of any clause. The KB
version is less efficient than the DB version and the second should be preferred when
possible. None of the modules supports the coexistence of DB and KB relations.

The statistics of ECLiPSe inform us about the size of the page buffer area for the
DB handling, the pages of the relations that are currently in buffers, the real I/O and
buffer access. This allows a comparison between the access efficiency of ECLiPSe and
PerKMan, on the base of disk reads. We present experiments with four dimensions,
all included in the index and attribute size of 4 bytes. We used 8 Kbytes page size
because this is the default for the BANG file in ECLiPSe. The data followed the
normal distribution with mean value 0 and variation 5*106. We chose to present our
experiments with data following the normal distribution because as well as the fact
that this distribution is common in real world measurements, it approximates many
other distributions well. We used non-duplicate facts. Their range was [105,2*106] and
the step of increment 105. Similar experiments with other distributions showed that
results depend very slightly upon the nature of the distribution from which the data is
drawn. Our implementation was made in C and the performance comparison on a
SUN Ultra 5/10 under SunOS 5.6.

Figure 4 shows the total insertion time in minutes versus the number of facts. We
repeated the insertion procedure three times in a dedicated machine. We present the
average insertion times. The insertion time of PerKMan is linear and becomes lower
than the one of ECLiPSe in a volume of 2*106 facts.

Figure 5 shows the space requirements of the two systems in Mbytes compared
with the number of facts. We present the total storage space, as ECLiPSe does not
inform us about the storage space of index and data separately. As shown in this
figure, PerKMan needs much smaller storage space than ECLiPSe to organize its data.

The following results correspond to the average disk block accesses using 100
queries of the same type. The queries are taken uniformly from the insertion file. That
is, the constant values of a partial match query over a file of NC clauses were taken
from the places j*ÐNC/100à, 1�j�100, of the insertion file.

Figure 6 shows that the two systems need the same number of disk accesses for
exact match queries. Figures 7, 8 and 9 concern partial match queries with one, two
and three variables, respectively. They show that the disk accesses required by
PerKMan are fewer than the ones required by ECLiPSe. For PerKMan there are two
curves that represent the number of accesses to find the first and all matching facts.
ECLiPSe statistics give us the same number of accesses for both cases. In some steps
of these figures we observe some decrements in the number of disk accesses, despite
the corresponding increment in  the number of  data. This  is justified  by the fact  that
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Fig. 3. Total insertion time.
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Fig. 4. Space requirements.
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Fig. 5. Average number of accesses per exact
match query.
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Fig. 6. Average number of accesses per partial
match query of one variable.
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Fig. 7. Average number of accesses per partial
match query of two variables.
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match query of three variables.
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queries were taken uniformly from the insertion file and, consequently, the queried
facts were not the same for all steps.

5 Summary

The increasing need for large knowledge bases and efficient handling of ad hoc
queries implies the adoption of effective data structures. We presented PerKMan, a
storage manager that may be connected to Prolog systems that offer an external C
language interface. PerKMan handles facts and rules uniformly and allows different
arguments of a predicate to share an index dimension in a novel manner. It indexes
compound terms efficiently and its data structures are not only independent of the
data distribution, but also adapts well to dynamic large volumes of clauses. From the
performance of PerKMan, we believe that it achieves its design motivation, which is
to handle efficiently large quantities of persistent knowledge.

Planned research work includes sophisticated methods that relate rules to data on a
scheme that is based on the distribution of query types.
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