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Abstract.1This paper defines a new stacked generalization 
framework in the context of information extraction (IE) from online 
sources. The proposed setting removes the constraint of applying 
classifiers at the base-level. A set of IE systems are trained instead 
to identify relevant fragments within text documents, which differs 
significantly from the task of classifying candidate text fragments as 
relevant or not. The templates filled by the base-level IE systems 
are stacked, forming a set of feature vectors for training a meta-
level classifier. Thus, base-level IE systems are combined with a 
common classifier at meta-level. The proposed framework was 
evaluated on three Web domains, using well known IE approaches 
at base-level and a variety of classifiers at meta-level. Results 
demonstrate the added value obtained by combining the base-level 
IE systems in the new framework.  

1 INTRODUCTION 
One of the most attractive topics in supervised machine learning is 
learning how to combine the predictions of multiple classifiers. The 
motivation for doing this derives from the opportunity to obtain 
higher prediction accuracy, while treating classifiers as black boxes, 
i.e. without considering the details of their functionality.  

Stacked generalization or stacking [1] deals with the task of 
learning a meta-level classifier to combine the predictions of 
multiple base-level classifiers. The set of base-level classifiers is 
generated by applying different learning algorithms to a given data 
set. Alternative combination methods like boosting [2] and bagging 
[3] deal with multiple classifiers, generated however by applying 
the same learning algorithm to different versions of the data. 

Research on stacking has primarily focused on classification. 
Each instance in the domain of interest is represented by a vector 

 of attribute values, where  is the class attribute, 
whose value we wish to predict. To classify a new instance, the 
predicted class values of the base-level classifiers form a new vector 
that is assigned the final class by the meta-classifier.  
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In this article we investigate the effectiveness of stacked 
generalization in the task of information extraction (IE) from online 
sources: a form of shallow text processing that extracts relevant text 
pieces to populate a predefined template. However IE is naturally 
an identification task, rather than a classification one [4]. A rich 
variety of IE systems, e.g. [5, 6, 7, 8] are typically trained to 
identify relevant text fragments, i.e. sequences of tokens, within 
documents. There is only a small number of approaches [9, 10] that 
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enumerate a high proportion of all possible text fragments that can 
be found within a document and then model the IE task as a binary 
classification one. In this latter case, the task is to learn whether or 
not a candidate fragment fills some template-slot. However, there 
are several problems associated with this approach such as the 
exponential number of candidate fragments and the artificially large 
number of negative examples. 

Thus, the main contribution of this article is a new stacking 
framework that accommodates IE systems at base-level that are not 
required to perform classification. Given a document, the templates 
populated by the base-level IE systems are stacked to a single 
template, wherefrom a set of feature vectors is assembled for 
training a meta-level classifier. At runtime, this classifier decides 
whether a candidate fragment, among the ones predicted by the 
base-level IE systems, is relevant or not. The proposed framework 
was experimentally evaluated in three Web domains, using well 
known IE approaches at base-level and a variety of classifiers at 
meta-level. Results show a superior performance of stacking against 
both base-level IE systems and voting, for all domains. 

Section 2 presents some background on stacked generalization 
and information extraction at meta-level. Section 3 describes the 
proposed framework. Section 4 presents the experimental results. 
Finally we conclude in section 5, discussing further improvements. 

2 BACKGROUND 

2.1 Stacking 
The key idea behind stacking is to learn a meta-level (or level-1) 
classifier based on the output of base-level (or level-0) classifiers, 
estimated via cross-validation as follows: 

Let D  a dataset consisting of feature vectors, also referred to as 
level-0 data, and  a set of  different learning algorithms. 
During a -fold cross-validation process, 

NLL ...1 N
J D  is randomly split into 

disjoint parts  of equal size and similar class distribution. 
At each jth fold, 
J JDD ...1

Jj ..1= , the  algorithms are trained on the 
training set  and the induced classifiers are applied to the 
test part . The concatenated class predictions of the induced 
classifiers on each vector i  in , followed by the original class 
value , form a new set 
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jDD \
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)( ii xy jMD  of meta-level vectors. 

At the end of the cross-validation process, the union 
=MD ∪ jMD , Jj ..1= , constitutes the full meta-level dataset, also 

referred to as level-1 data, which is used for training a meta-level 
classifier . The learning algorithm that is employed at meta-
level could be one of the  or a different one. Finally, the 

 learning algorithms apply to the entire dataset 

MC
NLL ...1

NLL ...1 D  inducing 
the final base-level classifiers  to be used at runtime. NCC ...1



 

In order to classify a new instance, the concatenated predictions 
of all base-level classifiers form a meta-level vector that is 
finally assigned a class value by the meta-level classifier.  

NCC ...1

In [11] an extension of stacking was proposed, where each 
classifier outputs a class probability distribution for every example, 
instead of a single class. In the same work, multi-response linear 
regression models (MLR) were used as a meta-level classifier that 
proved to be highly effective compared to other classifiers. Other 
recent approaches to stacking include work presented in [12, 13]. 

2.2 Information extraction at meta-level 
Despite the growing interest in combining machine learning 
algorithms and the application to some natural language parsing 
tasks such as part-of-speech tagging [14], which is fundamentally a 
classification task, this topic has received little attention by the IE 
community. The only relevant work is described in [9] where the IE 
task is transformed into a classification one, as mentioned in 
Section 1, using a set of four base-level extractors. Having done 
that, a multistrategy approach based on voting is used. Although 
this approach could be upgraded to stacking, it inherits the problems 
of treating IE as a classification problem, as explained in Section 1.  

On the other hand, a rich variety of IE approaches e.g. [5, 6, 7, 
8] do not externally enumerate all possible text fragments within a 
page. Such systems typically generalize a set of pattern-matching 
extraction rules from positive examples. At runtime, the induced 
patterns apply within a document, trying to match relevant text 
fragments. Therefore, it would be desirable to design an alternative 
stacking framework that can accommodate such IE systems.  

3 STACKED GENERALIZATION FOR 
INFORMATION EXTRACTION 

3.1 Definition of the extraction task 
Let  a set of W  extraction fields, defining a template }...{ 1 WffF =
T , and  a document annotated by the domain expert with 
instances of those fields. A field instance is a pair , 
where  is a text fragment, with s and e the indices of the  start 
and end tokens of the fragment in page’s token table, and 

d
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the related field. A field is typically a target-slot in T , while 
 is a slot-filler. In this article we assume that ),( est T  is filled with 

pairs . Table 1 shows a part of a Web page describing 
laptop products where relevant text is highlighted in bold. Table 2 
shows the hand-filled template for this page. 
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Table 1. Part of a Web page describing laptop products.  

…TransPort ZX <br> <font size="1"> <b> 15"XGA TFT Display </b> 
<br> Intel <b> Pentium III 600 MHZ </b>256k Mobile processor <br> 
<b> 256 MB SDRAM up to 1GB … 

Table 2. Hand-filled populated template for the page of Table 1. 
T  Short description for field f

),( est  es,  Field  f  
Transport ZX 47, 49 model Name of laptop’s model 

15" 56, 58 screenSize Size of laptop’s screen 
TFT 59, 60 screenType Type of laptop’s screen 

Intel <b> Pentium III 63, 67 procName Name of laptop’s processor 
600 MHZ 67, 69 procSpeed Speed of laptop’s processor 
256 MB 76, 78 Ram Laptop’s ram capacity 

 
The IE task can be defined as follows: given a new document  
and an empty template 

d
T , find all possible instances for each 

extraction field and populate T . An extended approach to IE is to 
group field instances into higher-level concepts, also referred as 
multi-slot extraction [8]. However, the simpler single-slot approach 
addressed here covers a wide range of IE tasks and motivated the 
development of a variety of learning algorithms [5, 6, 7, 9, 10]. 

3.2 Stacking information extraction systems 
Let  a set of  learning algorithms, designed for IE tasks 
and 

NLL ...1 N
D  an annotated corpus, e.g. of Web pages describing laptop 

products. Let  the IE systems that were built by training 
 on 

NEE ...1

NLL ...1 D . Finally, define  a set of templates populated 
by  from a document  in 

NTT ...1

NEE ...1 d D . Table 3 shows two 
templates  by two fictitious IE systems  for the page 
of Table 1. 

21 ,TT 21 , EE

Table 3. Templates populated by two IE systems for the page of Table 1. 
1T  

),( est e s, f  
Transport ZX 47, 49 model 

15" 56, 58 screenSize 
TFT 59, 60 screenType 

Intel <b> 
Pentium III 

63, 67 procName 

600 MHZ 67, 69 procSpeed 
256 MB 76, 78 ram 

1 GB 81, 83 ram  

2T  

),( est es, f   
Transport 

ZX 
47,49 manuf 

TFT 59, 60 screenType
Intel <b> 
Pentium  

63, 66 procName 

600 MHZ 67, 69 procSpeed 
256 MB 76, 78 ram 

1 GB 81, 83 HDcapacity 
 
Examining Table 3 we note some disagreement in the predictions of 
the two IE systems: for two text fragments (“Transport ZX”, 
“1GB”) the predicted fields by  disagree. Comparing to the 
hand-filled template of Table 2, we conclude that “Transport ZX” 
has been correctly identified as model only by the first IE system, 
while “1GB” has been incorrectly identified by both systems. 
Furthermore, the fragment “15"” has been identified only by , 
while  did not identify it at all. Finally, there is an overlapping 
case: the fragment “Intel <b> Pentium III” has been correctly 
identified by 1  as procName, while  incorrectly predicted the 
same field for “Intel <b> Pentium”. This disagreement is better 
observed in the stacked template of Table 4.  

21 , EE

1E
2E

E 2E

Table 4. Stacked template of  and  1T 2T

es,  ),( est   Field by  1E Field by 2E Correct field
47, 49 Transport ZX model manuf model 
56, 58 15" screenSize - screenSize 
59, 60 TFT screenType screenType screenType 
63, 66 Intel<b>Pentium - procName - 
63, 67 Intel<b>Pentium III procName - procName 

… … … … … 
81, 83 1 GB ram HDcapacity - 

 
Constructing the stacked template of Table 4 is a straightforward 
process: all fragments  identified by  in  are 
inserted into an initial pool. Duplicate fragments are removed; two 
text fragments differ if either their start or end index differs. For the 
remaining distinct fragments, the predicted fields by  are 
collected and appended with the correct field (last column in Table 
4), according to the hand-filled template of Table 2.  

),( est 21 , EE 21 ,TT

21 , EE

Examining Table 4, the desirable performance task is to 
automatically fill the last column with the correct fields. The 
simplest idea is to use voting on the predictions of the IE systems. 
An alternative approach is to learn to predict the correct field for 
each distinct text fragment. The idea suggested in this paper is to 
create a feature vector for each entry of Table 4, i.e. for each 



 

distinct fragment , and use the new vectors for training a 
common classifier. Table 5 shows the new feature vectors. 

),( est

Table 5. Meta-level feature vectors for the stacked template of Table 4. 

  Feature vectors 
es,  ),( est  Features by  1E Features by  2E class 

47, 49 Transport ZX model, manuf, model 
56, 58 15" screenSize, ?, screenSize 
59, 60 TFT screenType, screenType, screenType
63, 66 Intel<b>Pentium  ?, procName, false 
63, 67 Intel<b>Pentium III procName, ?, procName 

… … … … … 
81, 83 1 GB ram, HDcapacity, false 

 
Absence of prediction by an IE system is indicated by “?”. If a text 
fragment doesn’t exist in the hand-filled template it is classified as 
false. The remaining issue is to construct the full set of feature 
vectors that will be used for training a meta-level classifier, from 
the base-level training set that consists of annotated documents. 
This disparity between base-level and meta-level datasets motivated 
us to propose a new variant of the cross-validation methodology 
that samples from documents, rather than from feature vectors, as 
described in section 2.1. 

3.3 The new stacking framework 
The key idea behind stacking for IE is to learn a meta-level 
classifier based on the output of base-level IE systems, estimated 
via cross-validation as follows: 

At the jth fold, , of cross-validation, the  learning 
algorithms  are trained on the document set  and the 
induced IE systems  are applied to the test set . 
For each document  in , let  the populated templates 
by  respectively. A stacked template  is 
assembled from , as shown in section 3.2. A new feature 
vector is produced for each entry in , which is added to the 
meta-level dataset 

Jj ..1= N
NLL ...1 jDD \

)()...(1 jEjE N jD
d jD NTT ...1

)()...(1 jEjE N ST
NTT ...1

ST
jMD . At the end of the cross-validation process, 

the union =MD ∪ jMD  constitutes the full meta-level dataset, 
which is used for the training of a meta-level classifier . Finally, 
the  learning algorithms are retrained on the entire dataset 

MC
N D  

inducing the base-level IE systems  to be used at runtime. 
Table 6 presents an algorithmic description of the new stacking 
framework. 

NEE ...1

The vectors in the new meta-level dataset MD  belong to  
classes, where W  the number of fields in the domain of interest, 
plus the value “false”. A vector classified as “false” indicates that 
the corresponding text fragment doesn’t exist in the hand-filled 
template, and thus none of the IE systems should have predicted a 
field for it (e.g. the “1 GB” in Table 5). 

1+W

At runtime, given a new document , the base-level IE systems 
are used to identify relevant instances and fill the corresponding 
templates. A stacked template is created by the individual ones. For 
each entry in the stacked template a feature vector is created and 
finally classified by the meta-level classifier . If the vector is 
classified into one of the W  fields (i.e. it isn’t a “false” prediction), 
the corresponding entry  is inserted in the final 
template for , otherwise (“false” prediction) the entry is rejected. 
The stacking framework at runtime is shown in Figure 1. 

d

MC
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A major issue concerning cross-validation methodologies is 
stratification. Unlike classification tasks where a similar 
distribution of classes is maintained at each fold, in IE there is a 
different distribution of field instances in each document. Therefore  

Table 6. The new stacking framework for information extraction.   

procedure stacking_for_IE ( D , , , J NLL ...1 ML ) begin 
  = partition of JDD ...1 D  into  sets of documents of equal size J
  for  = 1 to  do begin     j J

jMD = {} 
for  = 1 to  do  i N
     = the IE system obtained by training  on  )( jE i iL jDD \

     foreach document  in d jD  do begin 
   for  = 1 to  do  i N
         = template populated by applying  to  iT )( jE i d
   = create_stacked_template ( , )   ST d NTT ...1

  foreach entry, i.e. for each distinct  , in  do begin ),( est ST
     for i  = 1 to  do           N
          =  the field by  for   ∈if }?"",,...{ 1 Wff )( jE i ),( est
     = the correct field for  },,...{ 1 falsefff W∈ ),( est
    jMD  = jMD  ∪ vector   >< fff N ,,...1

  end  
end   

   end    // end of cross-validation 
  MD  = ∪ jMD , Jj ..1=  
   = meta-classifier obtained by applying MC ML  on MD  
   // Train the base-level IE systems  
   for  = 1 to  do  i N

  iE  = the base-level IE system obtained by training  on iL D  
end  
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Stacking for information extraction at runtime. 

it is extremely hard to even approximate the same distribution of                  
fields in each fold. Despite the lack of explicit stratification, in our 
experiments we didn’t encounter particular problems. 

3.4 Stacking with confidence scores 
Algorithms that learn pattern matching rules for IE typically 
determine an appropriate metric for evaluating the confidence of the 
patterns being learned. A straightforward extension of the proposed 
stacking framework is based on the idea that a predicted field for a 
text fragment  is accompanied by the confidence score of the 
pattern that matched that fragment. The exact procedure follows: 

),( est

• Instead of predicting one of the W  fields for each , each 
IE system generates a confidence score  for the field , if 
a field is predicted at all. This is modeled by a W -element 
vector that contains zero values, except possibly for the kth 
position where   appears, i.e. . 

),( est
kc kf

kc >< 0 0...,... kc
• Each vector is mapped to a new one , where  

is a probability estimate that corresponds to  and reflects the 
correctness of the prediction in a range between zero and one. 
The argument for performing this mapping is that confidence 
scores produced by different algorithms are not comparable nor 

>< 0...,...0 kp kp
kc
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they bear any resemblance to probability estimates [9]. For 
example, in the (LP)2 system [6] the confidence is measured 
through the number of wrong matches made by each pattern 
during training, while HMMs measure confidence by 
logarithmic values assigned by the Viterbi algorithm. The 
mapping of confidence scores to true probability estimates is 
done using a form of linear regression, as proposed in [9]. This 
allows us to adopt a similar multistrategy approach as that 
presented in [9] for comparison purposes.  

• Finally, the output vectors by  for  form a single 
one of *W  elements, appended by the correct field. 

NEE ...1 ),( est
N

The inner foreach loop in Table 6 is appropriately modified to 
handle the new setting. Table 7 shows the new meta-level vectors 
assembled by the stacked template of Table 4. 

Table 7. Meta-level vectors using confidence scores. 

 Feature vectors 
es,  Features by  1E Features by  2E class 

47, 49 0, 0, 0.92, 0, 0, 0, 0, 0, 0, 0.34, 0, 0, 0, 0, 0, 0, model 
56, 58 0, 0, 0, 0, 0, 0, 0.83, 0, 0, 0, 0, 0, 0, 0, 0, 0, screenSize 
59, 60 0, 0, 0, 0, 0, 0, 0, 0.85, 0, 0, 0, 0, 0, 0, 0, 0.91, screenType 
63, 66 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.61, 0, 0, 0, 0, false 
63, 67 0, 0, 0, 0.67, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, procName 

… … … … 
81, 83 0, 0, 0, 0, 0, 0.55, 0, 0, 0.89, 0, 0, 0, 0, 0, 0, 0, false 

 
The same vector representation was used in the extension of 
stacking for classification tasks proposed in [11]. The difference is 
that class (or field) probability distributions are not typically 
produced by IE systems. Therefore, except for the places in the 
vectors that correspond to the predicted fields, all other values are 
set to zero. 

3.5 Voting and multistrategy learning 
Voting does not involve an internal cross-validation process and 
thus it is much faster than stacking. Given a page at runtime, a 
stacked template is again formed by the individual ones. For each 
entry in the stacked template, i.e. for each , the predicted 
fields are counted and the one with the highest count is selected. 
This is majority voting and in case of a tie, a random selection is 
performed among the winning fields.  

),( est

Multistrategy learning was used in [9] in the form of voting 
using probability estimates, mapped from confidence scores. Since 
in stacking with confidence scores we employ a similar mapping 
process, as mentioned in section 3.4, we can use the same approach: 
each predicted field by some IE system for  is followed by a 
confidence score which is mapped to a probability estimate. The 
field with the highest estimate is finally selected and compared 
against the field predicted by stacking. 

),( est

4 EXPERIMENTS 
The aims of the experiments are to a) determine if stacking provides 
added value over the base-level IE systems, b) compare the simple 
approach to stacking (with fields) against stacking with confidence 
scores, c) compare stacking against majority voting and 
multistrategy learning d) compare different classifiers at meta-level.  

4.1 Algorithms  
At base-level we experimented with three well-known learning 
approaches for IE: the (LP)2 system [6], a sequential covering rule-

based learning approach, Hidden Markov Models (HMMs) [7], a 
stochastic finite-state approach for IE, and Boosted Wrapper 
Induction (BWI) [10]. At meta-level we experimented with six 
different classifiers, as implemented in the WEKA environment 
[15]: J48, an implementation of the C4.5 decision-tree inducer, 
NaiveBayes, the well known Naïve Bayes classifier, IB1, the 1-
nearest-neighbour, SMO, an implementation of Support Vector 
Machines, MLR, a multi-response linear regression implementation, 
a setting commonly used in stacking for classification tasks [11, 12, 
13], and finally the LogitBoost boosting algorithm using decision 
stumps as weak classifiers.  

4.2 Domains 
Experiments were conducted using three collections of Web pages 
describing three different domains. The first two collections consist 
of 101 pages describing CS courses and 96 pages describing 
research projects, and were constructed in the context of the 
WebKB project [16]. They were hand-filled for three and two 
extraction fields respectively: crsNumber, the number of the course, 
crsTitle, the course title, crsInst, the course instructor, projTitle, the 
project title and projMember, the name of a project member.  

The third collection consists of 50 pages, describing laptop 
products that were collected from 25 vendor sites1. A total of 19 
extraction fields were hand-filled for this domain, including the 
manufacturer of the laptop, the model name, the processor name, 
processor speed, ram, hard disk capacity, etc. The particular dataset 
was constructed in the context of building a shopping comparison 
agent that visits various vendor sites, extracts laptop descriptions 
and presents the results to the user. 

As baseline for evaluating the proposed stacking framework we 
used the best results obtained by the three base-level IE systems in 
each dataset. Comparisons were also conducted against the best 
results obtained by voting and multistrategy learning as described in 
section 3.5. Finally, for the two WebKB datasets our results were 
compared against multistrategy learning results, as presented in [9]. 

4.3 Evaluation methodology and metrics 
For the evaluation, cross-validation was used to obtain an unbiased 
estimate of performance on unseen data. For the laptop products 
domain, the corpus of 50 pages was randomly split into five equally 
populated parts. At each fold, a different part consisting of ten 
pages was kept for evaluation and the systems were trained on the 
remaining forty pages to induce the base-level IE systems and the 
meta-level classifier. Results on the unseen parts were averaged 
over all folds. Note that the cross-validation procedure used for 
evaluation is completely different from the cross-validation used for 
training, as presented in Table 6. 

A different evaluation methodology was followed for the two 
WebKB domains, in order to achieve an objective comparison with 
the results reported for those domains in [9]. Each corpus was 
randomly split into two parts of equal size. The first part was used 
to induce the base-level IE systems and the meta-level classifiers. 
The second part was kept for evaluation. The process was repeated 
five times, averaging the results at the end.  

As a performance measure we use the 1F  evaluation metric, 
which is the harmonic mean of recall (R) and precision ( P ), 
defined as )/(21 PRRPF += . Precision is the percentage of the 
predicted field instances that are correct, while recall is the 
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percentage of the annotated field instances (in the hand-filled 
templates) that were predicted by the system.  

4.4 Results 
Table 8 presents the best 1F  scores of the base-level IE systems for 
each domain, compared to the best results of majority voting- 
multistrategy learning and the best meta-level classifiers, using the 
simple approach (with fields) and the confidence-score approach.  

Table 8. Best  scores (%) of base-level IE systems, multistrategy setting 
and best meta-level classifiers, for each of the three domains. 

1F

 Base-level  
IE system 

Majority Voting- 
Multistrategy 

Stacking 
with fields 

Stacking with 
conf. scores 

CS courses 65,73  66,12 66,03 71,93 
Projects 61,64  63,53 66,05 71,41 
Laptops 63,81  64,38 68,46 71,55 

 
For the CS courses domain (LP)2 obtained the best results at base-
level, while the HMMs obtain the best results for the other two 
domains. Table 8, shows a clear improvement in performance when 
using stacking with confidence scores against simple stacking, 
majority voting-multistrategy learning and the best base-level IE 
systems for all domains. Results in the third column are the best of 
multistrategy learning, which are higher than the best results of 
majority voting. 

Table 9 shows the best 1F  scores of all meta-level classifiers in 
the stacking with confidence scores approach over all three 
domains. The values in bold are the best 1F  scores obtained for 
each domain. On average, the LogitBoost and J48 classifiers 
obtained the best results for all domains, with the former being 
slightly better. The LogitBoost classifier performed best for the CS 
courses, and the laptop products domain, while J48 performed best 
for the domain of research projects. 

Table 9. Best  scores (%) of the meta-level classifiers over all domains. 1F

 CS courses Projects Laptops Average 
J48 70,24 71,41 70,31 70,68 
NaiveBayes 65,16 66,53 61,33 64,34 
IB1 70,87 66,58 69,15 68,87 
SMO 68,24 66,36 69,43 68,01 
LogitBoost 71,93 70,67 71,55 71,38 
MLR 70,50 65,19 69,72 68,47 

 
Table 10 shows the best 1F  scores per-field for the two WebKB 
datasets, in order to compare against the results presented in [9]. 

Table 10. Per-field best  scores (%) for the two WebKB datasets. 1F

 Best 
Base 

Multi-
strategy 

Stacking with 
confidence scores 

Best 
Base [9] 

Multi-
strategy [9]

crsNumber 94,46 94,46 93,85 89,9 88,9 
crsTitle 70,05 71,68 74,26 55,9 62,0 
crsInst 48,21 48,98 58,53 48,1 49,8 
projMember 65,00 66,38 73,83 41,1 45,5 
projTitle 39,66 34,96 40,15 33,7 34,1  
 
Experiments confirm the superiority of stacking with confidence 
scores, on four out of five fields. Stacking results are also better 
than the multistrategy learning results presented in [9]. This seems 
to be partially due to the higher performance of the base-level 
extractors that we used. 

Note that the 1F  scores in Tables 8 and 9 are based on precision 
and recall averaged over all instances of all fields. This allows an 
objective overall comparison among different IE systems. 

Experiments in stacking pairs of base-level IE systems were also 
conducted but did not lead to better results. 

5 CONCLUSIONS AND FUTURE WORK 
This paper presented a new framework for stacked generalization, 
appropriate for IE tasks and demonstrated its effectiveness. 
Experimental results have shown the superiority of the approach 
against single IE systems and combination of IE systems through 
voting and multistrategy learning.  

Experiments will be continued using more datasets as well as 
other algorithms both at base-level and at meta-level. A more 
comprehensive use of the confidence scores generated by the 
individual IE systems, other than the one described in [9], will also 
be investigated, expecting to improve the new stacking framework. 
Longer-term plans include the application of stacking to handle 
harder forms of template-filling tasks. 
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