
Developing rule-based applications for the Web: Methodologies and
Tools

Vassilis Papataxiarhis, Vassileios Tsetsos, Isambo Karali, Panagiotis Stamatopoulos, Stathes

Hadjiefthymiades

Department of Informatics and Telecommunications, National and Kapodistrian University of
Athens, Panepistimiopolis, Ilissia, GR-15784, Athens, Greece,

{vpap, b.tsetsos, izambo, takis, shadj}@di.uoa.gr

ABSTRACT
Embedding rules into Web applications, and distributed applications in general, seems
to constitute a significant task in order to accommodate desired expressivity features
in such environments. Various methodologies and reasoning modules have been
proposed to manage rules and knowledge on the Web. The main objective of the
chapter is to survey related work in this area and discuss relevant theories,
methodologies and tools that can be used to develop rule-based applications for the
Web. The chapter deals with both ways that have been formally defined for modeling
a domain of interest: the first based on standard logics while the second one stemmed
from the logic programming perspective. Furthermore, a comparative study that
evaluates the reasoning engines and the various knowledge representation
methodologies, focusing on rules, is presented.

1 INTRODUCTION AND MOTIVATION

Nowadays, with the evolution of traditional web of documents to a more complex
web of services, an increasing demand for embedding intelligence to Web
applications arises. In this context, the efficient management of knowledge seems to
play a key role in order to achieve smart behavior of Web applications and to
overcome several issues of such environment (e.g., information integration).
Ontologies, mainly written with Semantic Web technologies, constitute a well-
established paradigm for representing knowledge on the Web. Though, current efforts
are focused on extending ontologies with more expressive forms of knowledge like
rules. In fact, given the state-of-the-art in the realization of the Semantic Web vision,
rules constitute the next prominent challenge. Since the ontology layer of the
Semantic Web architecture stack has reached a sufficient degree of maturity through
Web Ontology Language (OWL) (Dean et al., 2004), the next step of progress
involves the integration of rules with ontologies, most of them based on subsets of
First Order Logic (FOL).
Rules are capable of extending the expressiveness provided by ontology languages
through the definition of more complex relationships between individuals.
Additionally, as a modular form of knowledge, they fit well in domains like
personalization, policies and business-to-business (B2B) interaction. However, it has
been shown that extending ontologies even with simple forms of rules can lead to
undecidability of key inference problems.
On the other hand, many business-logic applications have extensively taken
advantage of existing rule management systems or solvers (Jess, 2008; ILOG, 2008;
Drools, 2008), aiming at facilitating the knowledge management process. As a result,

mailto:@di.uoa.gr

the success of rules in non-Web applications moved Web researchers to use
traditional rule engines on the Web.
However, the aforementioned stable rule systems have not been originally created for
open and heterogeneous environments like the Web. Such platforms have adopted
different knowledge representation formalisms, mainly based on principles of logic
programming, instead of classical logic. As a consequence, they differ from recent
Semantic Web technologies in many aspects, including representational features and
reasoning functionality, as well. Hence, building a rule-based application for the Web
with existing rule technologies is not a straightforward task.
In the rest of this chapter, we provide foundational knowledge on this topic together
with implementation issues, techniques and design patterns. Section 2 briefly
describes how the things have gone so far in the area of Web knowledge formalisms.
In Section 3, various knowledge representation methodologies and tools are
discussed. Specifically, Section 3.1 demonstrates the different languages and
formalisms, derived from both classical logic and logic programming view, while
Section 3.2 focuses on various engines able to reason over such knowledge bases.
Section 4.1 gives the main requirements for rule-based web applications. The
evaluation presented includes both a qualitative comparison (Section 4.2) of the
existing approaches and a performance analysis (Section 4.3) of current ontology
reasoners and rule engines. Finally, several future trends and open issues are
identified in Section 5. Hence, this chapter aims at becoming a helpful guide for
applying rules to Web applications.

2 THE STORY SO FAR

The knowledge representation languages proposed (see Section 3.1) for representing
knowledge on the Web are based either on the Classical Logic (CL) perspective or on
Logic Programming1 (LP). As a result, a debate was started between the Database
community and AI researchers, respectively, in order to determine the more suitable
of the two approaches in the formalization of Web knowledge. Additionally, different
languages of the same perspective, providing various degrees of expressivity, have
been proposed. Hence, the integration of knowledge with Web applications was more
complicated. Recently, with the evolution of Semantic Web technologies, these
modeling paradigms have been extensively discussed by researchers (Motik,
Horrocks, Rosati, & Sattler, 2006; Patel-Schneider & Horrocks, 2006; Eiter, Ianni,
Polleres, Schindlauer, & Tompits, 2006a; Donini, Lenzerini, Nardi, & Schaerf, 1998;
Antoniou, et al., 2005; Boley, Kifer, Patranjan, & Polleres, 2007).
Clearly, this confrontation also affected rules. Although, significant efforts have been
devoted in order to develop appropriate rule languages for the Web (see Section 3.1),
a debate between proponents of the different perspectives has appeared. The main
argument involves the degree that rules would be combined with ontologies. Initially,
as formulated by Tim Berners-Lee, it had been commonly accepted that Semantic
Web should be structured in a hierarchy of layers that seamlessly interoperate
(Antoniou & van Harmelen, 2004). However, some proposals (mainly stemmed from
the database community) preferred to keep the rules and the ontology layer separated,
in order to preserve expressiveness and decidability of reasoning process, as
mentioned in (Eiter et al., 2006a). Specifically, in (Kifer, de Bruijn, Boley, & Fensel,
2005) the authors argue that the rules layer of Semantic Web architecture should be
placed next to the ontology layer of the Semantic Web stack in order to take

advantage of important rule languages based on logic programming. However, in
(Horrocks, Parsia, Patel-Schneider, & Hendler, 2005) the authors criticize the
aforementioned approach and denote that such a distinction would lead to two
Semantic Webs based on different semantics. These discussions along with the
Semantic Web Activity workgroup have led to several modifications of the stack.
Figure 1 presents the initial and the current form of the Semantic Web stack diagram
specified by the W3C Semantic Web Activity Group (W3C Semantic Web Activity,
2008).

a) b)

Figure 1. a) Tim Berners-Lee Semantic Web layer “cake” and b) the latest form of

Semantic Web stack diagram (W3C Semantic Web Activity, 2008)

The aforementioned facts gave rise to confusion inside the Web community. If the
experts (i.e., the logicians stemming from both AI and databases) could not decide
and recommend a unified framework for formalizing knowledge, how Web
developers and users should choose the best language according to their needs? The
current solutions are either to study the capabilities provided by all these languages
(i.e., available expressiveness, support by existing reasoning engines, tractability etc.)
or to exclude knowledge from their applications.

3 KNOWLEDGE REPRESENTATION METHODOLOGIES AND TOOLS

This section surveys different knowledge representation methodologies along with
reasoning modules that have been proposed for managing knowledge on the Web.
After an overview of Description Logics that comprise the main formalism for
representing ontological knowledge in Web applications, we focus on rules.

3.1 Knowledge Representation Formalisms

Description Logics
Description Logics (DLs) (Baader, Calvanese, McGuiness, Nardi, & Patel-Schneider,
2003) are subsets of first-order-logic, originating from semantic networks and frame-
based systems. They constitute a family of knowledge representation languages that
aim at providing well-understood mechanisms in order to formalize knowledge that
describes a domain. This way, DLs are equipped with formal, logic-based semantics,
emphasizing on reasoning process. Typical reasoning tasks include consistency
checking of the knowledge base, concept satisfiability, instance checking etc.

A DL-based knowledge base is composed of two components: TBox and ABox.
TBox contains the vocabulary of the application domain, called terminology, as well
as axioms based on that vocabulary. Practically, such vocabulary consists of concepts
and roles. Concepts are generic descriptions of sets of individuals, while roles
constitute binary predicates for defining properties of the individuals. On the other
hand, ABox includes assertions of individuals that may refer to either concepts or
roles. For example, a statement declaring that a specific individual is instance of a
concept resides in ABox, while a statement denoting that “every human is mortal”
belongs to TBox. Figure 2 shows the generic architecture of a DL knowledge
representation system.

DL Knowledge Base

TBox ABox

Man Human ⊓ hasGender.Male≡ ∃
Parent Mother ⊔ Father≡

BILL: Man

JOHN hasMarried MARY
MARY: Woman

INFERENCE SYSTEM

Human ⊑ Mortal

Figure 2: Architecture of a Description Logics knowledge-based system

Each description logic language is determined by a set of constructs, enabling the use
of atomic concepts and atomic roles in order to define complex ones. These constructs
directly affect the expressive power of the language and, thus, the complexity of
inference tasks. As a result, the selection of the appropriate description logic language
in order to describe a specific domain includes the examination of the imposed
requirements for representation expressiveness.
DLs set up the base for the definition of Resource Description Framework (RDF)
(Klyne & Caroll, 2004), RDF Schema (Brickley & Guha, 2004) and Web Ontology
Language (OWL) (Dean et al., 2004) that constitute W3C standards for representing
knowledge on the Web. Specifically, RDF is a simple data model for representing
information on the Web. RDF statements are expressed in the form of (subject,
predicate, object) triples. A set of such statements can be viewed as a graph where the
subjects and the objects of these statements constitute the graph nodes while the
predicates correspond to the graph edges. RDFS is an extension of RDF for
expressing simple taxonomies through the definition of class/property hierarchies and
domain/range of properties. OWL is totally based on DLs and it comes in three
species: OWL-Lite, OWL-DL and OWL-Full. OWL-Full is the most expressive OWL
species, since it takes advantage of all the OWL language primitives. OWL-DL limits
OWL-Full to a subset of OWL primitives so as to achieve efficiency of reasoning.
Finally, OWL-Lite is a sublanguage of OWL-DL by restricting more its
expressiveness.

Description Logic Programs
The expressiveness of Description Logic Programs (DLP) approach (Grosof et al.,
2003) corresponds to a fragment of OWL defined by the expressive intersection of

Description Logics and logic programming. This approach intends to define a
mapping from DL to logic programming (specifically, Horn programs in which no
function symbols, negation and disjunction are allowed) and vice versa. An instance
of such a mapping in the case of conjunction follows:

C1 ⊓ C2 ⊑ D ≡ D(x) ← C1(x) ∧ C2(x) (1)

However, for the sake of decidability, DLP offers limited expressiveness, since the
aforementioned mapping covers only a few DL-constructs (in particular, conjunction,
disjunction and quantification restrictions). For example, Description Logic Programs
do not cover negation in class descriptions nor fully support cardinality restrictions.

Semantic Web Rule Language
Semantic Web Rule Language (SWRL) (Horrocks et al., 2004b) is probably the most
popular formalism in Web community for expressing knowledge in the form of rules.
Specifically, SWRL is based on a combination of Web Ontology Language (OWL)
(Dean, 2004) and Rule Markup Language (RuleML) (RuleML, 2008) and has been
proposed as a W3C candidate standard for formalizing the expression of rules in Web
context. Contrary to DLP, SWRL extends OWL-DL with a specific form of Horn-like
rules.
The proposed rules are in the form of an implication between the body and the head of
the rule. A typical SWRL rule can be of the following form:

a1 ∧ a2 ∧ … ∧ an → b1 ∧ b2 ∧ … ∧ bm (2)
where ai and bi are OWL atoms of the following forms:

• Concepts, e.g., C(x), where C is an OWL description, in general, and x is
either a variable, an OWL individual or a data value.

• Object properties, e.g., P(x,y), where P is an OWL property and x, y are either
variables, individuals or data values.

• Datatype properties, e.g., P(x,y), where P is an OWL property, x is variable or
individual, while y is a data value.

• B(x1,x2,…), where B is a built-in relation and x1, x2, … are either variables,
individuals or data values.

• sameAs(x,y) or differentFrom(x,y) where x, y are either variables, individuals
or data values.

The main advantage of SWRL is the simplicity it offers, while extending the
expressiveness of OWL. Another benefit of SWRL is its compatibility with OWL
syntax and semantics, since they are both combined in the same logical language. On
the other hand, extending OWL-DL with SWRL rules leads to undecidability of
simple inference problems. A possible solution of this problem is presented in (Motik,
Sattler, & Studer, 2005) which introduces the notion of DL-safe rules. Specifically,
that approach restricts the application of SWRL rules only to individuals of the ABox
part of the DL knowledge base. Moreover, SWRL does not support negation (neither
classical nor negation as failure - NAF) and disjunctions. Finally, there is no efficient
support of first-order provers to execute reasoning over SWRL. Usually, the SWRL
rules are translated to existing rule systems (e.g., Jess (O’Connor, Knublauch,
Samson, & Musen, 2005)) that handle the reasoning tasks partially, since they are not
aimed to manage knowledge expressed in terms of first-order logic or subsets.
In the case of a Web service composition paradigm, some SWRL example rules could
be the following:

profile:hasOutput(?S1,?out) ∧ profile:hasInput(?S2,?in) ∧
process:parameterType(?in, ?cin) ∧ process:parameterType(?out,
?cout) ∧ (rdfs:subClassOf(?cout, ?cin) ∨ rdfs:subClassOf(?cin,

?cout)) → composableWith(?S1, ?S2)

(3)

The abovementioned rule captures the knowledge that a web service S1 is composable
with a service S2, if an input of S1 is either subclass or superclass of at least one
output of S2. This rule uses specific namespaces of OWL-S ontology like “profile”
and “process”.

Answer Set Programming
Answer Set Programming (ASP) (Gelfond & Lifschitz, 1991) is a paradigm for
knowledge representation and declarative programming. It has several advantages
compared to other logic programming paradigms (e.g., Prolog) such as:

• Full declarativity: the order of rules in a program is not important.
• ASP programs are in general decidable
• Non-monotonic inference: both negation as failure (NAF) and strong negation

are supported, thus enabling default reasoning and reasoning under the Closed
World Assumption (CWA).

• Availability of efficient solvers: there are several ASP solvers that are scalable
enough to deal with large knowledge bases.

A general ASP rule is of the following form:

a1 ∨ a2 ∨ … ∨ an ← b1 ∧ … ∧ bk ∧ not bk+1 ∧ … ∧ not bm (4)
where ai and bj are literals (atoms or strong negations of atoms) and not denotes NAF.

A set of such rules is an ASP program. What is interesting is the fact that these rules
can have disjunctions in their head. This is a very important feature of ASP, since it
introduces non-determinism in the inference process (i.e., an ASP program may have
several models which are called answer sets).

In order to be able to use ASP on the Web, the ASP rules should be combined with
Web knowledge. Since ontologies is the most common way to represent knowledge
on the Web, an interaction between ASP programs and ontologies is deemed
necessary. A solution to this integration problem is description-logic programs (or dl-
programs). These consist of ASP rules that may contain queries to DL knowledge
bases. For example, the following rule “brings” into the ASP program all instances of
the class MovieTitle in the DL knowledge base:

movie(X) ← DL[“Movie”](X). (5)

Several extensions to dl-programs were proposed (and implemented) so that they
become more “suitable” for open environments like the Web, where information may
be expressed in many diverse ways (e.g., multiple different ontologies). The most well
known extension is HEX-programs (Eiter, Ianni, Schindlauer, & Tompits, 2005),
which enable handling knowledge expressed in various formalisms, even with
potentially different semantics (e.g., RDF(S) and OWL). HEX-programs contain
several features (e.g., higher-order logic features) that enable more flexible integration

with external knowledge bases. These extensions result in new syntax elements. For
example, the atom &rdf[u](s,p,o) evaluates to true if <s p o> is an RDF triple asserted
at URI u. Finally, another advantage of HEX-programs is that they allow using
external data processing services that logic programming cannot handle (e.g., string
processing). An interesting engine for HEX-programs is dlvhex2 which is described in
Section 3.2.

There have been proposed ASP-based several applications in the context of
(Semantic) Web. One of the most promising is Web service composition (Rainer,
2005). The authors apply ASP techniques to “build” service compositions from
available services that match a certain service request.

Web Service Modeling Language (WSML)
WSML (de Bruijn et al., 2005) is a language of representation languages for the
Semantic Web. These languages are based on several different formalisms such as
Description Logics, Logic Programming and First-Order Logic. Some of the basic
variants of WSML are the following:

• WSML-Core: A subset of a Description Logic which falls inside the Horn
logic fragment of FOL. It supports subsumption reasoning and query
answering.

• WSML-Flight: An extension of WSML-Core which also supports full Datalog
rules, default negation and integrity constraints. It can provide query
answering in the context of Logic Programming.

• WSML-Rule: An extension of WSML-Flight with support for function
symbols and unsafe rules.

Reasoning for these WSML variants can be implemented by several Logic
Programming engines. For some features of these languages, DL reasoners can also
be used or First Order theorem provers. These languages have been extensively used
in several European projects, mainly in the application domain of semantic web
services. Hence, several APIs, tools and other facilities are available for building
WSML-enabled applications.

Defeasible Rules
Defeasible logic (Nute, 1994) is a rule-based, non-monotonic approach able to deal
with incomplete knowledge and inconsistencies. These features have been widely
remarked in the context of realizing Semantic Web vision, mostly in information
integration areas (e.g., ontology merging). As a result, some efforts in research
community (Antoniou, Billington, Governatori, & Maher, 2001) were devoted to
carry the advantages of defeasible logic in the area of Semantic Web technologies.
The main idea behind defeasible logic reasoning systems is the ability to handle a
number of additional features with regard to classical rules like priorities of rules,
default inheritance, exceptions, etc. There are three different types of rules in a
defeasible logic reasoning system: a) classical rules (called strict rules), b) defeasible
rules that can be contradicted by other rules and c) defeaters used to specify
exceptions of defeasible rules. This way, an important aspect achieved by such
reasoning modules is their capability of resolving the possible conflicts that arise
among defeasible rules.

Classification of Approaches Integrating Ontologies and Rules

Although several approaches have been discussed for combining rules with Semantic
Web ontologies (Horrocks et al., 2004b; Grosof, Horrocks, Volz, & Decker, 2003;
Eiter, Lukasiewicz, Schindlauer, & Tompits, 2004; Bassiliades, Antoniou, &
Vlahavas, 2006; Rosati, 2006a; Rosati, 2006b), there is no totally accepted solution in
the field. The main topic of argumentation is the degree of integration between the
ontology layer and the rules layer. In this section we intend to provide a brief
classification of the proposed approaches.
Two main categories of integration approaches have been distinguished in this
context:
a) Homogeneous approaches. These approaches suppose a tight semantic integration
of the two layers. Specifically, both ontologies and rules are embedded in a common
logical language, permitting predicate sharing in a coherent way. In such approaches,
ontology concepts and properties may be defined through rules. The most typical
homogeneous paradigm is the combination of SWRL rules with OWL ontologies.
This is also the most In addition, Description Logic Programs (DLP) (Grosof et al.,
2003) constitutes another similar approach.
b) Hybrid approaches. These approaches correspond to a strict semantic separation
between ontologies and rules. In particular, this strict separation concerns the rule
predicates and the ontology elements. Hence, the vocabulary (concepts and
properties) offered by the ontologies is used as a conceptualization of the domain and
rules cannot directly define ontology classes or properties. Many integration
approaches adhere to this category, including Answer Set Programming (Gelfond &
Lifschitz, 1991), dl-programs (Eiter et al., 2004) and DL+log (Rosati, 2006c).
The user may find more details on this topic in (Eiter et al., 2006a).

Table 1 summarizes the aforementioned knowledge representation languages and
their basic features.

Table 1: Basic features of various knowledge representation languages

 Feature

 Language

Logical

Foundation

Decidability* Serialization
formats

OWL Classical Logic
(FOL subset)

OWL-Lite: decidable
OWL-DL: decidable

OWL-Full: undecidable

XML/
N-triples (textual)

OWL

+
SWRL

Classical Logic
(FOL subset) undecidable XML

DLP

DL and LP
intersection

decidable textual serialization
(in terms of rules)

ASP

Extension of LP
(disjunction in

decidable textual serialization
(in terms of rules)

rule heads, DL
queries)

DL+log

DLs + Datalog

rules
(disjunctive,

non-monotonic)

decidable textual serialization
(in terms of rules)

*regarding key inference problems (e.g., consistency of the knowledge base)

3.2 Reasoning Engines

In this section we intend to provide the reader with a comparative feature analysis of
existing reasoning modules, including description logic reasoners and rule engines, as
well.

Jena2 (McBribe, 2002) is the second generation of Jena Semantic Web programming
toolkit, which is a Java framework for developing applications based on Semantic
Web technologies. Specifically, Jena provides an Application Programming Interface
(API) for creating, storing, managing and querying RDF graphs as well as RDFS,
OWL ontologies in various formats (RDF/XML, N3 and N-triples). The RDFS
reasoner included in Jena framework does not support datatypes and blank node
entailments. The built-in OWL reasoner is very limited, since it is a rule-based
implementation of OWL-Lite. However, Jena is supplied with an interface which
facilitates the connection and interoperation of the framework with any external
reasoner that supports the DIG (DL-Implementation Group) standard (Bechhofer,
Moller, & Crowther, 2003). Hence, the API provided by Jena could be integrated with
most of the existing description logics reasoners. Furthermore, Jena provides a query
engine in order to execute SPARQL (Prud’hommeaux & Seaborne, 2005) queries
over RDF graphs.

RacerPro system (RacerPro, 2008) is the commercial3 extension of Racer (Haarslev &
Moller, 2001), which is probably the most popular reasoning engine for OWL
ontologies to practitioners of Semantic Web technologies. RacerPro can be seen as a
knowledge-based repository that can handle and it is a system for managing OWL
ontologies, in particular. It implements the DIG interface and it offers an optimized
tableau calculus for the description logic SHIQ(D). Additionally, it supports qualified
cardinality restrictions as well as some extensions of OWL (e.g., OWL-E (Pan &
Horrocks, 2004) except user defined XML datatype expressions). Moreover, the latest
version of RacerPro includes a first implementation of an SWRL rule engine.

Pellet (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007) is a Java-based, open source
reasoner capable of handling expressive OWL ontologies. It implements an
optimized tableau algorithm, augmented with a number of additional features (e.g.,
support for Unique Name Assumption - UNA, closed world reasoning, SPARQL
query answering). Pellet also provides an explanation service in order to facilitate the
debugging of the ontology engineering (Parsia, Sirin, & Kalyanpur, 2005). Although
typical reasoners detect the inconsistencies between concepts of the knowledge base
(KB), Pellet can explain why a concept description led to unsatisfiability. This way,

the reasoner provides user with additional knowledge (e.g., relevant axioms or
restrictions) sufficient to understand the problem and reform the KB properly. Finally,
Pellet allows ontologies to use XML-Schema built-in and user-defined datatypes that
extend numeric and date/time types.

Bossam (Jang & Sohn, 2004) is a RETE-based, forward-chaining reasoning module
for reasoning and querying over RDF(S) and OWL documents, while it also supports
rules execution (SWRL rules are included). It is based on Logic Programming (LP),
augmented with some expressiveness features stemming from First-Order-Logic
(FOL). For example, a number of additional to LP features are provided by Bossam,
including support for both classical negation and NAF and disjunctions in the body of
rules. Hence, it does not support complete reasoning over OWL Ontologies.
Furthermore, it facilitates the integration of rules with Java by supporting a procedural
attachments mechanism for SWRL rules. Finally, Bossam provides an API for
managing the engine, loading ontologies and rules, querying RDF(S)/OWL
documents and giving explanations about derived facts. Currently, Bossam does not
support SPARQL query answering, while the serialization of the knowledge base to a
persistent store (e.g., file system) is another missing feature.

FACT++ system (Tsarkov & Horrocks, 2006) is the descendant of FACT (Horrocks,
1998). Contrary to the lisp-based FACT system, FACT++ is an open source reasoner
for SHOIQ(D) implemented in C++. It is based on tableaux algorithms in order to
provide both TBox and ABox reasoning tasks and it can be accessed through the DIG
interface. It also supports a number of additional features like handling enumerated
classes (a.k.a. nominals) and it is a very efficient TBox reasoning engine. However,
the main disadvantage of FACT++ is its inefficiency to support complete ABox
reasoning. Hence, FACT++ is unsuitable to applications that call for instance
classification and retrieval.

KAON2 (KAON2, 2008) is the successor of KAON Project (KAON, 2008) and unlike
pure description logic reasoners, KAON2 does not implement a tableaux algorithm. In
fact, KAON2 is a hybrid reasoning module able to handle both ontologies expressed
in description logics terms and Disjunctive Datalog programs. It implements
algorithms that reduce description logic SHIQ(D) to Disjunctive Datalog (Hustadt,
Motik, & Sattler, 2004), taking advantage and applying well-known practices
stemming from deductive databases (e.g., magic sets) to DL reasoning. It can also
handle SWRL, F-Logic ontologies and SPARQL query answering, as well. Moreover,
it provides a Java API in order to accommodate the management and the integration
of different knowledge formalisms (e.g., OWL ontologies with SWRL rules).
However, KAON2 does not support reasoning about nominals and cannot handle a
large number of cardinality restrictions. Hence, it cannot deal with the full OWL-DL
expressiveness.

dlvhex (Eiter, Ianni, Schindlauer, & Tompits, 2006b) is the name of a prototype
application for computing the models of so-called HEX-programs, which are an
extension of Answer Set Programs towards integration of external computation
sources. dlvhex can communicate with OWL and RDF knowledge bases and can also
return the results in RuleML syntax. A strong point of dlvhex is that it enables
developers to write and embed plug-ins to the core engine. In fact, support for RDF
and OWL is implemented through plug-ins too. Recently, another plug-in for

querying HEX models through the SPARQL language (Polleres & Schindlauer,
2007). Through this plug-in dlvhex can be used as a query engine by providing a
rewriter from SPARQL to rules. The source code and binaries of dlvhex are publicly
available.

DR-DEVICE (Bassiliades, et al., 2006) is a defeasible logic reasoner for the Web
based on the CLIPS expert system shell (CLIPS, 2008) that intends to integrate
Semantic Web standards (RDF metadata, XML-syntax of rules) with non-
monotonicity (e.g., strong negation). Specifically, it provides reasoning services over
RDF metadata by taking advantage of rules defined by defeasible logic (strict rules,
defeasible rules and defeaters). It also claims for reasoning efficiency compared to
other systems based on logic programming.

Jess (Jess, 2008) is a Java framework for editing and applying rules, since it contains
a scripting environment and a rule engine, as well. It supports a CLIPS-like language
suitable for developing applications based on declarative rules (a.k.a. expert systems).
Jess also uses an optimized version of Rete algorithm (Forgy, 1982) tailored for Java,
comprising a very efficient rule engine. Recently, the evolution of rule technologies
on the Web has led Jess to rebound its practical value in the community of Web
developers. Moreover, the fact that Jess is a Java-based system facilitates its
integration with a number of Web programming paradigms like Java servlets or
applets. Finally, it supports backward-chaining and some additional features like
procedural attachments.

Table 2 presents the types of inference support provided by the aforementioned
reasoning modules. In (Cardoso, 2007), an analysis of the current trends and the
adoption of available reasoning engines by the Semantic Web community are
presented in detail.

Table 2: Types of inference support by various reasoning engines
 Inference
 Support

 Modules

TBox
Reasoning

Abox
Reasoning

Rules
Reasoning

Jena2

Limited

(incomplete
RDFS/OWL
reasoning)

Limited
(incomplete
RDFS/OWL
reasoning)

JenaRules
(forward/tabled

backward chaining)

RacerPro √ √

nRQL rules,

first implementation
of SWRL

(forward chaining)

Pellet √ √

DL-safe rules

(SWRL subset)

Bossam

sound,

incomplete

sound,
incomplete

SWRL, Buchingae
(forward chaining)

FACT++ √

sound,

incomplete

-

KAON2

√

(except
nominals)

√

(except
nominals)

DL-safe rules
(SWRL subset)

dlvhex

Limited,
through

interface with
external
reasoner

Limited,
through

interface with
external
reasoner

DL-Rules
(non-monotonic

logic program rules
with queries to DL

KB)

DR-DEVICE

- - Defeasible rules

Jess Limited* Limited*

SWRL*, Jess rules
(forward/backward

chaining)

* through appropriate transformations (Mei, Bontas & Lin, 2005; O’Connor et al., 2005)

4 EVALUATION OF EXISTING APPROACHES

In this section, a comparative study across the aforementioned methodologies for
introducing rules in Web applications is presented. Firstly, we give some fundamental
requirements that have to be satisfied by such formalisms. Afterwards, we compare
various aspects from the perspectives of classical logic and logic programming, giving
indicative examples. Finally, some experimental results that examine the efficiency of
current efforts in the combination of ontologies with rules are presented.

4.1 Rule-based Web Applications are Still “Web Applications”

Before evaluating the existing approaches to introducing rules in Web applications,
we should identify the main requirements for such approaches. These requirements
mainly stem from the nature of the Web itself and its current status. Firstly, WWW is
a ubiquitous and massive multi-user distributed environment. In fact, this massive
characteristic is its strong point, and is a direct consequence of its architectural and
technological simplicity. Web technologies such as HTTP, HTML and XML are very
simple to learn and use, even for plain users who are not IT experts. Such simplicity
should be taken as granted for any Web-related technology, and this applies to rule

systems as well. In this context, rules for the Web should be written and used even by
users/developers not familiar with advanced knowledge engineering concepts. For
example, negation is a rather advanced topic in logic-based systems (with Horn rules).
Hence, the semantics of rules should be such that can be easily understood by naïve
users. However, this would affect their expressiveness and would limit the inference
power of rule-based systems that may be required by more demanding applications
(i.e., Web service discovery engines). It is worthy to mention that most of the existing
rule-based applications for the Web have adopted SWRL approach (see Section 3.1)
in order to express rules. SWRL is neither a highly expressive language (e.g., no
negation is available) nor a decidable one, but it remains simple.
Another requirement is that the rule-based systems for the Web are compatible with
existing (Semantic) Web standards, such as XML, RDF, OWL and SAWSDL (Farrell
& Lausen, 2007). This means that direct support for URIs or XML syntax should be
available. On the other hand, writing rules in XML (e.g., like the SWRL and RuleML
approaches propose) is a cumbersome task. This is indeed a difficult decision that has
to be taken by the Web architects.
Furthermore, the addition of rules in Web applications requires their compatibility
with existing forms of Web knowledge that have already attained a certain maturity
level. Most of the knowledge bases developed in the context of Web are expressed in
the form of ontologies (mainly written in OWL or RDFS). As a result, rules have to
be integrated with ontologies properly.

4.2 Qualitative Comparison of Classical Logic and Logic Programming
approaches

The aforementioned knowledge representation methodologies (see Section 3.1) are
either based on classical logic (e.g., DLs and SWRL) or logic programming (e.g.,
answer-set programming and defeasible rules). Across the literature, several
differences between classical logic and logic programming paradigms have already
been identified. In this section, we intend to survey and discuss these efforts by
presenting the main incompatibilities that impede the reconciliation of the two
approaches.

Monotonicity vs. Non-monotonicity
Classical logic is based on standard model theoretic semantics and adheres to
monotonicity of entailment. Informally, monotonicity means that the addition of new
information to the knowledge base cannot invalidate conclusions inferred by current
knowledge. As a result, classical logic is able to deal with incomplete information by
nature.
Instead of classical logic, logic programming has non-monotonic features. It assumes
complete knowledge and there is a unique model describing the state of the world.
This way, addition of knowledge may reduce the inferences.

Unique Name Assumption
Another difference between the two paradigms is that logic programming approaches
typically deploy the Unique Name Assumption (UNA). This assumption supposes that
different names represent different objects of the world. This fact imposes severe
limitations on the Web context, since several distinct URIs4 may refer to the same
content or data. On the contrary, in classical logic there is no one-to-one
correspondence between the names and the objects of the domain. Hence, equality

between individuals represented by different names can be derived. Although it
imposes a huge computational cost, most of the current description logic reasoners
support reasoning with equality.

Negation
Classical logic and logic programming face the aspect of negation from different
perspectives. With respect to its monotonic nature, negation in classical logic allows
inferring new information only if the truth or the falsehood of a statement is explicitly
declared. This fact is related with the Open World Assumption (OWA) of classical
logic theory where incompleteness of the knowledge base is considered.
On the other hand, Negation-As-Failure (NAF) adheres to the Closed World
Assumption (CWA). Specifically, if a description is not known to be true, then the
truth of the negated description is drawn. In that sense, absence of knowledge draws
to negated knowledge and, thus, NAF has a non-monotonic behavior. Modeling the
world according to CWA seems to be somewhat inappropriate for the Semantic Web.
Since knowledge on the Web is not always available (e.g., web servers breakdowns),
such an assumption could lead to incorrect inferences. However, the usefulness of
different types of negation in rule-based Web applications is demonstrated in
(Wagner, 2003; Alferes, Damasio, & Pereira, 2003).

Constraints and Restrictions
Another aspect where the classical paradigm differs from logic programming is on the
treatment of constraints and restrictions. Regardless of the apparent similarity
between constraints and restrictions, there are important differences between them.
Restrictions are used in the classical logic paradigm and they constitute part of the
logical theory. By adding restrictions to a knowledge base, the knowledge statements
are also increased and, thus, the inference of additional knowledge is permitted.
Restrictions may be further classified to the following main categories:

• Value restrictions or range restrictions. They are used to restrict the values of
a property and possibly infer new information according to their type (a.k.a.
range).

• Cardinality restrictions. They are used for restricting the number of values
that an individual may have for a specific property. They can possibly infer the
existence of new instances or equality between known individuals.

In terms of Description Logics, an example of cardinality restriction in the web
service paradigm could be the following:

Profile ⊑ ≥ 1 hasInput (6)
Such rule denotes that every service profile should have at least one input.

On the other hand, constraints (also called integrity constraints) are mainly used in
deductive databases and logic programming in order to check if the knowledge base is
consistent with a number of specified conditions. As a result, constraints cannot draw
inference of new information, but they may lead to inconsistencies in the case that
some conditions specified by them are violated inside the knowledge base. Usually,
constraints are rules without head (i.e., they have a “false” value in their head),
denoting that the conditions stated in the body should not be satisfied concurrently by
the knowledge base.
Similarly to restrictions, constraints may be divided to:

• Value constraints or range constraints. Their importance consists in checking
the type of a property value.

• Cardinality constraints. They are used for checking the number of values that
an individual may have for a specific property.

Similarly to (6), a cardinality constraint could be written in logic programming as:

← Profile(s) ∧ ¬hasInput(s,i) (7)

More details about integrity constraints and restrictions may be found in (de Bruijn,
Polleres, Lara, & Fensel, 2005), where an alternative ontology language based on the
logic programming subset of OWL is presented.

Other differences
A number of additional differences between the described approaches have also been
discussed in the literature. (Eiter et al., 2006a) raises the point of non-ground
entailment in the logic programming approach, declaring that, since the semantics of
logic programming is defined in terms of sets of ground facts, the inference of non-
factual knowledge is not allowed. Contrary to the logic programming, classical logic
permits the entailment of non-factual knowledge. Furthermore, decidability issues are
explored in the combination of the two perspectives. In addition, (Pattel-Schneider,
2006) describes the treatment of datatypes by classical logic approaches (e.g., DLs)
and logic programming. Moreover, it examines the role of tools that support each
methodology and how they can facilitate the modeling of knowledge.

The aforementioned modeling paradigms have been proposed for formalizing rules on
the Web. Concerning the advantages and the disadvantages of each approach, we
believe that both perspectives are useful in the context of Semantic Web.
The open nature of the classical logic seems to be more suitable for formalizing such
a distributed environment. By this mean, Semantic Web technologies based on
classical logic accomplish the integration of information stemming from different
sources. Knowledge becomes shareable in the sense that it can be accessed without
any obligation to adopt a specific model or schema. Hence, data are available to
everyone through WWW so as to be retrieved and used in applications appropriately.
On the other hand, logic programming makes several assumptions in order to simplify
tasks like reasoning or modeling of the knowledge base. There are several useful
features of logic programming like high expressiveness, negation-as-failure and
decidability of reasoning. Moreover, many of the reasoning engines targeting at
managing knowledge expressed in classical logic formalisms have been recently
extended to support such features (e.g., Pellet, RacerPro, Bossam). Additionally, both
users and developers are very familiar with the world of databases and logic
programming languages like Prolog. It is worthy to mention that even SPARQL
engines return “no” in ASK query patterns with no solutions. However, “don’t know”
would fit better in an open environment where multiple solutions may exist outside
the current knowledge base. This way, SPARQL takes advantage of the users’
familiarity with common databases, deciding not to complicate the query answering
process.
To summarize, last decade has shown to the developers of Web applications that
different types of Semantic Web enabled applications requires different styles of
modeling. As a result, the development of a framework that satisfy most of these
needs seems to become unavoidable.

4.3 Quantitative Evaluation of Reasoning Modules

This section intends to quantify the total time required by popular reasoning modules
in order to perform common reasoning tasks. Instead of (Pan, 2005; Gardiner,
Horrocks, & Tsarkov, 2006), where the evaluation of description logic reasoners
focuses on TBox reasoning tasks, here we examine both TBox and ABox reasoning as
well as rules application. In particular, Figures 3 to 6 show the results of some
indicative performance tests. These tests aim at demonstrating the efficiency of
description logic reasoners and mainstream rule engines.
This quantitative evaluation involved the last stable versions of RacerPro (v1.9.0),
Pellet (v1.5.1) and FACT++ (v1.1.11) description logic reasoners that were available
for ontology reasoning as well as the Jess rule engine for SWRL rules application.
Bossam was also tested as both ontology reasoner and rule engine in this evaluation.
However, Bossam’s results are not displayed in the figures, since such a comparison
would be improper. This stems from the fact that although Bossam constitutes a sound
reasoning module it is not a complete reasoner for OWL. However, we should
mention that Bossam performed well (i.e., it accomplished smaller execution times
than the other OWL reasoners) handling small-size ontologies, while it threw out-of-
memory errors when provided with large-scale ontologies (i.e., containing 500 and
1000 instances). Moreover, all reasoners were managed through Protégé OWL API in
Java except Bossam which provides its own API. Finally, Jess was accessed via
SWRL-Jess bridge (O’Connor et al., 2005).
The knowledge base used in these tests stems from the Web service description
paradigm and it consists of a domain ontology and OWL-S service descriptions. The
domain ontology, which represents the domain of football (i.e., player/team details
and statistics), includes concepts described through necessary and sufficient
conditions. The elements of this ontology are used for the annotation of some
Semantic Web services that provide search functionality to some underlying football
statistics databases. Specifically, the service inputs and outputs are annotated through
concepts of this domain ontology. The extract of the domain ontology used contains
37 concepts, 8 object properties and 3 datatype properties. Each service description
involves 19 concept instances and 11 property instances.

Figure 3 depicts the performance of three description logic reasoners while checking
the consistency of all classes over the aforementioned knowledge base. The execution
times presented in this figure do not involve the time needed to load the models. The
figure shows that these times increase as the number of instances contained in the
knowledge base also increases. FACT++ and Pellet attained the best performance by
achieving similar execution times. On the other hand, RacerPro performed worse than
the others.

Figure 3: Evaluation of consistency check (TBox)

In Figure 4, the times required for classifying the hierarchy of the ontology are
presented. Again, the times shown in the figure do not include the loading time of
each model. The resulting performances are very similar to those of the consistency
checking process. FACT++ has slightly better performance than Pellet, while
RacerPro has the worst performance again.

Figure 4: Evaluation of classification (TBox)

Figure 5 shows the efficiency of RacerPro and Pellet reasoners in realizing reasoning
over ABoxes. In this figure we do not display FACT++, since it provides incomplete
ABox reasoning. In particular, the experiment concerns the identification of the types
(i.e., classes) that each individual belongs to. The figure shows that even the
reasoning over an ontology containing 100 instances using Pellet (which seems to be
the most efficient reasoner in this reasoning task) requires about 20 seconds.
Moreover, both reasoners failed to compute inferred individual types for ontologies
containing 500 and 1000 individuals.

Figure 5: ABox reasoning evaluation (computation of inferred individual types)

It is worthy to mention that version 1.9.2 Beta of RacerPro was also available during
the experiments. This version seemed to remain slower than FACT++ and Pellet in
TBox reasoning tasks (consistency check and classification of hierarchy) while it
performed better in ABox reasoning. However, the results are not displayed in the
figures above, since this is not a stable version of the reasoner.

Figure 6 shows the time required by Jess rule engine to apply SWRL rules over
ontologies containing various numbers of instances. These rules represent service
composition constraints that should apply to the inputs and outputs of the services.
We applied two different sets of rules to the previously described knowledge bases:
the first set consisted of 10 rules while the second of 50 rules. In both cases, the
execution time increases proportionally to the number of instances contained in the
ontology. As expected, the delay imposed by the execution of rules was affected by
the number of rules. However, the number of instances seems to affect execution
times more than the number of rules. Hence, the inference process is complicated
when real-time demands come up in distributed environments where applications
have to support multiple individual instances.

Figure 6: Jess performance executing SWRL rules

To summarize, the time required to handle a large KB and execute reasoning in terms
of Semantic Web technologies like DLs constitutes a limiting factor, even for the
most efficient reasoners. This is a fundamental problem on the Web, since
applications have to deal with a large number of instances representing data.
Especially, when considering real time applications that call for small response times,
the aforementioned results become unmanageable. This is the main reason why many
researchers have recently focused on developing efficient and scalable reasoning
applications over large individual sets. Instance Store (Horrocks, Li, Turi, &
Bechhofer, 2004a) is such an approach that permits working in conjunction with any
ontology reasoner that implements the DIG interface.

5 FUTURE TRENDS AND OPEN ISSUES

Several open issues that deserve further research efforts in the future have been
identified throughout the chapter. Firstly, a Web standard for editing and embedding
rules into Web applications should be specified. In our opinion, such a language
should focus on its simplicity, instead of providing major expressiveness capabilities
that will lead to a clumsy formalism. Rule Interchange Format (RIF) Working Group
(RIF, 2008) works in this direction in order to produce W3C recommendations for
enabling interchange of rules. Specifically, RIF does not intend to provide explicit
mappings between various rule languages, but specify a mechanism capable of
defining the meaning of the formulas of a rule language. This way, rules could be
automatically translated across different formalisms.
Additionally, more tractable algorithms for Web-rules, TBox and ABox inference
problems should be developed. These algorithms should be able to handle complex
and heavy knowledge bases that combine rules and ontologies with a large number of
concepts and relationships. Such knowledge bases are substantial, especially in the
context of information integration where multiple domain vocabularies interact with
upper-level ontologies. Furthermore, the Web is a large scale environment, where a
huge set of resources are added every day. As a result, future knowledge bases will

have to capture and describe more and more individuals. These facts should be taken
into account by the developers that will target at designing new reasoning algorithms.
Finally, a more practical issue that should be investigated is the development of a
unified reasoning framework capable of managing both ontologies and rules. Today,
there is no efficient and easy-to-use integrated reasoning module that can reason over
both formalisms. As a consequence, the developer should use at least two different
reasoning modules to handle such an integrated knowledge base. This can result to
unexpected situations. For example, the restrictions defined by the ontology can be
violated by the application of rules, since the rule engines do not take into account
these restrictions (e.g., disjointness of concepts). Similarly, the application of rules
could produce knowledge that would be useful for further description logic
inferences.

6 CONCLUSIONS

In this chapter we have discussed the application of rules to Web applications in order
to achieve intelligent application behavior and efficient management of knowledge.
We have described the main methodologies and technologies for integrating rules
with ontologies, since the latter constitutes a mature knowledge technology on the
Web. The chapter has also examined aspects of the different approaches. We also
showed through several experiments that current reasoning modules are not efficient
enough to manage knowledge stemming from large-scale environments like the Web,
especially in the context of real-time applications which impose severe constraints in
response times. Finally, more improvements should be made in the standardization of
rules formalism on the Web and in the development of reasoning modules that can
handle and reason over both ontologies and rules as integral knowledge.

7 REFERENCES

Alferes, J., Damasio, C., & Pereira, L. (2003). Semantic Web Logic Programming Tools.

LNCS 2901, (pp. 16-32). Springer- Verlag.
Antoniou, G., Billington, D., Governatori G., & Maher, M., J. (2001). Representation Results

for Defeasible Logic. ACM Transactions on Computational Logic 2(2), 255–287.
Antoniou, G., Damasio, C., V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J., & Patel

Schneider, P., F. (2005). Combining Rules and Ontologies : A Survey. Deliverables I3-D3,
REWERSE, http://rewerse.net/deliverables/m12/i3-d3.pdf.

Antoniou, G., & van Harmelen, F. (2004). A Semantic Web Primer. MIT Press.
Baader, F., Calvanese, D., McGuiness, D., Nardi, D., & Patel-Schneider, P. (2003). The

Description Logic Handbook: Theory, Implementation, and Applications. Cambridge:
Cambridge University Press.

Bassiliades, N., Antoniou, G., Vlahavas, I. (2006). A defeasible logic reasoner for the
semantic web, International Journal on Semantic Web and Information Systems 2 (1), 1–4.

Bechhofer, S., Moller, R., & Crowther, P. (2003). The DIG Description Logic Interface. In D.
Calvanese, G. de Giacomo, and F. Franconi, editors, Proc. of the 2003 Int. Workshop on
Description Logics (DL 2003), volume 81 of CEUR Workshop Proceedings, Rome, Italy,
September 5–7 2003.

Boley, H., Kifer, M., Patranjan, P., L., & Polleres, A. (2007). Rule Interchange on the Web. In
Reasoning Web 2007, number 4636, (pp. 269-309). Springer, September 2007.

http://rewerse.net/deliverables/m12/i3-d3.pdf

Brickley, D., & Guha, R.V. (2004). RDF vocabulary description language 1.0: RDF schema.
Recommendation 10 February 2004, W3C. Retrieved April 22, 2008, from
http://www.w3.org/TR/rdf-schema/.

de Bruijn, J., Lausen, H., Krummenacher, R., Polleres, A., Predoiu, L., Kifer, M., & Fensel,
D. (2005). The Web Service Modeling Language WSML. Technical report, WSML.
WSML Final Draft D16.1v0.21. http://www.wsmo.org/TR/d16/d16.1/v0.21/.

de Bruijn, J., Polleres, A., Lara, R., & Fensel, D. (2005). OWL DL vs. OWL Flight:
Conceptual Modeling and Reasoning on the Semantic Web. In Proc. WWW2005, (pp. 623–
632), Chiba, Japan, May 10–14 2005.

Cardoso, J. (2007). The semantic web vision: Where are we? Intelligent Systems, 22(5):84–
88.

CLIPS: A tool for building expert systems. (2008). Retrieved April 22, 2008, from
http://clipsrules.sourceforge.net/.

Dean, M., Schreiber, G., Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I.,
McGuinness, D., L., Patel-Schneider, P., F., & Stein, L., A. (2004). OWL Web Ontology
Language Reference. W3C Recommendation 10 February 2004. Retrieved April 22, 2008,
from http://www.w3.org/TR/owl-ref/.

Donini, M. F., Lenzerini, M., Nardi, D., & Schaerf, A. (1998). AL-log: Integrating Datalog
and Description Logics. Journal of Intelligent Information Systems, 10(3), 1998, pp. 227-
252.

Drools (2008). Retrieved April 22, 2008, from http://www.jboss.org/drools/.
Eiter, T., Ianni, G., B., Polleres, A., Schindlauer, R., & Tompits, H. (2006a). Reasoning with

rules and ontologies. In Pedro Barahona, FranΈcois Bry, Enrico Franconi, Ulrike Sattler,
and Nicola Henze, editors, Reasoning Web, Second International Summer School 2005,
Tutorial Lectures, Lecture Notes in Computer Science. (pp. 93–127). Springer.

Eiter, T., Ianni, G., B., Schindlauer, R., & Tompits, H. (2006b). dlvhex: A System for
Integrating Multiple Semantics in an Answer-Set Programming Framework. In M. Fink, H.
Tompits, and S. Woltran, editors, Proceedings 20th Workshop on Logic Programming and
Constraint Systems (WLP 06), (pp. 206-210).

Eiter, T., Ianni, G., B., Schindlauer, R., & Tompits, H. (2005). A Uniform Integration of
Higher-Order Reasoning and External Evaluations in Answer Set Programming. In Proc.
IJCAI 2005, Morgan Kaufmann.

Eiter, T., Lukasiewicz, T., Schindlauer, R., & Tompits, H. (2004). Combining answer set
programming with description logics for the semantic web. In Proc. of the International
Conference of Knowledge Representation and Reasoning (KR04).

Farrell, J., & Lausen, H. (2007). Semantic Annotations for WSDL and XML Schema. W3C
Recommendation, W3C, August 2007. Retrieved April 22, 2008, from
http://www.w3.org/TR/sawsdl/.

Forgy, C. (1982). Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match
Problem, Artificial Intelligence, 19, 17-37.

Gardiner, T., Horrocks, I., & Tsarkov, D. (2006). Automated benchmarking of description
logic reasoners. In Proc. of DL.

Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3_4), 365-386.

Grosof, B. N., Horrocks, I., Volz, R., & Decker, S. (2003). Description logic programs:
Combining logic programs with description logic. In Proc. of the Twelfth International
World Wide Web Conference (WWW 2003), (pp. 48-57). ACM.

Haarslev, V., & Moller, R. (2001). RACER system description. In R. Gor´e, A. Leitsch, and
T. Nipkow, editors, International Joint Conference on Automated Reasoning, IJCAR’2001,
June 18-23, Siena, Italy, (pp. 701–705). Springer-Verlag.

Horrocks, I. (1998), Using an expressive Description Logic: FaCT or fiction? in: Proceedings
of the Sixth International Conference on Principles of Knowledge Representation and
Reasoning (KR’98), Trento, Italy, June 2–5, 1998, (pp. 636–647).

http://www.w3.org/TR/rdf-schema/
http://www.wsmo.org/TR/d16/d16.1/v0.21/
http://clipsrules.sourceforge.net/
http://www.w3.org/TR/owl-ref/
http://www.jboss.org/drools/
http://www.w3.org/TR/sawsdl/

Horrocks, I., Li, L., Turi, D. & Bechhofer, S. (2004a). The instance store: DL reasoning with
large numbers of individuals. In Proc. of the 2004 Description Logic Workshop (DL~2004),
(pp. 31-40).

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., & Dean, M. (2004b).
SWRL: A Semantic Web Rule Language Combining OWL and RuleML, W3C Member
Submission, 21 May 2004. Retrieved April 22, 2008, from
http://www.w3.org/Submission/SWRL/.

Horrocks, I., Parsia, B., Patel-Schneider, P., F., & Hendler, J. (2005). Semantic web
architecture: Stack or two towers? In Proc. PPSWR 2005, (pp. 37–41), Dagstuhl Castle,
Germany, September 11–16 2005.

Hustadt, U., Motik, B., & Sattler, U. (2004). Reducing SHIQ- Descrption Logic to Disjunctive
Datalog Programs. Proc. of the 9th International Conference on Knowledge Representation
and Reasoning (KR2004), June 2004, (pp. 152-162).

ILOG, Business Rule Management Systems, Optimization Tools and Engines, Visualization
Software Components, Supply Chain Applications (2008). Retrieved April 22, 2008, from
http://www.ilog.com/.

Jang, M., & Sohn, J-C. (2004). Bossam: An Extended Rule Engine for OWL Inferencing.
Hiroshima, Japan: In Workshop on Rules and Rule Markup Languages for the Semantic
Web at the 3rd International Semantic Web Conference (LNCS 3323), (pp. 128-138).
Hirosima, Japan: Springer-Verlag.

Jess, The Rule Engine For the Java Platform (2008). Retrieved April 22, 2008, from
http://www.jessrules.com/jess/index.shtml

KAON – The KArlsruhe ONtology and Semantic Web tool suite (2008). Retrieved April 22,
2008, from http://kaon.semanticweb.org.

KAON2 – Ontology Management for the Semantic Web (2008). Retrieved April 22, 2008,
from http://kaon2.semanticweb.org.

Kifer, M., de Bruijn, J., Boley, H., & Fensel, D. (2005). A Realistic Architecture for the
Semantic Web. In Proc. RuleML 2005, (pp. 17–29), Galway, Ireland.

Klyne, G., & Carroll, J.J. (2004). Resource description framework (RDF): Concepts and
abstract syntax. Recommendation 10 February 2004, W3C. Retrieved April 22, 2008, from
http://www.w3.org/TR/rdf-concepts/.

McBride, B. (2002). Jena: A Semantic Web Toolkit, IEEE Internet Computing, 6(6):55-59.
Mei, J, Bontas, E.P., & Lin, Z. (2005). OWL2Jess: A Transformational Implementation of the

OWL Semantics. In Proceedings of International Workshops on ISPA, LNCS 3759, pages
599–608, 2005.

Motik, B., Sattler, U., & Studer, R. (2005). Query answering for owl-dl with rules. Journal of
Web Semantics: Science, Services and Agents on the World Wide Web 3, 41–60.

Motik, B., Horrocks, I., Rosati, R., & Sattler, U. (2006). Can OWL and logic programming
live together happily ever after? In Proceedings ISWC-2006. LNCS, vol. 4273, (pp. 501–
514). Springer.

Nute, D. (1994). Defeasible logic, in: Handbook of Logic in Artificial Intelligence and Logic
Programming, Nonmonotonic Reasoning and Uncertain Reasoning, vol. 3, Oxford
University Press.

O’Connor, M., Knublauch, H., Samson, T., & Musen, M. (2005). Writing Rules for the
Semantic Web Using SWRL and Jess. Protégé With Rules WS, Madrid.

Pan, J. Z., & Horrocks, I. (2004). OWL-E: Extending owl with expressive datatype
expressions. Technical report, IMG/2004/KR-SW-01/v1.0, Victoria University of
Manchester.

Pan, J. (2005). Benchmarking DL reasoners using realistic ontologies. In Proc. of the OWL:
Experiences and Directions Workshop.

Parsia, B., Sirin, E., & Kalyanpur, A. (2005) Debugging OWL Ontologies, in: Proceedings of
the 14th International World Wide Web Conference (WWW2005), Chiba, Japan, May
2005, URL: http://www.mindswap.org/papers/debuggingOWL.pdf.

Patel-Schneider, P. F., & Horrocks, I. (2006). Position paper: a comparison of two modelling
paradigms in the Semantic Web. In Proceedings of the 15th International Conference on

http://www.w3.org/Submission/SWRL/
http://www.ilog.com/
http://www.jessrules.com/jess/index.shtml
http://kaon.semanticweb.org
http://kaon2.semanticweb.org
http://www.w3.org/TR/rdf-concepts/
http://www.mindswap.org/papers/debuggingOWL.pdf

World Wide Web (Edinburgh, Scotland, May 23 - 26, 2006). WWW '06, New York, NY,
(pp. 3-12). ACM Press.

Polleres, A., & Schindlauer, R. (2007). DLVHEX-SPARQL: A SPARQL Compliant Query
Engine Based on DLVHEX. Proceedings of 2nd International Workshop on Applications of
Logic Programming to the Web, Semantic Web and Semantic Web Services
(ALPSWS2007), Porto, Portugal (13th September 2007).

Prud’hommeaux, E., & Seaborne, A. (2005). SPARQL Query Language for RDF.
http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050217/, 2005.

RacerPro (2008). Retrieved April 22, 2008, from http://www.racer-
systems.com/products/racerpro/index.phtml.

Rainer. A. (2005). Web Service Composition under Answer Set Programming. KI-Workshop
"Planen, Scheduling und Konfigurieren, Entwerfenl" (PuK).

RIF - Rule Interchange Format Working Group (2008). Retrieved April 22, 2008, from
http://www.w3.org/2005/rules/wiki/RIF_Working_Group

Rosati, R. (2006a). DL+log: Tight Integration of Description Logics and Disjunctive Datalog.
In Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors, Proceedings of the
10th International Conference on Principles of Knowledge Representation and Reasoning
(KR 2006), Lake District, UK (pp. 68-78). AAAI Press.

Rosati, R. (2006b). Integrating Ontologies and Rules: Semantic and Computational Issues. In
Pedro Barahona, François Bry, Enrico Franconi, Nicola Henze, and Ulrike Sattler, editors,
Reasoning Web, Second International Summer School 2006, Lissabon, Portugal, September
4_8, 2006, Tutorial Lectures, volume 4126 of Lecture Notes in Computer Science (LNCS),
(pp. 128-151). Springer.

Rosati, R. (2006c). DL+log: Tight Integration of Description Logics and Disjunctive Datalog.
In Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning (KR 2006), pages 68–78. AAAI Press, 2006.

RuleML, Rule Markup Initiative (2008). Retrieved April 22, 2008, from
http://www.ruleml.org/.

Sirin, E., Parsia, B., Grau, B., C., Kalyanpur A., & Katz, Y. (2007). Pellet: A practical OWL-
DL reasoner, Journal of Web Semantics, 5(2).

Tsarkov, D., & Horrocks, I. (2006). FaCT++ Description Logic Reasoner: System
Description. In Proc. of the International Joint Conference on Automated Reasoning
(IJCAR 2006).

W3C Semantic Web Activity (2008). Retrieved April 22, 2008, from
http://www.w3.org/2001/sw/.

Wagner, G. (2003). Web Rules Need Two Kinds of Negation. LNCS, Vol. 2901., Berlin
Heidelberg New York (pp. 33-50). Springer- Verlag.

Endnotes

1 also called as Datalog view in the literature
2 http://con.fusion.at/dlvhex/
3 it offers free trials while educational and research licenses are available
4 Universal Resource Identifiers

http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050217/
http://www.racer
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://www.ruleml.org/
http://www.w3.org/2001/sw/
http://con.fusion.at/dlvhex/

