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ABSTRACT 
Embedding rules into Web applications, and distributed applications in general, seems 
to constitute a significant task in order to accommodate desired expressivity features 
in such environments. Various methodologies and reasoning modules have been 
proposed to manage rules and knowledge on the Web. The main objective of the 
chapter is to survey related work in this area and discuss relevant theories, 
methodologies and tools that can be used to develop rule-based applications for the 
Web. The chapter deals with both ways that have been formally defined for modeling 
a domain of interest: the first based on standard logics while the second one stemmed 
from the logic programming perspective. Furthermore, a comparative study that 
evaluates the reasoning engines and the various knowledge representation 
methodologies, focusing on rules, is presented. 
 
 
1 INTRODUCTION AND MOTIVATION 
 
Nowadays, with the evolution of traditional web of documents to a more complex 
web of services, an increasing demand for embedding intelligence to Web 
applications arises. In this context, the efficient management of knowledge seems to 
play a key role in order to achieve smart behavior of Web applications and to 
overcome several issues of such environment (e.g., information integration). 
Ontologies, mainly written with Semantic Web technologies, constitute a well-
established paradigm for representing knowledge on the Web. Though, current efforts 
are focused on extending ontologies with more expressive forms of knowledge like 
rules. In fact, given the state-of-the-art in the realization of the Semantic Web vision, 
rules constitute the next prominent challenge. Since the ontology layer of the 
Semantic Web architecture stack has reached a sufficient degree of maturity through 
Web Ontology Language (OWL) (Dean et al., 2004), the next step of progress 
involves the integration of rules with ontologies, most of them based on subsets of 
First Order Logic (FOL). 
Rules are capable of extending the expressiveness provided by ontology languages 
through the definition of more complex relationships between individuals. 
Additionally, as a modular form of knowledge, they fit well in domains like 
personalization, policies and business-to-business (B2B) interaction. However, it has 
been shown that extending ontologies even with simple forms of rules can lead to 
undecidability of key inference problems. 
On the other hand, many business-logic applications have extensively taken 
advantage of existing rule management systems or solvers (Jess, 2008; ILOG, 2008; 
Drools, 2008), aiming at facilitating the knowledge management process. As a result, 
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the success of rules in non-Web applications moved Web researchers to use 
traditional rule engines on the Web. 
However, the aforementioned stable rule systems have not been originally created for 
open and heterogeneous environments like the Web. Such platforms have adopted 
different knowledge representation formalisms, mainly based on principles of logic 
programming, instead of classical logic. As a consequence, they differ from recent 
Semantic Web technologies in many aspects, including representational features and 
reasoning functionality, as well. Hence, building a rule-based application for the Web 
with existing rule technologies is not a straightforward task. 
In the rest of this chapter, we provide foundational knowledge on this topic together 
with implementation issues, techniques and design patterns. Section 2 briefly 
describes how the things have gone so far in the area of Web knowledge formalisms. 
In Section 3, various knowledge representation methodologies and tools are 
discussed. Specifically, Section 3.1 demonstrates the different languages and 
formalisms, derived from both classical logic and logic programming view, while 
Section 3.2 focuses on various engines able to reason over such knowledge bases. 
Section 4.1 gives the main requirements for rule-based web applications. The 
evaluation presented includes both a qualitative comparison (Section 4.2) of the 
existing approaches and a performance analysis (Section 4.3) of current ontology 
reasoners and rule engines. Finally, several future trends and open issues are 
identified in Section 5. Hence, this chapter aims at becoming a helpful guide for 
applying rules to Web applications. 
 
 
2 THE STORY SO FAR 
 
The knowledge representation languages proposed (see Section 3.1) for representing 
knowledge on the Web are based either on the Classical Logic (CL) perspective or on 
Logic Programming1 (LP). As a result, a debate was started between the Database 
community and AI researchers, respectively, in order to determine the more suitable 
of the two approaches in the formalization of Web knowledge. Additionally, different 
languages of the same perspective, providing various degrees of expressivity, have 
been proposed. Hence, the integration of knowledge with Web applications was more 
complicated. Recently, with the evolution of Semantic Web technologies, these 
modeling paradigms have been extensively discussed by researchers (Motik, 
Horrocks, Rosati, & Sattler, 2006; Patel-Schneider & Horrocks, 2006; Eiter, Ianni, 
Polleres, Schindlauer, & Tompits, 2006a; Donini, Lenzerini, Nardi, & Schaerf, 1998; 
Antoniou, et al., 2005; Boley, Kifer, Patranjan, & Polleres, 2007). 
Clearly, this confrontation also affected rules. Although, significant efforts have been 
devoted in order to develop appropriate rule languages for the Web (see Section 3.1), 
a debate between proponents of the different perspectives has appeared. The main 
argument involves the degree that rules would be combined with ontologies. Initially, 
as formulated by Tim Berners-Lee, it had been commonly accepted that Semantic 
Web should be structured in a hierarchy of layers that seamlessly interoperate 
(Antoniou & van Harmelen, 2004). However, some proposals (mainly stemmed from 
the database community) preferred to keep the rules and the ontology layer separated, 
in order to preserve expressiveness and decidability of reasoning process, as 
mentioned in (Eiter et al., 2006a). Specifically, in (Kifer, de Bruijn, Boley, & Fensel, 
2005) the authors argue that the rules layer of Semantic Web architecture should be 
placed next to the ontology layer of the Semantic Web stack in order to take 



advantage of important rule languages based on logic programming. However, in 
(Horrocks, Parsia, Patel-Schneider, & Hendler, 2005) the authors criticize the 
aforementioned approach and denote that such a distinction would lead to two 
Semantic Webs based on different semantics. These discussions along with the 
Semantic Web Activity workgroup have led to several modifications of the stack. 
Figure 1 presents the initial and the current form of the Semantic Web stack diagram 
specified by the W3C Semantic Web Activity Group (W3C Semantic Web Activity, 
2008). 
 

a) b)

 
Figure 1. a) Tim Berners-Lee Semantic Web layer “cake” and b) the latest form of 

Semantic Web stack diagram (W3C Semantic Web Activity, 2008) 
 

The aforementioned facts gave rise to confusion inside the Web community. If the 
experts (i.e., the logicians stemming from both AI and databases) could not decide 
and recommend a unified framework for formalizing knowledge, how Web 
developers and users should choose the best language according to their needs? The 
current solutions are either to study the capabilities provided by all these languages 
(i.e., available expressiveness, support by existing reasoning engines, tractability etc.) 
or to exclude knowledge from their applications. 
 
 
3 KNOWLEDGE REPRESENTATION METHODOLOGIES AND TOOLS 
 
This section surveys different knowledge representation methodologies along with 
reasoning modules that have been proposed for managing knowledge on the Web. 
After an overview of Description Logics that comprise the main formalism for 
representing ontological knowledge in Web applications, we focus on rules. 
 
3.1 Knowledge Representation Formalisms 
 
Description Logics 
Description Logics (DLs) (Baader, Calvanese, McGuiness, Nardi, & Patel-Schneider, 
2003) are subsets of first-order-logic, originating from semantic networks and frame-
based systems. They constitute a family of knowledge representation languages that 
aim at providing well-understood mechanisms in order to formalize knowledge that 
describes a domain. This way, DLs are equipped with formal, logic-based semantics, 
emphasizing on reasoning process. Typical reasoning tasks include consistency 
checking of the knowledge base, concept satisfiability, instance checking etc.  



A DL-based knowledge base is composed of two components: TBox and ABox. 
TBox contains the vocabulary of the application domain, called terminology, as well 
as axioms based on that vocabulary. Practically, such vocabulary consists of concepts 
and roles. Concepts are generic descriptions of sets of individuals, while roles 
constitute binary predicates for defining properties of the individuals. On the other 
hand, ABox includes assertions of individuals that may refer to either concepts or 
roles. For example, a statement declaring that a specific individual is instance of a 
concept resides in ABox, while a statement denoting that “every human is mortal” 
belongs to TBox.  Figure 2 shows the generic architecture of a DL knowledge 
representation system. 

DL Knowledge Base

TBox ABox

Man       Human  ⊓ hasGender.Male≡ ∃
Parent       Mother ⊔ Father≡

BILL: Man

JOHN  hasMarried MARY
MARY: Woman

INFERENCE SYSTEM

Human ⊑ Mortal

 
Figure 2: Architecture of a Description Logics knowledge-based system 

 
Each description logic language is determined by a set of constructs, enabling the use 
of atomic concepts and atomic roles in order to define complex ones. These constructs 
directly affect the expressive power of the language and, thus, the complexity of 
inference tasks. As a result, the selection of the appropriate description logic language 
in order to describe a specific domain includes the examination of the imposed 
requirements for representation expressiveness. 
DLs set up the base for the definition of Resource Description Framework (RDF) 
(Klyne & Caroll, 2004), RDF Schema (Brickley & Guha, 2004) and Web Ontology 
Language (OWL) (Dean et al., 2004) that constitute W3C standards for representing 
knowledge on the Web. Specifically, RDF is a simple data model for representing 
information on the Web. RDF statements are expressed in the form of (subject, 
predicate, object) triples. A set of such statements can be viewed as a graph where the 
subjects and the objects of these statements constitute the graph nodes while the 
predicates correspond to the graph edges. RDFS is an extension of RDF for 
expressing simple taxonomies through the definition of class/property hierarchies and 
domain/range of properties. OWL is totally based on DLs and it comes in three 
species: OWL-Lite, OWL-DL and OWL-Full. OWL-Full is the most expressive OWL 
species, since it takes advantage of all the OWL language primitives. OWL-DL limits 
OWL-Full to a subset of OWL primitives so as to achieve efficiency of reasoning. 
Finally, OWL-Lite is a sublanguage of OWL-DL by restricting more its 
expressiveness. 
 
Description Logic Programs 
The expressiveness of Description Logic Programs (DLP) approach (Grosof et al., 
2003) corresponds to a fragment of OWL defined by the expressive intersection of 



Description Logics and logic programming. This approach intends to define a 
mapping from DL to logic programming (specifically, Horn programs in which no 
function symbols, negation and disjunction are allowed) and vice versa. An instance 
of such a mapping in the case of conjunction follows: 

C1 ⊓ C2 ⊑ D          ≡          D(x) ← C1(x) ∧ C2(x) (1) 
 

However, for the sake of decidability, DLP offers limited expressiveness, since the 
aforementioned mapping covers only a few DL-constructs (in particular, conjunction, 
disjunction and quantification restrictions). For example, Description Logic Programs 
do not cover negation in class descriptions nor fully support cardinality restrictions. 
 
Semantic Web Rule Language 
Semantic Web Rule Language (SWRL) (Horrocks et al., 2004b) is probably the most 
popular formalism in Web community for expressing knowledge in the form of rules. 
Specifically, SWRL is based on a combination of Web Ontology Language (OWL) 
(Dean, 2004) and Rule Markup Language (RuleML) (RuleML, 2008) and has been 
proposed as a W3C candidate standard for formalizing the expression of rules in Web 
context. Contrary to DLP, SWRL extends OWL-DL with a specific form of Horn-like 
rules.  
The proposed rules are in the form of an implication between the body and the head of 
the rule. A typical SWRL rule can be of the following form: 

a1 ∧ a2 ∧ … ∧ an → b1 ∧ b2 ∧ … ∧ bm (2) 
where ai and bi are OWL atoms of the following forms: 

• Concepts, e.g., C(x), where C is an OWL description, in general, and x is 
either a variable, an OWL individual or a data value. 

• Object properties, e.g., P(x,y), where P is an OWL property and x, y are either 
variables, individuals or data values. 

• Datatype properties, e.g., P(x,y), where P is an OWL property, x is variable or 
individual, while y is a data value. 

• B(x1,x2,…), where B is a built-in relation and x1, x2, … are either variables, 
individuals or data values. 

• sameAs(x,y) or differentFrom(x,y) where x, y are either variables, individuals 
or data values. 

The main advantage of SWRL is the simplicity it offers, while extending the 
expressiveness of OWL. Another benefit of SWRL is its compatibility with OWL 
syntax and semantics, since they are both combined in the same logical language. On 
the other hand, extending OWL-DL with SWRL rules leads to undecidability of 
simple inference problems. A possible solution of this problem is presented in (Motik, 
Sattler, & Studer, 2005) which introduces the notion of DL-safe rules. Specifically, 
that approach restricts the application of SWRL rules only to individuals of the ABox 
part of the DL knowledge base. Moreover, SWRL does not support negation (neither 
classical nor negation as failure - NAF) and disjunctions. Finally, there is no efficient 
support of first-order provers to execute reasoning over SWRL. Usually, the SWRL 
rules are translated to existing rule systems (e.g., Jess (O’Connor, Knublauch, 
Samson, & Musen, 2005)) that handle the reasoning tasks partially, since they are not 
aimed to manage knowledge expressed in terms of first-order logic or subsets. 
In the case of a Web service composition paradigm, some SWRL example rules could 
be the following: 
 



profile:hasOutput(?S1,?out) ∧ profile:hasInput(?S2,?in) ∧ 
process:parameterType(?in, ?cin) ∧ process:parameterType(?out, 
?cout) ∧ (rdfs:subClassOf(?cout, ?cin) ∨ rdfs:subClassOf(?cin, 

?cout)) → composableWith(?S1, ?S2) 

(3) 

 
The abovementioned rule captures the knowledge that a web service S1 is composable 
with a service S2, if an input of S1 is either subclass or superclass of at least one 
output of S2. This rule uses specific namespaces of OWL-S ontology like “profile” 
and “process”. 
 
Answer Set Programming 
Answer Set Programming (ASP) (Gelfond & Lifschitz, 1991) is a paradigm for 
knowledge representation and declarative programming. It has several advantages 
compared to other logic programming paradigms (e.g., Prolog) such as:  

• Full declarativity: the order of rules in a program is not important. 
• ASP programs are in general decidable 
• Non-monotonic inference: both negation as failure (NAF) and strong negation 

are supported, thus enabling default reasoning and reasoning under the Closed 
World Assumption (CWA). 

• Availability of efficient solvers: there are several ASP solvers that are scalable 
enough to deal with large knowledge bases. 

 
A general ASP rule is of the following form: 

a1 ∨ a2 ∨ … ∨ an ← b1 ∧ … ∧ bk ∧ not bk+1 ∧ … ∧ not bm (4) 
where ai and bj are literals (atoms or strong negations of atoms) and not denotes NAF. 
 
A set of such rules is an ASP program. What is interesting is the fact that these rules 
can have disjunctions in their head. This is a very important feature of ASP, since it 
introduces non-determinism in the inference process (i.e., an ASP program may have 
several models which are called answer sets).  
 
In order to be able to use ASP on the Web, the ASP rules should be combined with 
Web knowledge. Since ontologies is the most common way to represent knowledge 
on the Web, an interaction between ASP programs and ontologies is deemed 
necessary. A solution to this integration problem is description-logic programs (or dl-
programs). These consist of ASP rules that may contain queries to DL knowledge 
bases. For example, the following rule “brings” into the ASP program all instances of 
the class MovieTitle in the DL knowledge base: 
 

movie(X) ← DL[“Movie”](X). (5) 
 
Several extensions to dl-programs were proposed (and implemented) so that they 
become more “suitable” for open environments like the Web, where information may 
be expressed in many diverse ways (e.g., multiple different ontologies). The most well 
known extension is HEX-programs (Eiter, Ianni, Schindlauer, & Tompits, 2005), 
which enable handling knowledge expressed in various formalisms, even with 
potentially different semantics (e.g., RDF(S) and OWL). HEX-programs contain 
several features (e.g., higher-order logic features) that enable more flexible integration 



with external knowledge bases. These extensions result in new syntax elements. For 
example, the atom &rdf[u](s,p,o) evaluates to true if <s p o> is an RDF triple asserted 
at URI u. Finally, another advantage of HEX-programs is that they allow using 
external data processing services that logic programming cannot handle (e.g., string 
processing). An interesting engine for HEX-programs is dlvhex2 which is described in 
Section 3.2. 
 
There have been proposed ASP-based several applications in the context of 
(Semantic) Web. One of the most promising is Web service composition (Rainer, 
2005). The authors apply ASP techniques to “build” service compositions from 
available services that match a certain service request. 
 
Web Service Modeling Language (WSML) 
WSML (de Bruijn et al., 2005) is a language of representation languages for the 
Semantic Web. These languages are based on several different formalisms such as 
Description Logics, Logic Programming and First-Order Logic. Some of the basic 
variants of WSML are the following: 

• WSML-Core: A subset of a Description Logic which falls inside the Horn 
logic fragment of FOL. It supports subsumption reasoning and query 
answering.  

• WSML-Flight: An extension of WSML-Core which also supports full Datalog 
rules, default negation and integrity constraints. It can provide query 
answering in the context of Logic Programming. 

• WSML-Rule: An extension of WSML-Flight with support for function 
symbols and unsafe rules.  

Reasoning for these WSML variants can be implemented by several Logic 
Programming engines. For some features of these languages, DL reasoners can also 
be used or First Order theorem provers. These languages have been extensively used 
in several European projects, mainly in the application domain of semantic web 
services. Hence, several APIs, tools and other facilities are available for building 
WSML-enabled applications. 
 
Defeasible Rules 
Defeasible logic (Nute, 1994) is a rule-based, non-monotonic approach able to deal 
with incomplete knowledge and inconsistencies. These features have been widely 
remarked in the context of realizing Semantic Web vision, mostly in information 
integration areas (e.g., ontology merging). As a result, some efforts in research 
community (Antoniou, Billington, Governatori, & Maher, 2001) were devoted to 
carry the advantages of defeasible logic in the area of Semantic Web technologies. 
The main idea behind defeasible logic reasoning systems is the ability to handle a 
number of additional features with regard to classical rules like priorities of rules, 
default inheritance, exceptions, etc. There are three different types of rules in a 
defeasible logic reasoning system: a) classical rules (called strict rules), b) defeasible 
rules that can be contradicted by other rules and c) defeaters used to specify 
exceptions of defeasible rules. This way, an important aspect achieved by such 
reasoning modules is their capability of resolving the possible conflicts that arise 
among defeasible rules. 
 
Classification of Approaches Integrating Ontologies and Rules 



Although several approaches have been discussed for combining rules with Semantic 
Web ontologies (Horrocks et al., 2004b; Grosof, Horrocks, Volz, & Decker, 2003; 
Eiter, Lukasiewicz, Schindlauer, & Tompits, 2004; Bassiliades, Antoniou, & 
Vlahavas, 2006; Rosati, 2006a; Rosati, 2006b), there is no totally accepted solution in 
the field.  The main topic of argumentation is the degree of integration between the 
ontology layer and the rules layer. In this section we intend to provide a brief 
classification of the proposed approaches.  
Two main categories of integration approaches have been distinguished in this 
context:  
a) Homogeneous approaches. These approaches suppose a tight semantic integration 
of the two layers. Specifically, both ontologies and rules are embedded in a common 
logical language, permitting predicate sharing in a coherent way. In such approaches, 
ontology concepts and properties may be defined through rules. The most typical 
homogeneous paradigm is the combination of SWRL rules with OWL ontologies. 
This is also the most  In addition, Description Logic Programs (DLP) (Grosof et al., 
2003) constitutes another similar approach. 
b) Hybrid approaches. These approaches correspond to a strict semantic separation 
between ontologies and rules. In particular, this strict separation concerns the rule 
predicates and the ontology elements. Hence, the vocabulary (concepts and 
properties) offered by the ontologies is used as a conceptualization of the domain and 
rules cannot directly define ontology classes or properties. Many integration 
approaches adhere to this category, including Answer Set Programming (Gelfond & 
Lifschitz, 1991), dl-programs (Eiter et al., 2004) and DL+log (Rosati, 2006c). 
The user may find more details on this topic in (Eiter et al., 2006a). 
 
Table 1 summarizes the aforementioned knowledge representation languages and 
their basic features. 
 

Table 1: Basic features of various knowledge representation languages 
       

           Feature 
    
  Language 

 
Logical  

Foundation 
 

Decidability* Serialization  
formats 

OWL Classical Logic 
(FOL subset) 

 
OWL-Lite: decidable 
OWL-DL: decidable 

OWL-Full: undecidable 
 

XML/ 
N-triples (textual) 

 
OWL  

+  
SWRL 

 

Classical Logic 
(FOL subset) undecidable XML 

DLP 

 
DL and LP 
intersection 

 

decidable textual serialization 
(in terms of rules) 

ASP 
 

Extension of LP 
(disjunction in 

decidable textual serialization 
(in terms of rules) 



rule heads, DL 
queries) 

 

DL+log 

 
DLs + Datalog 

rules 
(disjunctive, 

non-monotonic) 
 

decidable textual serialization 
(in terms of rules) 

*regarding key inference problems (e.g., consistency of the knowledge base) 
 
3.2 Reasoning Engines 
 
In this section we intend to provide the reader with a comparative feature analysis of 
existing reasoning modules, including description logic reasoners and rule engines, as 
well.  
 
Jena2 (McBribe, 2002) is the second generation of Jena Semantic Web programming 
toolkit, which is a Java framework for developing applications based on Semantic 
Web technologies. Specifically, Jena provides an Application Programming Interface 
(API) for creating, storing, managing and querying RDF graphs as well as RDFS, 
OWL ontologies in various formats (RDF/XML, N3 and N-triples). The RDFS 
reasoner included in Jena framework does not support datatypes and blank node 
entailments. The built-in OWL reasoner is very limited, since it is a rule-based 
implementation of OWL-Lite. However, Jena is supplied with an interface which 
facilitates the connection and interoperation of the framework with any external 
reasoner that supports the DIG (DL-Implementation Group) standard (Bechhofer, 
Moller, & Crowther, 2003). Hence, the API provided by Jena could be integrated with 
most of the existing description logics reasoners. Furthermore, Jena provides a query 
engine in order to execute SPARQL (Prud’hommeaux & Seaborne, 2005) queries 
over RDF graphs. 
 
RacerPro system (RacerPro, 2008) is the commercial3 extension of Racer (Haarslev & 
Moller, 2001), which is probably the most popular reasoning engine for OWL 
ontologies to practitioners of Semantic Web technologies. RacerPro can be seen as a 
knowledge-based repository that can handle and it is a system for managing OWL 
ontologies, in particular. It implements the DIG interface and it offers an optimized 
tableau calculus for the description logic SHIQ(D). Additionally, it supports qualified 
cardinality restrictions as well as some extensions of OWL (e.g., OWL-E (Pan & 
Horrocks, 2004) except user defined XML datatype expressions). Moreover, the latest 
version of RacerPro includes a first implementation of an SWRL rule engine. 
 
Pellet (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007) is a Java-based, open source 
reasoner capable of handling expressive OWL ontologies.  It implements an 
optimized tableau algorithm, augmented with a number of additional features (e.g., 
support for Unique Name Assumption - UNA, closed world reasoning, SPARQL 
query answering). Pellet also provides an explanation service in order to facilitate the 
debugging of the ontology engineering (Parsia, Sirin, & Kalyanpur, 2005). Although 
typical reasoners detect the inconsistencies between concepts of the knowledge base 
(KB), Pellet can explain why a concept description led to unsatisfiability. This way, 



the reasoner provides user with additional knowledge (e.g., relevant axioms or 
restrictions) sufficient to understand the problem and reform the KB properly. Finally, 
Pellet allows ontologies to use XML-Schema built-in and user-defined datatypes that 
extend numeric and date/time types. 
 
Bossam (Jang & Sohn, 2004) is a RETE-based, forward-chaining reasoning module 
for reasoning and querying over RDF(S) and OWL documents, while it also supports 
rules execution (SWRL rules are included). It is based on Logic Programming (LP), 
augmented with some expressiveness features stemming from First-Order-Logic 
(FOL). For example, a number of additional to LP features are provided by Bossam, 
including support for both classical negation and NAF and disjunctions in the body of 
rules. Hence, it does not support complete reasoning over OWL Ontologies. 
Furthermore, it facilitates the integration of rules with Java by supporting a procedural 
attachments mechanism for SWRL rules. Finally, Bossam provides an API for 
managing the engine, loading ontologies and rules, querying RDF(S)/OWL 
documents and giving explanations about derived facts. Currently, Bossam does not 
support SPARQL query answering, while the serialization of the knowledge base to a 
persistent store (e.g., file system) is another missing feature. 
 
FACT++ system (Tsarkov & Horrocks, 2006) is the descendant of FACT (Horrocks, 
1998). Contrary to the lisp-based FACT system, FACT++ is an open source reasoner 
for SHOIQ(D) implemented in C++. It is based on tableaux algorithms in order to 
provide both TBox and ABox reasoning tasks and it can be accessed through the DIG 
interface. It also supports a number of additional features like handling enumerated 
classes (a.k.a. nominals) and it is a very efficient TBox reasoning engine. However, 
the main disadvantage of FACT++ is its inefficiency to support complete ABox 
reasoning. Hence, FACT++ is unsuitable to applications that call for instance 
classification and retrieval. 
 
KAON2 (KAON2, 2008) is the successor of KAON Project (KAON, 2008) and unlike 
pure description logic reasoners, KAON2 does not implement a tableaux algorithm. In 
fact, KAON2 is a hybrid reasoning module able to handle both ontologies expressed 
in description logics terms and Disjunctive Datalog programs. It implements 
algorithms that reduce description logic SHIQ(D) to Disjunctive Datalog (Hustadt, 
Motik, & Sattler, 2004), taking advantage and applying well-known practices 
stemming from deductive databases (e.g., magic sets) to DL reasoning. It can also 
handle SWRL, F-Logic ontologies and SPARQL query answering, as well. Moreover, 
it provides a Java API in order to accommodate the management and the integration 
of different knowledge formalisms (e.g., OWL ontologies with SWRL rules). 
However, KAON2 does not support reasoning about nominals and cannot handle a 
large number of cardinality restrictions. Hence, it cannot deal with the full OWL-DL 
expressiveness. 
 
dlvhex (Eiter, Ianni, Schindlauer, & Tompits, 2006b) is the name of a prototype 
application for computing the models of so-called HEX-programs, which are an 
extension of Answer Set Programs towards integration of external computation 
sources. dlvhex can communicate with OWL and RDF knowledge bases and can also 
return the results in RuleML syntax. A strong point of dlvhex is that it enables 
developers to write and embed plug-ins to the core engine. In fact, support for RDF 
and OWL is implemented through plug-ins too. Recently, another plug-in for 



querying HEX models through the SPARQL language (Polleres & Schindlauer, 
2007). Through this plug-in dlvhex can be used as a query engine by providing a 
rewriter from SPARQL to rules. The source code and binaries of dlvhex are publicly 
available.   
 
DR-DEVICE (Bassiliades, et al., 2006) is a defeasible logic reasoner for the Web 
based on the CLIPS expert system shell (CLIPS, 2008) that intends to integrate 
Semantic Web standards (RDF metadata, XML-syntax of rules) with non-
monotonicity (e.g., strong negation). Specifically, it provides reasoning services over 
RDF metadata by taking advantage of rules defined by defeasible logic (strict rules, 
defeasible rules and defeaters). It also claims for reasoning efficiency compared to 
other systems based on logic programming. 
 
Jess (Jess, 2008) is a Java framework for editing and applying rules, since it contains 
a scripting environment and a rule engine, as well. It supports a CLIPS-like language 
suitable for developing applications based on declarative rules (a.k.a. expert systems). 
Jess also uses an optimized version of Rete algorithm (Forgy, 1982) tailored for Java, 
comprising a very efficient rule engine. Recently, the evolution of rule technologies 
on the Web has led Jess to rebound its practical value in the community of Web 
developers. Moreover, the fact that Jess is a Java-based system facilitates its 
integration with a number of Web programming paradigms like Java servlets or 
applets. Finally, it supports backward-chaining and some additional features like 
procedural attachments. 
 
Table 2 presents the types of inference support provided by the aforementioned 
reasoning modules. In (Cardoso, 2007), an analysis of the current trends and the 
adoption of available reasoning engines by the Semantic Web community are 
presented in detail. 
 

Table 2: Types of inference support by various reasoning engines 
                    Inference 
                     Support 

 
           Modules 

TBox 
Reasoning 

Abox 
Reasoning 

Rules  
Reasoning 

Jena2 

 
Limited  

(incomplete 
RDFS/OWL 
reasoning)  

 

Limited  
(incomplete 
RDFS/OWL 
reasoning) 

JenaRules 
(forward/tabled 

backward chaining) 

RacerPro √ √ 

 
nRQL rules, 

first implementation 
of SWRL 

(forward chaining) 
 

Pellet √ √ 

 
DL-safe rules 

(SWRL subset) 
 



Bossam 

 
sound,  

incomplete 
 

sound,  
incomplete 

SWRL, Buchingae 
(forward chaining) 

FACT++ √ 

 
sound,  

incomplete 
 

- 

KAON2 

 
√ 

(except 
nominals) 

 

 
√ 

(except 
nominals) 

 

DL-safe rules 
(SWRL subset) 

dlvhex 

 
Limited, 
through 

interface with 
external 
reasoner 

 

Limited, 
through 

interface with 
external 
reasoner 

DL-Rules 
(non-monotonic 

logic program rules 
with queries to DL 

KB) 

 
DR-DEVICE 

 
- - Defeasible rules 

Jess Limited* Limited* 

 
SWRL*, Jess rules 
(forward/backward 

chaining) 
 

* through appropriate transformations (Mei, Bontas & Lin, 2005; O’Connor et al., 2005) 
 

 
4 EVALUATION OF EXISTING APPROACHES 
 
In this section, a comparative study across the aforementioned methodologies for 
introducing rules in Web applications is presented. Firstly, we give some fundamental 
requirements that have to be satisfied by such formalisms. Afterwards, we compare 
various aspects from the perspectives of classical logic and logic programming, giving 
indicative examples. Finally, some experimental results that examine the efficiency of 
current efforts in the combination of ontologies with rules are presented. 
 
4.1 Rule-based Web Applications are Still “Web Applications” 
 
Before evaluating the existing approaches to introducing rules in Web applications, 
we should identify the main requirements for such approaches. These requirements 
mainly stem from the nature of the Web itself and its current status. Firstly, WWW is 
a ubiquitous and massive multi-user distributed environment. In fact, this massive 
characteristic is its strong point, and is a direct consequence of its architectural and 
technological simplicity. Web technologies such as HTTP, HTML and XML are very 
simple to learn and use, even for plain users who are not IT experts. Such simplicity 
should be taken as granted for any Web-related technology, and this applies to rule 



systems as well. In this context, rules for the Web should be written and used even by 
users/developers not familiar with advanced knowledge engineering concepts. For 
example, negation is a rather advanced topic in logic-based systems (with Horn rules). 
Hence, the semantics of rules should be such that can be easily understood by naïve 
users. However, this would affect their expressiveness and would limit the inference 
power of rule-based systems that may be required by more demanding applications 
(i.e., Web service discovery engines). It is worthy to mention that most of the existing 
rule-based applications for the Web have adopted SWRL approach (see Section 3.1) 
in order to express rules. SWRL is neither a highly expressive language (e.g., no 
negation is available) nor a decidable one, but it remains simple. 
Another requirement is that the rule-based systems for the Web are compatible with 
existing (Semantic) Web standards, such as XML, RDF, OWL and SAWSDL (Farrell 
& Lausen, 2007). This means that direct support for URIs or XML syntax should be 
available. On the other hand, writing rules in XML (e.g., like the SWRL and RuleML 
approaches propose) is a cumbersome task. This is indeed a difficult decision that has 
to be taken by the Web architects.  
Furthermore, the addition of rules in Web applications requires their compatibility 
with existing forms of Web knowledge that have already attained a certain maturity 
level. Most of the knowledge bases developed in the context of Web are expressed in 
the form of ontologies (mainly written in OWL or RDFS). As a result, rules have to 
be integrated with ontologies properly.  
 
4.2 Qualitative Comparison of Classical Logic and Logic Programming 
approaches 
 
The aforementioned knowledge representation methodologies (see Section 3.1) are 
either based on classical logic (e.g., DLs and SWRL) or logic programming (e.g., 
answer-set programming and defeasible rules). Across the literature, several 
differences between classical logic and logic programming paradigms have already 
been identified. In this section, we intend to survey and discuss these efforts by 
presenting the main incompatibilities that impede the reconciliation of the two 
approaches. 
 
Monotonicity vs. Non-monotonicity 
Classical logic is based on standard model theoretic semantics and adheres to 
monotonicity of entailment. Informally, monotonicity means that the addition of new 
information to the knowledge base cannot invalidate conclusions inferred by current 
knowledge. As a result, classical logic is able to deal with incomplete information by 
nature. 
Instead of classical logic, logic programming has non-monotonic features. It assumes 
complete knowledge and there is a unique model describing the state of the world. 
This way, addition of knowledge may reduce the inferences. 
 
Unique Name Assumption 
Another difference between the two paradigms is that logic programming approaches 
typically deploy the Unique Name Assumption (UNA). This assumption supposes that 
different names represent different objects of the world. This fact imposes severe 
limitations on the Web context, since several distinct URIs4 may refer to the same 
content or data. On the contrary, in classical logic there is no one-to-one 
correspondence between the names and the objects of the domain. Hence, equality 



between individuals represented by different names can be derived. Although it 
imposes a huge computational cost, most of the current description logic reasoners 
support reasoning with equality. 
 
Negation 
Classical logic and logic programming face the aspect of negation from different 
perspectives. With respect to its monotonic nature, negation in classical logic allows 
inferring new information only if the truth or the falsehood of a statement is explicitly 
declared. This fact is related with the Open World Assumption (OWA) of classical 
logic theory where incompleteness of the knowledge base is considered. 
On the other hand, Negation-As-Failure (NAF) adheres to the Closed World 
Assumption (CWA). Specifically, if a description is not known to be true, then the 
truth of the negated description is drawn. In that sense, absence of knowledge draws 
to negated knowledge and, thus, NAF has a non-monotonic behavior. Modeling the 
world according to CWA seems to be somewhat inappropriate for the Semantic Web. 
Since knowledge on the Web is not always available (e.g., web servers breakdowns), 
such an assumption could lead to incorrect inferences. However, the usefulness of 
different types of negation in rule-based Web applications is demonstrated in 
(Wagner, 2003; Alferes, Damasio, & Pereira, 2003). 
 
Constraints and Restrictions 
Another aspect where the classical paradigm differs from logic programming is on the 
treatment of constraints and restrictions. Regardless of the apparent similarity 
between constraints and restrictions, there are important differences between them. 
Restrictions are used in the classical logic paradigm and they constitute part of the 
logical theory. By adding restrictions to a knowledge base, the knowledge statements 
are also increased and, thus, the inference of additional knowledge is permitted. 
Restrictions may be further classified to the following main categories: 

• Value restrictions or range restrictions. They are used to restrict the values of 
a property and possibly infer new information according to their type (a.k.a. 
range). 

• Cardinality restrictions. They are used for restricting the number of values 
that an individual may have for a specific property. They can possibly infer the 
existence of new instances or equality between known individuals. 

 
In terms of Description Logics, an example of cardinality restriction in the web 
service paradigm could be the following: 

Profile  ⊑  ≥ 1 hasInput (6) 
Such rule denotes that every service profile should have at least one input. 
 
On the other hand, constraints (also called integrity constraints) are mainly used in 
deductive databases and logic programming in order to check if the knowledge base is 
consistent with a number of specified conditions. As a result, constraints cannot draw 
inference of new information, but they may lead to inconsistencies in the case that 
some conditions specified by them are violated inside the knowledge base. Usually, 
constraints are rules without head (i.e., they have a “false” value in their head), 
denoting that the conditions stated in the body should not be satisfied concurrently by 
the knowledge base.  
Similarly to restrictions, constraints may be divided to: 



• Value constraints or range constraints. Their importance consists in checking 
the type of a property value. 

• Cardinality constraints. They are used for checking the number of values that 
an individual may have for a specific property. 

 
Similarly to (6), a cardinality constraint could be written in logic programming as: 

← Profile(s) ∧ ¬hasInput(s,i) (7) 
 
More details about integrity constraints and restrictions may be found in (de Bruijn, 
Polleres, Lara, & Fensel, 2005), where an alternative ontology language based on the 
logic programming subset of OWL is presented. 
 
Other differences 
A number of additional differences between the described approaches have also been 
discussed in the literature. (Eiter et al., 2006a) raises the point of non-ground 
entailment in the logic programming approach, declaring that, since the semantics of 
logic programming is defined in terms of sets of ground facts, the inference of non-
factual knowledge is not allowed. Contrary to the logic programming, classical logic 
permits the entailment of non-factual knowledge. Furthermore, decidability issues are 
explored in the combination of the two perspectives. In addition, (Pattel-Schneider, 
2006) describes the treatment of datatypes by classical logic approaches (e.g., DLs) 
and logic programming. Moreover, it examines the role of tools that support each 
methodology and how they can facilitate the modeling of knowledge. 
 
The aforementioned modeling paradigms have been proposed for formalizing rules on 
the Web. Concerning the advantages and the disadvantages of each approach, we 
believe that both perspectives are useful in the context of Semantic Web. 
The open nature of the classical logic seems to be more suitable for formalizing such 
a distributed environment. By this mean, Semantic Web technologies based on 
classical logic accomplish the integration of information stemming from different 
sources. Knowledge becomes shareable in the sense that it can be accessed without 
any obligation to adopt a specific model or schema. Hence, data are available to 
everyone through WWW so as to be retrieved and used in applications appropriately. 
On the other hand, logic programming makes several assumptions in order to simplify 
tasks like reasoning or modeling of the knowledge base. There are several useful 
features of logic programming like high expressiveness, negation-as-failure and 
decidability of reasoning. Moreover, many of the reasoning engines targeting at 
managing knowledge expressed in classical logic formalisms have been recently 
extended to support such features (e.g., Pellet, RacerPro, Bossam). Additionally, both 
users and developers are very familiar with the world of databases and logic 
programming languages like Prolog. It is worthy to mention that even SPARQL 
engines return “no” in ASK query patterns with no solutions. However, “don’t know” 
would fit better in an open environment where multiple solutions may exist outside 
the current knowledge base. This way, SPARQL takes advantage of the users’ 
familiarity with common databases, deciding not to complicate the query answering 
process. 
To summarize, last decade has shown to the developers of Web applications that 
different types of Semantic Web enabled applications requires different styles of 
modeling. As a result, the development of a framework that satisfy most of these 
needs seems to become unavoidable. 



 
4.3 Quantitative Evaluation of Reasoning Modules 
 
This section intends to quantify the total time required by popular reasoning modules 
in order to perform common reasoning tasks. Instead of (Pan, 2005; Gardiner, 
Horrocks, & Tsarkov, 2006), where the evaluation of description logic reasoners 
focuses on TBox reasoning tasks, here we examine both TBox and ABox reasoning as 
well as rules application. In particular, Figures 3 to 6 show the results of some 
indicative performance tests. These tests aim at demonstrating the efficiency of 
description logic reasoners and mainstream rule engines.  
This quantitative evaluation involved the last stable versions of RacerPro (v1.9.0), 
Pellet (v1.5.1) and FACT++ (v1.1.11) description logic reasoners that were available 
for ontology reasoning as well as the Jess rule engine for SWRL rules application. 
Bossam was also tested as both ontology reasoner and rule engine in this evaluation. 
However, Bossam’s results are not displayed in the figures, since such a comparison 
would be improper. This stems from the fact that although Bossam constitutes a sound 
reasoning module it is not a complete reasoner for OWL. However, we should 
mention that Bossam performed well (i.e., it accomplished smaller execution times 
than the other OWL reasoners) handling small-size ontologies, while it threw out-of-
memory errors when provided with large-scale ontologies (i.e., containing 500 and 
1000 instances). Moreover, all reasoners were managed through Protégé OWL API in 
Java except Bossam which provides its own API. Finally, Jess was accessed via 
SWRL-Jess bridge (O’Connor et al., 2005). 
The knowledge base used in these tests stems from the Web service description 
paradigm and it consists of a domain ontology and OWL-S service descriptions. The 
domain ontology, which represents the domain of football (i.e., player/team details 
and statistics), includes concepts described through necessary and sufficient 
conditions. The elements of this ontology are used for the annotation of some 
Semantic Web services that provide search functionality to some underlying football 
statistics databases. Specifically, the service inputs and outputs are annotated through 
concepts of this domain ontology. The extract of the domain ontology used contains 
37 concepts, 8 object properties and 3 datatype properties. Each service description 
involves 19 concept instances and 11 property instances. 
 
Figure 3 depicts the performance of three description logic reasoners while checking 
the consistency of all classes over the aforementioned knowledge base. The execution 
times presented in this figure do not involve the time needed to load the models. The 
figure shows that these times increase as the number of instances contained in the 
knowledge base also increases.  FACT++ and Pellet attained the best performance by 
achieving similar execution times. On the other hand, RacerPro performed worse than 
the others. 



 
Figure 3: Evaluation of consistency check (TBox) 

 
In Figure 4, the times required for classifying the hierarchy of the ontology are 
presented. Again, the times shown in the figure do not include the loading time of 
each model. The resulting performances are very similar to those of the consistency 
checking process. FACT++ has slightly better performance than Pellet, while 
RacerPro has the worst performance again. 

 
Figure 4: Evaluation of classification (TBox) 

 
Figure 5 shows the efficiency of RacerPro and Pellet reasoners in realizing reasoning 
over ABoxes. In this figure we do not display FACT++, since it provides incomplete 
ABox reasoning. In particular, the experiment concerns the identification of the types 
(i.e., classes) that each individual belongs to. The figure shows that even the 
reasoning over an ontology containing 100 instances using Pellet (which seems to be 
the most efficient reasoner in this reasoning task) requires about 20 seconds. 
Moreover, both reasoners failed to compute inferred individual types for ontologies 
containing 500 and 1000 individuals. 
 



 
Figure 5: ABox reasoning evaluation (computation of inferred individual types) 

 
It is worthy to mention that version 1.9.2 Beta of RacerPro was also available during 
the experiments. This version seemed to remain slower than FACT++ and Pellet in 
TBox reasoning tasks (consistency check and classification of hierarchy) while it 
performed better in ABox reasoning. However, the results are not displayed in the 
figures above, since this is not a stable version of the reasoner. 
 
Figure 6 shows the time required by Jess rule engine to apply SWRL rules over 
ontologies containing various numbers of instances. These rules represent service 
composition constraints that should apply to the inputs and outputs of the services. 
We applied two different sets of rules to the previously described knowledge bases: 
the first set consisted of 10 rules while the second of 50 rules. In both cases, the 
execution time increases proportionally to the number of instances contained in the 
ontology. As expected, the delay imposed by the execution of rules was affected by 
the number of rules. However, the number of instances seems to affect execution 
times more than the number of rules. Hence, the inference process is complicated 
when real-time demands come up in distributed environments where applications 
have to support multiple individual instances. 



 
Figure 6: Jess performance executing SWRL rules 

 
To summarize, the time required to handle a large KB and execute reasoning in terms 
of Semantic Web technologies like DLs constitutes a limiting factor, even for the 
most efficient reasoners. This is a fundamental problem on the Web, since 
applications have to deal with a large number of instances representing data. 
Especially, when considering real time applications that call for small response times, 
the aforementioned results become unmanageable. This is the main reason why many 
researchers have recently focused on developing efficient and scalable reasoning 
applications over large individual sets. Instance Store (Horrocks, Li, Turi, & 
Bechhofer, 2004a) is such an approach that permits working in conjunction with any 
ontology reasoner that implements the DIG interface. 
 
 
5 FUTURE TRENDS AND OPEN ISSUES 
 
Several open issues that deserve further research efforts in the future have been 
identified throughout the chapter. Firstly, a Web standard for editing and embedding 
rules into Web applications should be specified. In our opinion, such a language 
should focus on its simplicity, instead of providing major expressiveness capabilities 
that will lead to a clumsy formalism. Rule Interchange Format (RIF) Working Group 
(RIF, 2008) works in this direction in order to produce W3C recommendations for 
enabling interchange of rules. Specifically, RIF does not intend to provide explicit 
mappings between various rule languages, but specify a mechanism capable of 
defining the meaning of the formulas of a rule language. This way, rules could be 
automatically translated across different formalisms. 
Additionally, more tractable algorithms for Web-rules, TBox and ABox inference 
problems should be developed. These algorithms should be able to handle complex 
and heavy knowledge bases that combine rules and ontologies with a large number of 
concepts and relationships. Such knowledge bases are substantial, especially in the 
context of information integration where multiple domain vocabularies interact with 
upper-level ontologies. Furthermore, the Web is a large scale environment, where a 
huge set of resources are added every day. As a result, future knowledge bases will 



have to capture and describe more and more individuals. These facts should be taken 
into account by the developers that will target at designing new reasoning algorithms. 
Finally, a more practical issue that should be investigated is the development of a 
unified reasoning framework capable of managing both ontologies and rules. Today, 
there is no efficient and easy-to-use integrated reasoning module that can reason over 
both formalisms. As a consequence, the developer should use at least two different 
reasoning modules to handle such an integrated knowledge base. This can result to 
unexpected situations.  For example, the restrictions defined by the ontology can be 
violated by the application of rules, since the rule engines do not take into account 
these restrictions (e.g., disjointness of concepts). Similarly, the application of rules 
could produce knowledge that would be useful for further description logic 
inferences. 
 
 
6 CONCLUSIONS 
 
In this chapter we have discussed the application of rules to Web applications in order 
to achieve intelligent application behavior and efficient management of knowledge. 
We have described the main methodologies and technologies for integrating rules 
with ontologies, since the latter constitutes a mature knowledge technology on the 
Web. The chapter has also examined aspects of the different approaches. We also 
showed through several experiments that current reasoning modules are not efficient 
enough to manage knowledge stemming from large-scale environments like the Web, 
especially in the context of real-time applications which impose severe constraints in 
response times. Finally, more improvements should be made in the standardization of 
rules formalism on the Web and in the development of reasoning modules that can 
handle and reason over both ontologies and rules as integral knowledge. 
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1 also called as Datalog view in the literature 
2 http://con.fusion.at/dlvhex/ 
3 it offers free trials while educational and research licenses are available  
4 Universal Resource Identifiers 

http://www.w3.org/TR/2005/WD-rdf-sparql-query-20050217/
http://www.racer
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://www.ruleml.org/
http://www.w3.org/2001/sw/
http://con.fusion.at/dlvhex/

