
UTSE: Construction of Optimum Timetables
for University Courses - A CLP Based Approach

Harikleia Frangouli Vassilis Harmandas Panagiotis Stamatopoulos

University of Athens, Department of Informatics
Panepistimiopolis, TYPA Buildings

157 71 Athens, Greece
E-mail : {bxpro,vassilis,takis}@di.uoa.ariadne-t.gr

Abstract

The construction of timetables for universities or schools is an extremely complex
problem, whose manual solution requires much effort. The set of all possible
solutions, that is the search space of the problem, is very large, at least in the real-
world examples. An acceptable solution is one that satisfies all the problem
constraints. The problem becomes even more difficult if someone wants to generate
an optimum timetable according to some heuristic criteria. Various attempts have
been made so far on the automatic solving of the timetabling problem by a computer.
In this paper, a method is proposed for the construction of optimum timetables for
university courses. A specific system is presented which has been used for the
timetabling procedure of the Department of Informatics of the University of Athens.
The software platform of the implementation is an instance of the Constraint Logic
Programming class of languages, the ECLiPSe system. ECLiPSe is proved to be an
appropriate vehicle for managing the complexity of the timetabling problem.

1. Introduction

Many real-life problems lead naturally to combinatorial search which is a very
computationally intensive task. Unfortunately, no general method exists for solving
problems of this kind efficiently. The automatic construction of timetables [dWe85]
falls under this general class of problems.

Much work has been done so far in the area, even since the early sixties [Got62,
Law69, BMc79, CdW89]. The reason for this is that at least once a year, schools and
universities have to solve an instance of the timetabling problem whose manual
solution requires a lot of manpower. It would be desirable to have a program schedule
courses and/or exams instead of a person. What is more is that in many cases, an

mailto:@di.uoa.ariadne-t.gr

optimum timetable is required according to some heuristic criteria. This problem is
much more difficult than the construction of a simple working timetable.

In this paper, the construction of optimum timetables for university courses is
tackled using the Constraint Logic Programming (CLP) [vHe89, FH+92] framework.
The system which is presented is called UTSE (University Timetable Scheduling in
ECLiPSe) and has been used on the real case of the Department of Informatics of the
University of Athens (DoI/UoA). The ECLiPSe language [ECL93], an instance of the
CLP class of languages which supports constraint satisfaction techniques over finite
domains, is used for the modelling and implementation of the system.

In order to get an idea about the complexity of the timetabling problem, consider
a semester at a university where 30 different subjects have to be scheduled, each
subject splitting into 4 teaching periods per week. Let us also assume that there are 5
working days in a week with 10 possible teaching periods in every day and that there
are 3 rooms for hosting lectures. In this case, which is quite typical, the search space
to be examined for the construction of a weekly timetable is as big as (5⋅10⋅3)4⋅30 ≅
1.35⋅10261. The problem is to find a point, i.e. a specific timetable, in this huge search
space that satisfies all the imposed constraints. A more difficult problem is to find an
optimum timetable.

Various approaches have been followed so far for the solution of the timetabling
problem. Graph colouring algorithms have been used [Meh81], where each vertex in
the graph represents a triplet (subject, teaching staff member, room). Two vertices are
connected if they cannot be scheduled simultaneously, that is if they have a subject, a
teaching staff member or a room in common. The problem is reduced to find a
colouring of the graph with p or fewer colours, if one exists. Mathematical
programming algorithms have been used as well [Tri80, FRo85], where the central
idea is to solve an optimization problem whose purpose is to reduce constraint
violations. Both graph colouring algorithms and mathematical programming are
approaches from the Operations Research (OR) area. Other methods include the use of
database management systems [Joh93], genetic algorithms [CDM90] and general
purpose constraint solving tools [YK+94]. Quite recently, logic programming
approaches have been considered [KWh92] and sometimes a CLP framework is
exploited [ABa94, BDP94].

What is achieved by a CLP approach is an a priori pruning of the search space
through a constraint propagation mechanism. At each step, the constraints are
exploited as much as possible, and then a choice is made which triggers more
propagation. Choices are made non-deterministically. In this way, the resolution
mechanism of a logic programming language is combined with constraint satisfaction
techniques resulting in a very powerful and elegant scheme of computation.

The purpose of this paper is to exhibit the appropriateness of CLP for mastering
the combinatorial timetabling problems faced by schools and universities. The main
issue discussed is the composition of optimum timetables according to some widely
accepted criteria. The quantification of these criteria is empirically done, resulting to
an objective function that has to be optimized. The course scheduling of the DoI/UoA
is studied, but as it will be seen, CLP is powerful enough to accommodate the needs
of other specific timetabling problems as well.

In the following, the timetabling problem is introduced and CLP as well as
ECLiPSe are briefly described. Then, the specific problem faced by the DoI/UoA is
presented. The way this problem is modelled and implemented in ECLiPSe and how
the resulting UTSE system is behaving are given next. Finally, the adopted approach
is discussed and possible further work is highlighted.

2. The Timetabling Problem

As it is stated in [dWe85], the timetabling process consists of two distinct phases:
• The curricula, i.e. lists of subjects, are defined for each class and various resources

(manpower and/or equipment) are assigned to them.
• A detailed timetable is composed which is compatible with the previously

defined requirements and with some additional constraints as well.
The second phase is the one which is usually referred to as the "timetabling

problem". Due to the complexity of this problem, it is worthwhile trying to solve it by
a computer instead of tackling it manually.

Actually, the previous problem is a course scheduling one. Another problem
often found in the literature is the exam scheduling. Both problems are quite similar,
though they present a few differences:
• There is usually only one exam but several lectures for a subject in one semester.
• Conflicts are not allowed in exam scheduling, but some may exist in course

scheduling.
• In general, exam scheduling is less complex than course scheduling.

In the following, we will concentrate on course scheduling, considering that this
problem might benefit a lot from a possible automation.

The constraints that a solution to the timetabling problem has to respect may be
either general or specific. A general constraint is one that does not refer to a specific
subject, room or member of the teaching staff. For example, the following are general
constraints that the solution of every timetabling problem has to satisfy:
• No member of the teaching staff can give two lectures simultaneously.
• No room can host two lectures simultaneously.

• No student can attend two lectures simultaneously (though in some cases, this
constraint has to be applied for subjects of a specific type only, while for other
subjects conflicts in their lectures may arise, in order to get at least one solution).

• The room capacities have to be respected.
For a given timetabling problem, there is also a set of specific constraints that

have to be satisfied as well. Some examples are:
• Prof. Kathigitis can teach only on Wednesdays and Fridays.
• Room A is not available on Mondays after 17:00.
• The subject "Calculus I" has to be scheduled on Tuesdays and Thursdays from

9:00 to 11:00.
A distinction that is usually made is whether the timetabling problem is faced by

a school or by a university. The differences lie only in the specific constraints that
have to be satisfied. For example, a university student may attend lectures in the same
day that have gaps between them, though this possibility should be minimized, while
in a school, gaps are not allowed. As far as complexity is concerned, both problems
are of similar difficulty. This paper concentrates on university course scheduling,
however it is a matter of constraints definition to use the proposed method for schools
as well.

The timetabling problem is formulated either as a feasibility problem or as an
optimality problem. In the first case, just a single feasible solution is required, while in
the second case, the optimum solution according to an objective (or cost) function has
to be found. Both formulations are very similar, but for the optimality problem a good
definition of the cost function has to be given, so as to reflect subjective opinions
about the features characterising a timetable as a good one. Some factors that may
affect the quality of a timetable are the existence of gaps between the various lectures
in the same day, the reasonable distance in time of the lectures for the same subject,
the exploitation of the rooms, etc. There is no widely accepted cost function taking
into account these factors as well as other ones, but it should be mentioned that a real-
world timetable construction system has to consider a flexible enough cost function
that may satisfy the needs of every potential user.

Sometimes, what is required to be computed is a new timetable, because of a
change in the constraints that have to be satisfied. For example, the availability of a
member of the teaching staff or of a room might change, or even a new subject might
be introduced. In this case, it is not wise to reschedule the whole timetable from
scratch, since such a solution might affect the personal schedules of a lot of people
unnecessarily. A new timetable is required with the additional property of having the
minimum distance, and thus the less side-effects, from the existing timetable.

A bad result that may be produced from the processing of a timetabling problem
is the proof of the unfeasibility of the problem. This means that no solution exists that
satisfies all the given constraints. In this case, what may be done is to consider that
some constraints are not compulsory and try to relax them, in order to find a working
timetable. Indeed, this is the case in the real world, since many of the constraints,
mainly specific ones, state just a preference and not an obligation. For example, a
member of the teaching staff might have requested not to teach before 11:00, but if a
change to his/her personal schedule would result to a desirable timetable, this should
be done. Another approach is instead of doing constraint relaxation a posteriori, to
assign weights to the constraints and try to minimize the total weight of the violated
constraints.

3. CLP and ECLiPSe

CLP is a novel programming framework that enhances logic programming with
constraint satisfaction techniques. While preserving the declarative nature of logic
programming, it exhibits surprising efficiency for solving a certain class of
combinatorial problems. While the straightforward solution of such problems might
be done through a "generate and test" approach, CLP introduces a new method of
computation, the "constrain and generate" one. In cases of large scale combinatorial
problems, "generate and test" cannot lead to results within finite time.

CLP is often referred to as CLP(X) where X stands for the set over which the
problem constraints are stated. There exist languages where X is the set of real
numbers, the set of rational numbers, a set of boolean values, etc. A very interesting
case is the one where a problem is described via constraints which involve variables
that range over finite domains. Then, the corresponding instance of CLP(X) is called
CLP(FD). The first representative of the CLP(FD) scheme of computation is the CHIP
language [Dv+88]. CHIP was developed at the European Computer-Industry Research
Centre (ECRC). The constraint facilities of CHIP have now been integrated with
ECRC's SEPIA and Megalog systems, resulting into the ECLiPSe language.

ECLiPSe is a Prolog system whose aim is to serve as a platform for integrating
various logic programming extensions. Many interesting extensions of ECLiPSe are
based on a special data type, which is called metaterm. Various constraint related
libraries are supported, which have been built on the metaterm facility, namely the
finite domains library, the generalised propagation library (Propia), the constraint
handling rules library, etc. The first is the one which brings to ECLiPSe the constraints
functionality of CHIP for finite domains.

The finite domains library of ECLiPSe implements constraints that involve
integer as well as atomic data. The concept of domain variables is used which range
over finite domains. Constraints are either arithmetic or symbolic. An arithmetic
constraint is an equality, disequality or inequality relation between two linear terms,
where a linear term is composed of domain variables and integers in a way respecting
its linearity. There are various symbolic constraints that operate upon both integer and
atomic data. Enumeration as well as optimization predicates are also provided by
ECLiPSe.

The procedure for solving a constraint satisfaction problem using the finite
domains library of ECLiPSe is to define a set of domain variables, together with their
domains, that model the problem concepts. Then, the constraints that define the
relations among these variables have to be stated. Actually, these constraints define
the subset of the search space that contains the solutions of the problem. The last step
is to trigger an enumeration procedure, which co-operates with the internal constraint
propagation mechanism and with the backtracking mechanism of the Prolog engine,
leading finally to the required solutions, if they exist. In case of an optimality problem,
ECLiPSe provides a branch-and-bound technique that computes the optimum solution
of the enumeration procedure, with respect to a given cost function.

4. UTSE - A Timetable Construction System

An attempt to solve the timetabling problem mentioned previously has been made
with the UTSE system. A number of assumptions and constraints have been taken into
account, so that the system accommodates the requirements of the DoI/UoA.

More specifically, three main assumptions have been considered:
• Each subject is split into two or three lectures depending on its duration (except

from those with only one teaching period per week). Each of these lectures must be
given in different days.

• Each subject can be either tutorial or practical. Tutorial subjects are being taught in
a classroom, whereas practical ones are being taught in a laboratory. Both are
assumed to have a fixed student capacity.

• Each subject belongs to a specific teaching year and falls under one out of four
separate categories, namely compulsory, basic, optional and free choice. Moreover
a subject that is not compulsory belongs to one out of three areas.

Apart from those assumptions, four main constraints have been taken into
consideration:
• No two lectures can be scheduled the same day and period of time in the same

room.

• No two subjects belonging to the same teaching year should overlap if they are
compulsory or fall under the same subject area.

• No two lectures should be given by the same teaching staff member at the same
time. Moreover no teaching staff member should be assigned a lecture at a period
of time, at which he/she has declared to be unavailable.

• During the semester each subject is being taught in the same room (classroom or
laboratory), which must be large enough to fit the number of students attending it.
A room may be occupied for non-tutorial reasons for some hours during the week,
therefore no lecture should be scheduled in that room at that period of time.

The constraints concerning the availability of a teaching staff member or room,
can be considered as second order ones, meaning that they could be relaxed if this
would help finding a solution to the timetabling problem. This is by no means the case
for the other constraints (first order constraints) which can never be altered or relaxed.
It must be noted however that UTSE makes no distinction between first and second
order constraints and tries to find a solution that satisfies them all.

The most common case is that if a solution to the timetabling problem, which of
course satisfies all the constraints, can be found, then a great number of solutions can
also be found. UTSE tries to find the best of these solutions, assigning a cost to each
of them and ultimately presenting the one with the minimum cost. The evaluation of
each solution's cost is made according to how well this solution satisfies some
predefined criteria: the more a solution satisfies those criteria the less its cost is. This
technique can yield a far better solution than the first one that would be returned, if the
cost evaluation process was not used.

Three criteria have been set in the present system, which of course can be easily
expanded and improved. Each one of the following criteria adds a cost to the solution
summing up to the total cost :
• When a subject is scheduled in two or more different days, it is preferred that these

days have a distance of two or three days between them. A distance of four days is
not so good and a distance of one day is even worse.

• In order to achieve the best utilisation of each room, it is desirable that each subject
is scheduled in a room with capacity proportional to the number of students
attending this subject.

• It is desirable that all subjects belonging to the same teaching year, if scheduled in
the same day, should be taught in periods of time that have as few and small gaps
between them as possible. This means that the ideal assignment of these lectures
would be in consecutive teaching periods.

 It should be mentioned here that these criteria have not been defined as
constraints for reasons of adding the flexibility to the system to accept as good enough

a solution, which satisfies them to some point rather than trying to find the solution
that completely satisfies them (a process which can turn out to be extremely time
consuming or very well lead to no solution).

A weight factor is assigned to each one of these criteria determining how much
they will influence the final solution: the greater the weight factor is the bigger gravity
the corresponding criterion will have on the solution's cost. The user can therefore
interfere to the cost evaluation process by altering these weight factors. If, for
instance, the weight factor of the third criterion is set to zero, then this criterion will
not be taken into account in the evaluation of the solution's cost.

4.1 Representation

All information regarding the details of subjects, teaching staff members, rooms, etc.,
is encoded in a particular way. More specifically :
• Each day of the week is represented by a fact with predicate day/2 containing a day

code and the name of the corresponding weekday. In a similar way teaching periods
in a day are represented as facts with predicate teaching_period/2 containing a code
and the corresponding time period in a day. For instance, day(1,‘Monday’) means that
‘Monday’ is identified by code 1, and teaching_period(4,12:00-13:00) means that the
teaching period between 12:00 and 13:00 is identified by code 4.

• All data dealing with a particular subject is encoded in a fact with predicate
subject/9. Such data is the subject code, the teaching year, the category and the
subject area it falls under, the room type (all classrooms are identified by code 0,
while laboratories by their full names), the teaching periods it occupies per week,
the name of the teaching staff member responsible for the subject, the number of
students attending it, and its full name. For instance, subject(1,3,basic,2, ‘Lab

1’,5,‘Halatsis’,80,’Artificial Intelligence’) represents the subject called ’Artificial

Intelligence’, with code 1, belongs to the 3rd teaching year, is basic of the 2nd subject
area, is held in laboratory ‘Lab 1’ for 5 teaching periods per week, is taught by Prof.
‘Halatsis’ and attended by 80 students.

• All the information regarding teaching staff members is stored in facts with
predicate teaching_staff_member/3. Such a fact contains the code and full name of the
teaching staff member, as well as a list representing the periods of time when
he/she is not available for teaching any subject. The list elements are compound
terms each of which identifies a period of time by stating the codes of the day of
week and the time period in this day that a teaching staff member is unavailable.
For instance, Prof. ‘Lector’, whose code is 12, and is not available on Mondays,
Wednesdays and Thursdays from 9:00 to 12:00, is represented by

teaching_staff_member(12,‘Lector’,[no(1,1),no(1,2),

no(1,3),no(3,1),no(3,2),no(3,3),no(4,1),no(4,2),no(4,3)]).
• Classrooms are encoded as facts with predicate classroom/4 containing the code, the

name, the room size, and finally a list of compound terms representing the periods
of time that the classroom is occupied for non-tutorial reasons. In the same way a
fact with predicate lab/4 contains similar information that deals with laboratories.
For instance, if classroom ‘Classroom A’, with code 1, can hold up to 60 students and
is occupied every Friday afternoon from 17:00 to 19:00, the corresponding fact will
be classroom(1,‘Classroom A’,60, [no(5,9),no(5,10)]).

A solution to the timetabling problem is represented by three finite domain
variable lists, using the ECLiPSe terminology. The first list contains day codes, the
second teaching period codes and the third room codes. Each list element corresponds
to a specific teaching period of a subject. Therefore the scheduling of every teaching
period is identified by the respective elements of the lists of days, teaching periods
and rooms.

4.2 Implementation

The UTSE system is quite flexible regarding the input of data. It provides the user
with a window environment interface which is designed so that it can be easily
handled by a non-expert. The user can select from a given data store the subjects,
teaching staff members, classrooms and laboratories that will be included in the
timetable or create his/her own data by modifying (i.e. adding, removing or changing)
some of these elements. He/she can also set the constraints concerning the availability
of teaching staff members and rooms (i.e. define the days and periods of time in these
days in which they are not available). Finally, there is the possibility to define the
labeling and optimization type that will be used in the process of searching for a
solution, as well as the weight factors for the three optimization criteria.

As soon as the data input stage has been completed, the main process starts,
which includes the following phases:
Phase One : Primal checking

• The system checks if there is a subject which is attended by more students than
the maximum capacity classroom can fit. In that case it splits the subject into
two or more identical subjects.

• The system checks whether there is a teaching staff member whose total
teaching hours exceed his/her total hours of availability (as they have been
defined at the data input stage) and if so, the execution of the program is
terminated.

Phase Two : Finite domain variables definition and cost function evaluation
• The lists of finite domain variables are defined. As mentioned in the previous

section, there are three lists representing the days, periods of time in each day
and rooms in which the lectures will be held.

• The cost function which will evaluate the cost of each solution is constructed.
At first a cost is evaluated according to each one of the optimization criteria
mentioned previously. The addition of these partial costs results in the cost
function. When this phase is completed, every subject is assigned a cost which
the system will try to reduce at the labeling stage.

Phase Three : Set of constraints
• The constraints on the teaching staff members are set. This means that the finite

domain variables corresponding to the subjects that a teaching staff member is
assigned, are constrained not to take as values the periods of time that he/she is
not available.

• The constraints on the rooms are set. Each subject must be held in the same
room during the week. This room must be large enough to hold the students
attending the subject. Moreover, a subject should not be assigned to a room at
the periods of time that the room is not available. All the tutorial subjects are
arbitrarily assigned to one of the available classrooms (as long as its constraints
are satisfied). Each practical subject is assigned to the predefined for that
subject laboratory.

• The constraints on the subjects are set. More specifically, only one subject can
be taught in a room at a certain period of time, a teaching staff member can
teach only one subject at a certain period of time, and subjects of the same
teaching year and area must not be scheduled simultaneously.

• The subjects are split into lectures spread in different days in the week.
Phase Four : Values assignment

• The finite domain variables of each one of the three lists are given a value.
There are three ways of labeling, determined by the user choice made at the
data input stage. The labeling type is concerned with the order in which the
three lists of domain variables will be assigned values. The three types of order
currently provided are: days-teaching periods-rooms, teaching periods-days-
rooms and rooms-days-teaching periods. The selection of these types of order
has been made heuristically, as they have been proved more efficient in
yielding a solution from all the possible combinations of the three domain
variable lists.

The labeling process is dominated by an optimization procedure which
takes into account the cost function. This procedure, which is carried out by the

min_max/5 built-in of ECLiPSe, goes as follows: as soon as a solution has been
found, the system is forced to find another solution with less cost than that of
the previous one. This process carries on until no better solution (i.e. with less
cost) can be found or the cost of the last solution found is less than a minimum
threshold defined by the user. In that case the search terminates and the solution
is returned.

Once again there are two types of optimization: the first one ensures that
there will be no subject with "bad" cost (i.e. a subject that does not satisfy the
three optimization criteria at some minimum point) and the second one ensures
that the majority of subjects have a "good" cost (i.e. they satisfy the three
criteria at a satisfactory point) but also permits some subjects with "bad" cost to
exist. In general, the first optimization type yields a balanced solution, while the
second one yields a non-balanced solution. In practice the optimization
procedure in the first case tries to minimize the maximum subject cost, while in
the second case tries to minimize the overall cost that results from the addition
of every subject cost.
When all four phases have been successfully completed the solution is displayed

on the screen or printed on a printer device. In case a solution cannot be found either
because the data are too constrained or because the system cannot estimate the best
solution within a reasonable period of time, the user can terminate the search, relax
the constraints or define a different labeling and/or optimization strategy, and start the
process from the beginning.

4.3 UTSE at Work

For a timetable scheduling system to be complete, a flexible user interface should be

provided, so that the specific requirements of the problem can be stated (subjects,

teaching staff members, rooms available, etc.). UTSE provides such an interface.

The UTSE interface has been developed using the KEGI (Kernel for ECRC

Graphical Interface) and PCE (Programmable Computing Environment) extensions of

ECLiPSe. It is intended to be ported to the Tcl/Tk extension of ECLiPSe as well. The

interface allows the user to define the system parameters as preferred. Not only does it

make it possible for the user to enter the particular subjects, etc. that are to be

scheduled and the constraints regarding teaching staff members' and rooms'

availability, it also enables the dynamic definition of the labeling procedure and the

optimization parameters (weight factors of the cost function as described in the

previous section, and optimality bounds) that will be used when a solution is searched

for.

Figure 1 : Definition of control parameters

Another important feature of UTSE is the possibility provided to the user to

experiment with different types of labeling and optimization, in such a way that the

solution returned by the system is the one that is closest to his/her particular

requirements. For instance, best room utilisation in a day (i.e. most rooms are equally

used for teaching purposes) is achieved when the first or second labeling types (as

referred to in the previous section) are selected. On the other hand, the third labeling

type would proceed by exploiting each room to the full extent of its availability before

trying to schedule lectures in other rooms. As far as the optimization type is

concerned, if relatively small weight factors are assigned to the first and second

optimization criteria, then the best solution returned will be mainly satisfying the third

criterion, possibly leaving the other two partially unsatisfied. Furthermore, to reach a

solution that only considers the third criterion while totally ignoring the other two, one

could simply assign zero weight factors to the first and the second. Figure 1 shows a

snapshot of the UTSE interface regarding the selection of the labeling and

optimization types as well as the definition of the weight factors. Table 1 shows a

typical timetable for one day, as it is generated by UTSE.

Time Period Classroom A Classroom B Classroom C
09:00 - 10:00 Calculus I

(1st year-compulsory)
Electronics I
(2nd year-compulsory)

Operating Systems
(3rd year-compulsory)

10:00 - 11:00 Calculus I
(1st year-compulsory)

Electronics I
(2nd year-compulsory)

Operating Systems
(3rd year-compulsory)

11:00 - 12:00 Algorithm Design
(4th year-basic 2)

Discrete Mathematics
(2nd year-compulsory)

Data Structures
(1st year-compulsory)

12:00 - 13:00 Algorithm Design
(4th year-basic 2)

Discrete Mathematics
(2nd year-compulsory)

Data Structures
(1st year-compulsory)

13:00 - 14:00 Computer Algebra
(4th year-optional 1)

Calculus III
(2nd year-compulsory)

Signal Processing
(3rd year-basic 3)

14:00 - 15:00 Computer Algebra
(4th year-optional 1)

Calculus III
(2nd year-compulsory)

Signal Processing
(3rd year-basic 3)

15:00 - 16:00 Differential Equations
(4th year-optional 1)

Calculus III
(2nd year-compulsory)

Linear Algebra
(3rd year-basic 1)

16:00 - 17:00 Differential Equations
(4th year-optional 1)

Parallel Computers
(4th year-optional 2)

Linear Algebra
(3rd year-basic 1)

17:00 - 18:00 Parallel Computers
(4th year-optional 2)

Mathematical Logic
(3rd year-optional 1)

18:00 - 19:00 Mathematical Logic
(3rd year-optional 1)

Table 1 : Winter semester - Monday’s schedule

With regard to the performance of the system at run-time, UTSE has been tested

on a Sun SPARCclassic X and has yielded most satisfactory results, not only at

respecting the user preferences that had been entered but also at reaching an optimum

solution to the specific timetabling problem. In particular, the system has been used

with a number of 37 subjects, with a total of 135 teaching periods in a week, 31

teaching staff members, 3 classrooms and 3 laboratories to hold lectures, which are

the actual data from the DoI/UoA winter semester schedule. The constraints regarding

teaching staff members' and rooms' availability have been defined in such a way that

the corresponding real-life constraints are represented.

Whenever a solution exists, UTSE can return the first solution within reasonable

time. If some optimization criteria have been specified, the time period required

before reaching the final solution is highly dependent on the optimization type and

bounds selected. Of course the same applies to the selection of a labeling type: the

time performance and the efficiency of each order of labeling vary considerably. In

general, one can expect that a first solution should be reached within 10 minutes.

Experimentation with different input has lead to the conclusion that if a solution is to

be found that satisfies the optimality requested, then the search process should be

successfully terminated within 35-40 minutes. If more time elapses and no satisfactory

solution has been found yet, the system is probably trapped in a search process which

is unlikely to terminate within finite time. Such a case is rather common in problems

where optimality proof (meaning proof that the solution found so far is indeed the

optimal one) is difficult. Therefore the user is prompted to terminate the search

procedure (through the system interface) and alter some of the initial preferences

(labeling and/or optimization type).

5. Discussion

The CLP approach adopted for the development of UTSE is a programming
framework that fits perfectly with the timetabling problem faced by the DoI/UoA, as
well as with any other timetabling problem. The system is quite flexible both from the
implementation and the user points of view. The flexibility in the implementation,
which is actually based on the declarative style of programming supported by CLP,
offers the possibility to easily add more constraints, which might be very different in
nature from the existing ones. Moreover, other optimization criteria may be
programmed and this can be done surprisingly fast. On the other side, the user is
supplied with a graphical user interface through which many kinds of input data may
be given. All the information that describes the data for the specific problem is user
defined (or may be taken from an existing data store). The user has also the
opportunity to give control information, such as the weights of the optimization
criteria and the desirable labeling strategy.

Commenting on the other approaches that have been tried in the past to tackle
the timetabling problem, the following have to be mentioned. The first attempts to
create timetables automatically have been made with the exploitation of OR methods
[Tri80, Meh81, FRo85]. These methods are applied to mathematical formulations of

the problem and lead to very good results, as far as efficiency is concerned. However,
their major problem is that they do not facilitate the maintenance of the resulting code,
since they lead to implementations of special purpose complicated algorithms in
imperative languages. Another approach that has been recently used for the
timetabling problem is based on genetic algorithms [CDM90]. It is a promising
method which models the principles of evolution and has been used in the past for
various kinds of combinatorial problems. As far as its applicability to the timetabling
problem is concerned, quite good results have been produced. However, it is doubtful
whether a timetabling program based on genetic algorithms is easily adaptable to
many specific cases. Logic programming is an approach that overcomes the previously
mentioned problems. It has been used as a platform to support the automatic
construction of timetables [KWh92], but an even better programming framework is
the CLP one. The application of CLP to timetabling is quite new. In [BDP94], the
exam timetabling problem is considered and a solution is presented using CHIP. The
results are satisfactory, however course scheduling is a more difficult problem and it
seems that CLP is fruitful in this case as well. In [ABa94], this latter problem is
described and the way it is solved using an extension of CHIP is presented. However,
what has not been tackled so far and is covered by the UTSE system presented in this
paper is the construction of optimum course timetables. The optimality refers to the
generation of the best timetable, concerning some criteria of quality. In some other
systems, the term "optimum" is used to denote a solution with a minimum number of
constraint violations. In UTSE, all constraints are respected, both the internal ones and
those stated by the user.

The UTSE system has been used to compose the timetables of the winter and
spring semesters of the DoI/UoA. The performance is very good and the quality of the
proposed solutions is of a very high degree. The timetables constructed by UTSE are
similar or even better to the ones composed manually by the human timetabler so far
and, what is more, in much less time.

As it happens with every real-world system, there is much space for
improvements in UTSE. For instance, if the assumptions made for the development of
UTSE were to be modified, then the system should be altered to satisfy any new
requirements. Subjects could be split into weekly lectures in a particular way, or the
constraints imposed concerning conflicts of lectures might be altered. Since ECLiPSe
allows for such preferences and constraints to be stated explicitly, without affecting
other parts of the system, such as labeling and optimization procedures, UTSE could
be expanded with relatively little effort.

Furthermore, the optimization criteria that are being used in the evaluation of
the cost function could also be modified. For example, another factor that might be

taken into consideration when evaluating the optimality of a solution, is concerned
with the minimum movement of lectures that fall under the same teaching year and/or
subject area from one room to another, so that students do not have to waste time
going from one lecture to another.

Finally, a more complex adaptation that could be considered would be the
construction of a timetable that satisfies some constraints and optimization criteria,
but does not start from scratch. If some timetable already exists, the system should try
to satisfy any new requirements by effecting as few changes to the existing timetable
as possible.

To conclude this discussion, there are some points that have to be mentioned as
well. The first is that the term "timetabling problem" refers to a general class of
problems and cannot be defined precisely in a way applicable to every special case.
The development of a universal timetable construction system would be indeed
desirable, but is seems rather difficult that this might be achieved. The focus of
attention should be to implement easily portable systems and this is feasible if the
underlying technology facilitates it. The authors' opinion is that in this direction CLP
is indispensable.

Another issue is whether there is a need for constraint relaxation in timetabling
problems. This is completely dependent on the specific case under consideration. If
the problem that has to be solved is much constrained, the likelihood of unfeasibility,
and thus the need for constraint relaxation, is high. However, as it has been found for
the DoI/UoA, it is not very probable that a feasible timetable cannot be constructed.
The most common case is the existence of many solutions, the majority of which are
rather bad. Consequently, the problem is to find the best solution, or at least a very
good one, even if this is very well hidden inside the huge search space.

A final remark is that a current trend is to develop interactive systems for
timetable construction [CdW89]. The reason for this is that sometimes humans do not
like to be scheduled by machines. This is true mainly in cases where computers are
not widely accepted. An advantage of the interactive systems is that the expert might
assist the program to produce even better results. For example, for the construction of
optimum timetables, it is not very easy to quantify the quality of solutions and,
sometimes, a human timetabler might judge more reasonably whether one timetable is
better than another.

6. Conclusions

In this paper, the well-known timetabling problem is discussed and a specific system,
called UTSE, that constructs optimum timetables for university courses is presented.

UTSE has been implemented in ECLiPSe, a language that combines the logic
programming paradigm with constraint satisfaction techniques. The timetabling
problem, being a constraint satisfaction one, is mapped naturally to the constraint
facilities provided by ECLiPSe. Moreover, the modelling of the problem under
consideration profits a lot from the declarative style of programming which is
supported by ECLiPSe.

The UTSE system that has been presented is a real-world one and is currently in
use by the Department of Informatics of the University of Athens. It is a very flexible
system, since it allows the user not only to define the basic problem data (subjects,
teaching staff members, rooms, constraints, etc.) but also to control various run-time
parameters. Such parameters include the weights of the optimization criteria, the order
of variable enumeration, etc. All input data are given through a graphical user
interface, thus providing easy access to the system even by the non-expert.

The performance of UTSE is quite satisfactory, considering that it is a program
that has to run once or twice a year for the construction of the timetable of an
educational organization. Some improvements which are currently under development
will certainly enhance the system's functionality.

References

[ABa94] F. Azevedo, P. Barahona: Timetabling in Constraint Logic Programming.

Proceedings of the World Congress on Expert Systems '94, 1994.

[BMc79] S. Bloomfield, M. McSharry. Preferential Course Scheduling. Interfaces,

9:24-31, 1979.

[BDP94] P. Boizumault, Y. Delon, L. Peridy. Planning Exams Using CLP.

Proceedings of the 2nd International Conference on the Practical
Applications of Prolog, pages 79-93, London, 1994.

[CdW89] N. Chahal, D. de Werra. An Interactive System for Constructing Timetables

on a PC. European Journal of Operational Research, 40:32-37, 1989.

[CDM90] A. Colorni, M. Dorigo, V. Maniezzo. Genetic Algorithms: A New

Approach to the Time-Table Problem. Lecture Notes in Computer Science
- NATO ASI Series, Vol. F82, Combinatorial Optimization, pages 235-239,
Springer Verlag, 1990.

[dWe85] D. de Werra. An Introduction to Timetabling. European Journal of
Operational Research, 19:151-162, 1985.

[Dv+88] M. Dincbas, P. van Hentenryck, H. Simonis, A. Aggoun, T. Graf, F.

Berthier. The Constraint Logic Programming Language CHIP. Proceedings
of the International Conference on Fifth Generation Computer Systems,
pages 693-702, Tokyo, 1988.

[ECL93] ECLiPSe User Manual, ECRC, 1993.

[FRo85] J. Ferland, S. Roy. Timetabling Problem for University as Assignment of

Activities to Resources. Computers and Operations Research, 12(2):207-218,
1985.

[FH+92] T. Fruhwirth, A. Herold, V. Kuchenhoff, T. Le Provost, P. Lim, E. Monfroy,

M. Wallace. Constraint Logic Programming - An Informal Introduction.
Lecture Notes in Computer Science, Vol. 636, Logic Programming in
Action, pages 3-35, 1992.

[Got62] C. Gotlieb. The Construction of Class-Teacher Timetables. Proceedings of

the IFIP Congress, pages 73-77, Amsterdam, 1962.

[Joh93] D. Johnson. A Database Approach to Course Timetabling. Journal of the

Operational Research Society, 44(5):425-433, 1993.

[KWh92] L. Kang, G. White. A Logic Approach to the Resolution of Constraints in

Timetabling. European Journal of Operational Research, 61:306-317, 1992.

[Law69] N. Lawrie. An Integer Programming Model of a School Timetabling

Problem. Computer Journal, 12:307-316, 1969.

[Meh81] N. Mehta. The Application of a Graph Coloring Method to an Examination

Scheduling Problem. Interfaces, 11:57-64, 1981.

[Tri80] A. Tripathy. A Lagrangian Relaxation Approach to Course Timetabling.

Journal of the Operational Research Society, 31:599-603, 1980.

[vHe89] P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, 1989.

[YK+94] M. Yoshikawa, K. Kaneko, Y. Nomura, M. Watanabe. A Constraint-Based

Approach to High-School TimeTabling Problems: A Case Study.
Proceedings of the Twelfth National Conference on Artificial Intelligence
AAAI-94, Seattle, 1994

