
PETINA :PErsonalized Tourist INformation AdvisorCostas Halatsis Maria Katzouraki� Michael HatzopoulosPanagiotis Stamatopoulos� Isambo Karali Costas MourlasManolis Gergatsoulis� Evangelos PelecanosUniversity of AthensDepartment of InformaticsPanepistimiopolis, TYPA Buildings157 71 - AthensAbstractPETINA is a PErsonalized Tourist INformation Advisor system about Greece aiming tohelp tourists to construct tours satisfying speci�ed constraints. PETINA is going to beimplemented in the ElipSys language, a parallel logic programming language under develop-ment. As it tries to solve a combinatorial searching problem, various ElipSys features, suchas data-parallelism, data driven computation and constraint satisfaction techniques, can beexploited e�ciently. Moreover, as it consults a large database containing tourist data, theexternal database connection facility of ElipSys is exploitable as well.1 IntroductionIn the following, we are going to present part of our contribution to the ESPRIT ProjectEP2025, European Declarative System (EDS). The project's duration is 4 years (1989-1992)and it is a collaboration between BULL (France), ICL (UK), SIEMENS (Germany) andECRC (Europe). A number of other European companies and universities are also involved,including the Athens University as an associate partner of ECRC. The target of the EDSproject is to design and implement both the hardware and the software for a parallel infor-mation server. The EDS machine is a message passing multiprocessor with distributed store.It consists of 4 to 256 Processing Elements (PEs), each one containing 64M to 2G bytes ofmemory. Three declarative programming paradigms are supported, namely database, Lispand logic programming. ElipSys is the parallel logic programming subsystem that aimsat the development of complex applications. OR-parallelism, data-parallelism, data driven�NRCPS \Democritos", 153 10 - Aghia Paraskevi, Attiki1

computation, constraint satisfaction through �nite domains and an interface to the EDSdatabase server are some of the main characteristics of the ElipSys language.PETINA system [HKH+90] is a PErsonalized Tourist INformation Advisor about Greece.It takes as input user wishes about tour generation, expressed as constraints over visits'properties. Its output is tours satisfying the user's constraints, as sets of activities and assets of events. Activities are considered to be the tourist's visits to various spots, whileevents are shows that the tourist may attend. The user is also allowed to ask for informationabout the activities and events, as well as about the geographical division of Greece. All theinformation PETINA requires to work is stored in a database. Management of this databaseis also supplied by the system.PETINA is roughly based on existing prototypes developed at ECRC, namely TInA[Ing88] and TIA [Ing87b]. The application is going to be implemented in the ElipSys language[BCDR+89, BCDR+90, DRSX90].In this paper, PETINA's database structure, the system's functional and structural spec-i�cations as well as an outline of the implementation of some signi�cant parts of the systemin Sepia [Sep90] and PEPSys [RR86] are presented. Sepia is a sequential logic programmingsystem, though PEPSys is a parallel one that supports OR-parallelism and independentAND-parallelism, both developed at ECRC.2 PETINA's DatabaseThe system's database consists of the activities' and events' instances as well as the sites'ones. In the database, there also exist an activity and an event tree. The activity andevent instances are linked to nodes of the corresponding trees. On the other hand, the siteinstances themselves compose a site tree.Instances are characterized by their attributes. However, these attributes possibly alsocharacterize nodes of the activity tree and event tree, though these nodes do not representinstances. Their values are considered to be the default ones of the instances linked eitherdirectly or not to these nodes, if no other value is speci�ed explicitly.The database is implemented as a Prolog database, though, when ported to ElipSys,instance information will be implemented using a relational database to be handled by ESQL[GVB+89]. ESQL is the EDS Extended SQL system, accessible by ElipSys through aninterface.2.1 Activity InformationThe nodes of the activity tree represent activity categories. The tree's organization is basedon interest hierarchy. The ElipSys implementation of the activity tree is carried out by theactivity ako/2 predicate. The implementation of a part of the tree is:activity_ako(package_tour(1),general_activity(1)).activity_ako(activity(1),general_activity(1)).activity_ako(historical_place(1),activity(1)).activity_ako(ancient_history_place(1),historical_place(1)).activity_ako(historical_site(1),ancient_history_place(1)).activity_ako(wall(1),historical_site(1)).activity_ako(quarry(1),historical_site(1)).

A special node of the tree, namely the package tour(1) node, includes instances whichare prede�ned tours rather than single activity instances. These tours are considered prede-�ned in the sense that they are available as package tours by Greek travel agencies.Activity categories whose instances have various kinds of interest are represented by morethan one tree nodes, denoted with the same keyword but with di�erent indices. In this waywe implement a graph idea with a tree structure. Activity instances can be linked to morethan one nodes according to the types of interest they present or according to the categoriesthey belong to. The links between the activity instances and the activity tree nodes areimplemented by the activity isa/2 predicate, e.g.:activity_isa(ainst00001,museum(1)).activity_isa(ainst00001,museum(4)).activity_isa(ainst00001,building(1)).An activity instance is characterized by its attributes. These attributes are the following:site: The site where the activity instance is. Its value is a node of the site tree.denomination: The name of the instance.duration: An estimate of the time needed to spend in the instance, in minutes.cost: The entrance cost of the instance.time period: The time period when it is possible to visit the instance.closed days: The list of days when the instance is closed.interest: The list whose elements express the amount of speci�c kinds of interest the in-stance presents. A kind is denoted in terms of a functor that corresponds to an activitytree node that is considered as interest node. For every kind of interest appearing inthe list, the instance has to be linked, either directly or indirectly, to the correspondingnode as well.detail: Informative data about the instance.The above are implemented by predicates of arity 2. To illustrate them, taking theexample of ainst00001, their implementation is:activity_site(ainst00001,'Corfou').activity_denomination(ainst00001,'Archeological Museum of Corfou').activity_duration(ainst00001,60).activity_cost(ainst00001,200).activity_time_period(ainst00001,from_to('01 Jan','31 Dec')).activity_closed_days(ainst00001,['Saturday']).activity_interest(ainst00001,[ancient_history_place(6),culture(8),modern_year_history_place(6)]).activity_detail(ainst00001,'Archaic sculptures - Silver coins').

2.2 Event InformationThe event tree nodes correspond to event categories. The tree's organization is based onevent type hierarchy. The ElipSys implementation of the event tree is carried out by theevent ako/2 predicate, e.g.:event_ako(ancient_drama,cultural_event).The structure of the event tree is simpler than the one of the activity tree. A pure treeidea is reected, so there are no indexed nodes. The links between the event instances andthe event tree nodes are implemented by the event isa/2 predicate, e.g.:event_isa(einst00001,ancient_drama).In contrast to the activity instances, event instances cannot be linked to more than oneevent tree nodes.An event instance is characterized by its attributes. These attributes are the following:site: The site of the spot where the event instance takes place. Its value is also a node ofthe site tree.denomination: The name of the instance.duration: The time needed to attend the instance.cost: The entrance cost of the instance.time period: The time period when the event is active.interest: It represents the amount of interest of the instance. It is a single valued attribute,in contrast to the list valued corresponding attribute of activity instances.takes place: The spot where the instance takes place.series: The series of events where the instance is featured in.detail: Informative data about the instance.The above are implemented by predicates of arity 2 in a similar way to the activityinstances' attributes, e.g.:event_site(einst00001,'Epidaurus').event_denomination(einst00001,'Oedipus at Colonus').event_duration(einst00001,120).event_cost(einst00001,1300).event_time_period(einst00001,from_to('14 Jul 89','15 Jul 89')).event_interest(einst00001,10).event_takes_place(einst00001,'Ancient Theatre of Epidaurus').event_series(einst00001,'Epidaurus Festival 1989').event_detail(einst00001,'Performed by: National Theatre of Greece -Written by: Sophocles - Directed by: A. Minotis').

2.3 Site InformationThe nodes of the site tree are site instances. The tree hierarchy reects a site inclusionrelation. The site tree is implemented in ElipSys by the belongs/2 predicate. A part of thesite tree, as implemented in the system, is the following:belongs('Greek islands','Greece').belongs('Aegean sea islands','Greek islands').belongs('Cyclades','Aegean sea islands').belongs('Paros','Cyclades').belongs('Paraika','Paros').belongs('Naoussa','Paros').belongs('Amorgos','Cyclades').belongs('Katapola','Amorgos').belongs('Dodecanese islands','Aegean sea islands').belongs('Rhodes','Dodecanese islands').belongs('Crete','Aegean sea islands').The site attributes are the following:type: The type of the site, i.e. island, village, city, province etc.accommodation: An estimate of the site's accommodation capability.approachability: An estimate of how easily the site can be reached from Athens by publictransports.entertainment: An estimate of the site's entertainment facility.tour availability: An estimate of the site's capability in prede�ned tours.eating facilities: An estimate of the site's eating facility.detail: Informative data about the site.The implementation of the above attributes, taking an example of a speci�c site, is asfollows:site_type('Dodecanese islands',island_group).site_accommodation('Dodecanese islands',8).site_approachability('Dodecanese islands',7).site_entertainment('Dodecanese islands',8).site_tour_availability('Dodecanese islands',8).site_eating_facilities('Dodecanese islands',9).site_detail('Dodecanese islands','SE Greece - Ancient and middleages history - Hot and sunny -Heavily crowded during summertime').In order to provide a means of accessing the names of the sites that satisfy a speci�c siteinformation query, the following fact is su�cient:

site_denomination(Site,Site).Another data structure which may be implemented in PETINA is a transportation graph.This could provide informative data about the types of transportation between sites, fre-quency of transportation, distances in Kms etc. We do not intend to allow the user toexpress constraints involving these data.3 Functional Speci�cationsPETINA's Functional Speci�cations are shown in Figure 1. The user can be either a touristor the database administrator.The tourist is allowed to give to the system tour generation requests or informationretrieval queries. The tour generation requests refer to either the activity or event tourgenerations. These tours are either sets of activity or event instances respectively. Thesystem's answers to information retrieval queries possibly help the tourist to determine theconstraints.The administrator, apart from the above requests, may give to the system databaseadministration commands. However, only these and the information retrieval queries areuseful to his/her task.In the current implementation, we consider an approach for the user's communicationwith the system through a formal language. However, in the future we intend to develop amore friendly interface.3.1 Tour GenerationThere are two kinds of tours the system produces. Consequently, there are two kinds of tourgeneration requests the user may express. The one concerns the activity tour generation andthe other the event tour generation. In both cases, at the beginning of the request, the userhas to give a time constraint concerning the time period when his/her visit is going to takeplace in order to avoid visiting spots that are inactive. The other part of the request is aset of activity or a set of event constraints that the solutions have to satisfy. A constraintmay be either simple or cross. A simple constraint is satis�ed in case a property of a set ofinstances holds. This property may refer to every instance of the set or to the entire set asa whole. A special property is the number of instances in a set. On the other hand, a crossconstraint involves comparison between properties of two sets.Examples:1. visit period is 2 Aug 89 - 2 Sep 89 &site in ["Athens","Crete"] for activity &number between [4,6] for activity &number < 3 for museum with modern year history place interest &cost < 100 for gallery where interest < 5 &number = 1 for temple where denomination in ["Parthenon"] &sum(cost) < 1000 for beach, spring &max(duration) < 60 and interest > 6 for historical collection &number for church > number for mosque.The last constraint of the request is a cross one, while all the other are simple.

'& $%PETINA
Tourist@@@@@@@@@Rinforequest@@@@@@@@@Rtourrequest Tourist����������sortedtours����������touristinfo

Administrator����������db admrequest����������inforequest Administrator@@@@@@@@@Rmessage@@@@@@@@@Rtouristinfo
Tourist db?db data

6
db data

Figure 1: PETINA's Functional Speci�cations

2. visit period is 2 Jun 89 - 20 Jun 89 &site in ["Macedonia"] for event &site in ["Thessaloniki"] for festival movie &number = 4 for event &takes place in ["Philippi theatre"] for ancient drama &min(duration) > 90 or not avg(cost) between [250,350]for festival movie.3.2 Information RetrievalThe system is able to supply information about activity or event instances and their at-tributes. Moreover, it can provide activity and event tree information as far as their struc-tures are concerned. Finally, the user can be informed about the links between activity orevent instances and the corresponding tree nodes.Examples:1. cost for museum where site in ["Athens"].2. avg(duration) for festival movie.3. number for church, monastery.4. kinds of cultural event.5. whose kind is building.6. instances of local celebration.7. what activity is "Goulandris museum".Another facility the system provides is information about sites. This is considered veryimportant as the user may not be familiar with the geography of Greece. The user may askfor information about site instances and their attributes. Furthermore, information aboutthe site inclusion relation can be obtained.Examples:1. denomination in the area of "Aegean sea islands"where type = island and accommodation > 8.2. max(entertainment) in the area of "Crete" where type = city.3. what is included in "Macedonia".4. where is "Naoussa".

3.3 Database AdministrationWe allow the administrator to perform three kinds of operations on the database, namelydeletion, insertion or update of its contents.He/she may delete either instances of the database or nodes of the activity or event tree.Examples:1. delete instances for cathedral, mosque.2. delete fair.3. delete in the area of "Amorgos" where type = townand accommodation < 6.He/she may make insertions of either instances or tree nodes. New instances may beinserted, linking them with speci�ed tree nodes. In addition, activity instances may belinked with other tree nodes as well, apart from the ones they were linked with so far. Asfar as trees are concerned, new nodes may be inserted under a speci�ed node.Examples:1. insert denomination = "Naxos", type = island,accommodation = 8 at site "Cyclades".2. share with building with architectural place interest instancesfor museum where denomination in ["Goulandris museum"].3. insert palace at node historical sitewith ancient history place interest.The administrator may update values of attributes both of instances and nodes. Inaddition, he/she may rename nodes of the trees or move nodes under another one. Finally,instances may be moved from the node they were linked with so far to another di�erent one.Examples:1. set default cost = 0 at node church.2. set interest = 10, duration = 150 for festival moviewhere denomination in ["Sweet gang"].3. set entertainment = 8 in the area of "Ionian sea islands"where type = island.4. rename park to garden.5. move to cultural event the node local celebration.6. move to cultural event instances for festival movie.Integrity constraints are de�ned which the database has to satisfy after executions ofdatabase administration commands. These constraints concern the type of attribute values,their range etc. Moreover, a minimal set of attributes is de�ned as compulsory to be providedin case a new instance is inserted.

4 Structural Speci�cationsPETINA (Figure 2) consists of various modules to carry out its di�erent functions. Thesemodules are:� User Interface� Tour Generation Engine� Information Retrieval Engine� Database Administration EngineThe User Interface module is responsible for the user-system communication. The TourGeneration Engine, the most important module of the system, generates activity and eventtours satisfying the user's constraints. The Information Retrieval Engine supplies the in-formation the user asked for. Finally, the Database Administration Engine manages thedatabase contents.From now on, we concentrate on the Tour Generation Engine module, as it carries outthe main function of PETINA and its signi�cant complexity requires the exploitation of avariety of ElipSys features.The Tour Generation Engine (Figure 3) consists of the following modules:� Tour Generation Parser� Domains Creator� Con�gurator� Database Filter� Tour Generator� Tour EvaluatorThe Tour Generation Parser transforms the request into structures suitable for furtherprocessing. The Domains Creator partitions the appropriate tree (activity or event) intodomains in such a way that no two domains have the same set of constraints applied tothem. The Con�gurator produces all possible con�gurations for the solutions, taking intoaccount constraints that refer to desired number of instances that have a speci�c property.The Database Filter determines the candidate instances for the solution by rejecting ones thatdo not satisfy the constraints that are applied to individual instances. The Tour Generatorproduces all tours, according to the con�gurations, that satisfy the user's constraints. Finally,the Tour Evaluator arranges the generated tours taking into account some criteria, currentlythe average interest.

'& $%UserInterface?tour request ?info request ?db adm request�sorted tours�tourist info�message
'& $%InformationRetrievalEngine?formalinfo request� formaltourist info �db data

'& $%DatabaseAdministrationEngine?formaldb admrequest
6
formalmessage

-db data6 db data '& $%TourGenerationEngine

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU
formaltourrequest

AAAAAAAAAAAAA
AAAAAAAAAAAAA

AAAAK formalsortedtours
�db data

Figure 2: The PETINA System

'& $%TourGenerationParser?formaltour request

-

conddescrs ?nodesdescrs @@@@@@@@@@@@@@@@@@Rconddescrs
-cond descrs '& $%Con�gurator

?con�gs'& $%DomainsCreator���������
���������dids

�������� �����������topoappl
-glob mxd appl

?domains
'& $%TourGenerator �db data

?tours'& $%DatabaseFilter ���������
����������fdbase

6 db data '& $%TourEvaluator �db data?sorted toursFigure 3: The Tour Generation Engine module

5 Implementation IssuesIn this paragraph, we discuss about the implementation of the Tour Generation Engine. Thesequential implementation in Sepia [Sep90] was carried out in such a way that eventually willbe ported in ElipSys [BCDR+89, BCDR+90, DRSX90] with the least modi�cations. TheSepia 3:0 version was used running on a SUN 3/60 workstation under SunOS 4:0.In order to achieve a better execution time, the delay mechanism of Sepia was usedin various parts of the system. This mechanism introduces a data driven reduction ruleon top of the depth-�rst left-to-right execution strategy of Prolog. Using this mechanism,there is a possibility to modify the reduction order of goals according to data dependencies.This is achieved by declaring some procedures to delay execution if a condition holds. Thismechanism is o�ered in ElipSys as well [Rat89].Another feature of ElipSys that improves the system's performance is constraint satis-faction techniques [vH89]. The use of these techniques leads to a priori pruning of the searchspace, thereby resulting in more optimized execution. Constraints are used by the program-mer to express relationships between objects of �nite domains. These constraints reduce thesearch space in such a way that they hold at any moment as the reduction process proceeds.Finally, we pro�t a lot from the ElipSys parallelism. More precisely, a special kindof it, data-parallelism [Heu89], is suitable for our case. Data-parallelism stands for theconcurrent treatment of the elements of a set of data. This kind of parallelism is supportedin ElipSys by a set of built-in predicates. In order to experiment and measure the potentialparallelism, we implemented part of the system in PEPSys [RR86] as well, using the COKEtool [Ing87a, HI89]. As data-parallelism is not supported by PEPSys, we simulated it byde�ning the appropriate predicates and declaring them to be executed in parallel.In the following, we highlight the most interesting parts of the implementation of themodules the Tour Generation Engine consists of.5.1 Tour Generation ParserThe Tour Generation Parser takes as input a formal tour request and transforms it into aform suitable for further processing using a De�nite Clause Grammar (DCG) [PW80].The condition of a simple constraint may be a complicated logical expression containingthe operators \and", \or" and \not". This expression is transformed into conjunctive normalform, producing in this way a set of constraints that involve conditions which do not containthe operator \and". We also eliminate the operator \not" by inversing the condition relation.Thus, we end up with a set of simple constraints that each one involves a logical expressionwhich contains at most the operator \or". After this process, in case all the conditions of asimple constraint apply to individual activity instances, the constraint is named local. If allof them apply to an entire set of instances, the constraint is named simple global. However,if they refer to numbers of the instances in a set, the constraint is named simple topological.Finally, if none of the above holds, the constrained is named mixed.On the other hand, cross constraints do not require the previous processing and re�ne-ment, since they represent just a binary relation between properties of two sets. They aredistinguished into cross global and cross topological, depending on the kind of the properties.

5.2 Domains CreatorThe Domains Creator partitions the activity or event tree into domains relating every domainwith the set of constraints that applies to it. This partitioning is based on global andtopological constraints, both simple and cross, as well as on the mixed ones. Each domain isfurther partitioned into �ne domains according to the local constraints. The above processis carried out in two passes.5.3 Con�guratorThe Con�gurator produces all possible con�gurations of the tours. This module, taking intoaccount the topological constraints, both simple and cross, generates and solves a system oflinear equalities and inequalities. A solution to this system, that is a con�guration, representsacceptable numbers of instances per domain in a tour satisfying the user's constraints.A system of linear equalities and inequalities can be solved e�ciently using constraintsatisfaction techniques. ElipSys supplies this facility. However, Sepia 3:0 doesn't, so weexploited the delay mechanism of the language, though this mechanism, in this case, is notas e�cient as the former one.5.4 Database FilterThe Database Filter consults the database and selects the instances that satisfy the localconstraints. Instances are selected for every node re�ned by its \where" property to buildthe instances of a �ne domain. Then, such sets are structured to form the instances of adomain, leading �nally to the composition of the �ltered database.For this module, a parallel version was implemented as well. Parallelism was exploited inthree levels, the concurrent processing of domains, �ne domains and nodes re�ned by their\where" properties. The kind of parallelism encountered is data-parallelism. For a demorequest, the speedup achieved was 6:66 ni=et (number of inferences / execution time).5.5 Tour GeneratorThe Tour Generator is the most important part of PETINA. It is the module where theactual tours are constructed. It selects instances from the �ltered database to �ll the slotsin the con�gurations. Thus, a candidate tour is constructed. This tour is accepted, if itsatis�es the simple global, cross global and mixed constraints.The output of the Tour Generator is a list of lists of instances. Each list of instancesrepresents an acceptable tour.The method used for the construction of tours is test-and-generate implemented using thedelay mechanism of Sepia. Although this mechanismmay be also used in ElipSys, constraintsatisfaction techniques may lead to a better performance.The main source of parallelism of the whole system exists in this module. For this reason,we also implemented this module in PEPSys. There are two parts where parallelism can bee�ciently exploited. Firstly, we process all possible con�gurations concurrently and secondly,and mostly, we select all possible instances to build a subtour for the corresponding domainin parallel. In both cases, the kind of parallelism is again data-parallelism. For the demorequest, the speedup achieved was 141:61 ni=et. The main source of this speedup was dueto the parallel selection of instances.

5.6 Tour EvaluatorThe Tour Evaluator takes as input the tours produced by the Tour Generator and sorts themin descending order according to their average interest. In the near future, better evaluationcriteria may be taken into account.6 ConclusionsIn the above we presented PETINA's database structure, the system's functional and struc-tural speci�cations and an outline of the implementation of the most signi�cant part of thesystem.PETINA is a PErsonalized Tourist INformation Advisor about Greece consulting a largedatabase that contains tourist data. The application is suitable to be developed in a parallelenvironment, as it tries to solve a combinatorial searching problem.The system is intended to be implemented in the ElipSys language, a parallel logicprogramming language under development, pro�ting from its parallelism as well as otherfeatures it o�ers. The most important and cumbersome part of the system has been alreadyimplemented in a sequential logic programming system, Sepia. Parts of it, where parallelismcan be e�ciently exploited, were also implemented in PEPSys, a parallel logic programminglanguage. The exploitable parallelism is data-parallelism that ElipSys supports. In thecurrent implementation the delay mechanism of Sepia was found to be indispensable. Sucha mechanism is provided by ElipSys as well. In addition, constraint satisfaction techniques,also supported by ElipSys, may dramatically improve PETINA's performance.Taking into account the above, we believe that although we deal with a tourist databasefor a whole country and the search space seems to increase considerably, ElipSys featureswill help to overcome problems due to the complexity of the algorithms needed.References[BCDR+89] U. Baron, A. Cheese, S. Delgado-Rannauro, P. Heuz�e, M.-B. Ib�a~nez-Espiga,and M. Ratcli�e. A �rst de�nition of the ElipSys logic programming language.Technical Report Elipsys/005e, ECRC, September 1989.[BCDR+90] U. Baron, A. Cheese, S. Delgado-Rannauro, P. Heuz�e, M.-B. Ib�a~nez-Espiga,and M. Ratcli�e. The ElipSys logic programming language. Technical ReportCA-53, ECRC, February 1990.[DRSX90] S. Delgado-Rannauro, K. Schuerman, and J. Xu. The ElipSys computationalmodel. Technical Report CA-51, ECRC, February 1990.[GVB+89] G. Gardarin, P. Valduriez, M. B�erard, L. Chen, O. Gerbe, M. Lopez, andJ. Mondelli. ESQL: An Extended SQL with Object Oriented and Deductive Ca-pabilities. Project Deliverable EDS.DD.11B.0910, INFOSYS, December 1989.[Heu89] P. Heuz�e. Using Data-Parallelism in the ElipSys. Internal Report ElipSys-003,ECRC, June 1989.

[HI89] P. Heuz�e and B. Ing. COKE: User manual 1.0. Internal report, ECRC, February1989.[HKH+90] C. Halatsis, M. Katzouraki, M. Hatzopoulos, P. Stamatopoulos, I. Karali,C. Mourlas, M. Gergatsoulis, and E. Pelecanos. PETINA: PErsonalized TouristINformation Advisor|Speci�cations. Project Deliverable EDS.WP.9E.A003,University of Athens, January 1990.[Ing87a] B. Ing. COKE|An analysis tool for PEPSys programmes. Internal Report 23,ECRC, October 1987.[Ing87b] B. Ing. Tourist information advisor: A case study of an application in PEPSys.Internal Report PEPSys/15, ECRC, April 1987.[Ing88] B. Ing. Tourist information advisor|A case study of an application inPEPSys|Final report. Internal Report PEPSys-32, ECRC, September 1988.[PW80] F. Pereira and D. Warren. De�nite clause grammars for language analysis|Asurvey of the formalism and a comparison with augmented transition networks.Arti�cial Intelligence, 13(3):231{278, 1980.[Rat89] M. Ratcli�e. On the use of the delay in ElipSys Prolog. Technical Reportelipsys/001, ECRC, June 1989.[RR86] M. Ratcli�e and P. Robert. PEPSy: A Prolog for parallel processing. TechnicalReport CA-17, ECRC, April 1986.[Sep90] Sepia 3.0 User Manual, June 1990.[vH89] P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,1989.

