
Summarizing Reports on Evolving Events;
Part I: Linear Evolution

Stergos D. Afantenos and Vangelis Karkaletsis
National Center for Scientific Research (NCSR) “Demokritos”, Greece

{stergos,vangelis}@iit.demokritos.gr

Panagiotis Stamatopoulos
Department of Informatics, University of Athens, Greece

takis@di.uoa.gr
Abstract

We present an approach for summarization from mul-
tiple documents which report on events that evolve
through time, taking into account the different docu-
ment sources. We distinguish the evolution of an event
into linear and non-linear. According to our approach,
each document is represented by a collection of mes-
sages which are then used in order to instantiate the
cross-document relations that determine the summary
content. The paper presents the summarization system
that implements this approach through a case study on
linear evolution.

1 Introduction
With the advent of the Internet, access to many sources of
information has now become much more easier. One prob-
lem that arises though from this fact is that of the informa-
tion overflow. Imagine, for example, that someone wants
to keep track of an event that is being described on various
news sources, over the Internet, as it evolves through time.
The problem is that there exist a plethora of news sources
that it becomes very difficult for someone to compare the
different versions of the story in each source. Furthermore,
the Internet has made it possible now to have a rapid re-
port of the news, almost immediately after they become
available. Thus, in many situations it is extremely difficult
to follow the rate with which the news are being reported.
In such cases, a text summarizing the reports from various
sources on the same event, would be handy. In this pa-
per we are concerned with the automatic creation of sum-
maries from multiple documents which describe an event
that evolves through time. Such a collection of documents
usually contains news reports from various sources, each of
which provides novel information on the event as it evolves
through time. In many cases the sources will agree on the
events that they report and in some others they will adopt
a different viewpoint presenting a slightly different version
of the events or possibly disagreeing with each other. Such
a collection of documents can, for example, be the result of
a Topic Detection and Tracking system (Allan et al. 98).

The identification of similarities and differences between
the documents is a major aspect in Multi-document Sum-
marization (Mani 01; Afantenos et al. 05a; Afantenos et
al. 05b). (Mani & Bloedorn 99), for example, identify
similarities and differences among pairs of isolated docu-
ments by comparing the graphs that they derive from each
document, which are based heavily on various lexical cri-
teria. Our approach, in contrast, does not take into con-
sideration isolated pairs of documents, but instead tries to

identify the similarities and differences that exist between
the documents, taking into account the time that the inci-
dents occurred and the document source. This enables us
to distinguish the document relations into synchronic and
diachronic ones. In the synchronic level we try to identify
the similarities and differences that exist between the var-
ious sources. In the diachronic level, on the other hand,
we try to identify similarities and differences across time
focusing on each source separately.

Another twofold distinction that we made through our
study (Afantenos et al. 05b) concerns the type of evolu-
tion of an event, distinguishing between linear and non-
linear evolution, and the rate of emission of the vari-
ous news sources, distinguishing between synchronous and
asynchronous emission of reports. Figure 1 depicts the ma-
jor incidents for two different events: a linearly evolving
event with synchronous emission and a non-linearly evolv-
ing one with asynchronous emission of reports. Whereas
in the linearly evolving events the main incidents happen
in constant and possibly predictable quanta of time,1 in the
non-linear events we can make no predictions as to when
the next incident will occur. As you can see in Figure 1
we can have within a small amount of time an explosion of
incidents followed by a long time of sparse incidents, etc.

e e e e e e e e e eeeeeeeeeeee e

u uuu u u uu uu u u uu
e e e e e

u u u u u u u u u u u

e e e e ee e e e e e e

Linear Evolution

Non-linear Evolution

Asynchronous Emission

Synchronous Emission

Figure 1: Linear and Non-linear evolution

In order to represent the various incidents that are de-
scribed in each document, we introduce the notion of mes-
sages. Messages are composed from a name, which reflects
the type of the incidents, and a list of arguments, which take
their values from the domain ontology. Additionally, they

1This means that if the first news story q0 comes at moment t0,
then we can assume that for each source the story qn will come at
time tn = t0 + n ∗ t, where t is the constant amount of time that
it takes for the news to appear.

have associated with them the time that the message refers
to, as well as the document source.

The distinction between linear and non-linear evolution
affects mainly the synchronic relations, which are used in
order to identify the similarities and differences between
two messages from different sources, at about the same
time. In the case of linear evolution all the sources report
in the same time. Thus, in most of the cases, the incidents
described in each document refer to the time that the doc-
ument was published. Yet, in some cases we might have
temporal expressions in the text that modify the time that a
message refers to. In such cases, before establishing a syn-
chronic relation, we should associate this message with the
appropriate time-tag. In the case of non-linear evolution,
each source reports at irregular intervals, possibly mention-
ing incidents that happened long before the publication of
the article, and which another source might have already
mentioned in an article published earlier. In this case we
shouldn’t rely any more to the publication of an article, but
instead rely on the time tag that the messages have (see
section 2). Once this has been performed, we should then
establish a time window in which we should consider the
messages, and thus the relations, as synchronic.

In the following section, we make more concrete and
formal the notion of the messages and relations. In sec-
tion 3 we briefly present our methodology and describe its
implementation through a particular case study. Section 4
presents in more detail the related work, and section 5 con-
cludes presenting ongoing work on non-linear summariza-
tion and our future plans.

2 Some Definitions

In our approach (Afantenos et al. 05b; Afantenos et al. 04)
the major building blocks for representing the knowledge
on a specific event are: the ontology which encodes the ba-
sic entity types (concepts) and their instances; the messages
for representing the various incidents inside the document;
and the relations that connect those messages across the
documents. More details are given below.

Ontology. For the purposes of our work, a domain ontol-
ogy should be built. The ontology we use is a taxonomic
one, incorporating is-a relations, which are later exploited
by the messages and the relations.

Messages. In order to capture what is represented by sev-
eral textual units, we introduce the notion of messages. A
message is composed from four parts: its type, a list of ar-
guments which take their values from the concepts of the
domain ontology, the time that the message refers, and the
source of the document that the message is contained. In
other words, a message can be defined as follows:

message_type (arg1, . . . , argn)
where argi ∈ Domain Ontology

Each message m is accompanied by the time (m.time)
that it refers and its source (m.source). Concerning the
source, this is inherited by the source of the document that

contains the message. Concerning the time of the mes-
sage, it is inherited by the publication time of the docu-
ment, unless there exists a temporal expression in the text
that modifies the time that a message refers. In this case, we
should interpret the time-tag of the message, in relation to
that temporal expression. A message definition may also be
accompanied by a set of constraints on the values that the
arguments can take. We would like also to note that mes-
sages are similar structures (although simpler ones) with
the templates used in the MUC.2 An example of a message
definition will be given in the case study we present in sec-
tion 3.

Relations. In order to define a relation in a domain we
have to provide a name for it, and describe the conditions
under which it will hold. The name of the relation is in fact
pragmatic information, which we will be able to exploit
later during the generation of the summary. The conditions
that a relation holds are simply some rules which describe
the temporal distance that two messages should have (0 for
synchronic and more than 1 for diachronic) and the charac-
teristics that the arguments of the messages should exhibit
in order for the relation to hold.

Furthermore, it is crucial to note here the importance that
time and source position have on the relations, apart from
the values of the messages’ arguments. Suppose, for ex-
ample, that we have two identical messages. If they have
the same temporal tag, but belong to different sources, then
we have an agreement relation. If, on the other hand, they
come from the same source but they have chronological
distance one, then we speak of a stability relation. Finally,
if they come from different sources and they have chrono-
logical distance more than two, then we have no relation at
all. We also do not have a relation if the messages have dif-
ferent sources and different chronological distances. Thus
we see that, apart from the characteristics that the argu-
ments of a message pair should exhibit, the source and
temporal distance also play a role for that pair to be char-
acterized as a relation. In section 3 we will give concrete
examples of messages and relations for a particular case
study.

3 A Case Study of Linear Evolution
The methodology was originally presented in (Afantenos
et al. 04). It involves four stages:

1. Corpus collection

2. Creation of a domain ontology

3. Specification of the messages

4. Specification of the relations

The topic we have chosen is that of the descriptions of
football matches. In this domain, we have several events
that evolve; for example, the performance of a player or

2http://www.itl.nist.gov/iaui/894.02/
related_projects/muc/proceedings/muc_7_toc.
html

a team as the championship progresses. According to the
definitions we have given, the evolution of this domain is
linear. The reason for this is that we have a match each
week which is then being described by several sources.

As our methodology requires, in order to create multi-
document summaries of evolving events, we have to pro-
vide some knowledge of the domain to the system. This
knowledge is provided through the ontology and the spec-
ification of the messages and the relations, following the
four steps described above.

3.1 Domain Knowledge

Corpus Collection. We manually collected descriptions
of football matches, from various sources, for the period
2002-2003 of the Greek football championship. The lan-
guage used in the documents was also Greek. This cham-
pionship contained 30 rounds. We focused on the matches
of a certain team, which were described by three sources.
So, we had in total 90 documents.

Ontology Creation. An excerpt of the taxonomic ontol-
ogy we have created is shown in Figure 2.

Degree Card
Person Yellow
Referee Red
Assistant Referee Team
Linesman Temporal Concept
Coach Minute
Player Duration
Spectators First Half
Viewers Second Half
Organized Fans Delays

Round Whole Match

Figure 2: An excerpt from the domain ontology

Messages’ Specifications. We concentrated in the most
important events, that is on events that evolve through time,
or events that a user would be interested in knowing. At the
end of this process we concluded on the following set of 23
message types:

Absent, Behavior, Block, Card, Change, Comeback, Con-
ditions, Expectations, Final_Score, Foul, Goal_Cancelation,
Hope_For, Injured, Opportunity_Lost, Penalty, Performance, Ref-
ereeship, Satisfaction, Scorer, Successive_Victories, Superior,
System_Selection, Win

An example of full message specifications is shown in Fig-
ure 3. We should note that this particular message type is
not accompanied by constraints. Also, associated with it
we have the time and source tags.

performance (entity, in_what, time_span, value)
entity : player or team
in_what : Action Area
time_span : Minute or Duration
value : Degree

Figure 3: An example of message specifications

Specification of the Relations. We identified twelve
cross-document relations, six on the synchronic and six on
the diachronic axis (see Table 1).

Diachronic Relations Synchronic Relations
– POSITIVE GRADUATION – AGREEMENT

– NEGATIVE GRADUATION – NEAR AGREEMENT

– STABILITY – DISAGREEMENT

– REPETITION – ELABORATION

– CONTINUATION – GENERALIZATION

– GENERALIZATION – PRECISENESS

Table 1: Synchronic and Diachronic Relations in the Foot-
ball Domain

Since this was a pilot-study during which we examined
mostly the feasibility of our methodology, we limited the
study of the cross-document relations, in those ones that
connect the same message types. Thus both the synchronic
and the diachronic relations connect the same types, al-
though further studies might reveal that different message
types can be connected with some sort of relations. Fur-
thermore, concerning the diachronic relations we limited
our study in relations that have chronological distance only
one.3 Examples of such specifications for the message type
performance are shown in Figure 4.

Performance
Assuming we have the following two messages:

performance1 (entity1, in_what1, time_span1, value1)
performance2 (entity2, in_what2, time_span2, value2)

Then we have a Diachronic relation if

(performance1.time < performance2.time) and
(performance1.source = performance2.source)

and a Synchronic relation if

(performance1.time = performance2.time) and
(performance1.source 6= performance2.source)

More specifically, we have the following Synchronic and Diachronic relations:

Diachronic Relations

• Positive Graduation iff
(entity1 = entity2) and (in_what1 = in_what2) and
(time_span1 = time_span2) and (value1 < value2)

• Stability iff
(entity1 = entity2) and (in_what1 = in_what2) and
(time_span1 = time_span2) and (value1 = value2)

• Negative Graduation iff
(entity1 = entity2) and (in_what1 = in_what2) and
(time_span1 = time_span2) and (value1 > value2)

Synchronic Relations

• Agreement iff
(entity1 = entity2) and (in_what1 = in_what2) and
(time_span1 = time_span2) and (value1 = value2)

• Near Agreement iff
(entity1 = entity2) and (in_what1 = in_what2) and
(time_span1 = time_span2) and (value1 ≈ value2)

• Disagreement iff
(entity1 = entity2) and (in_what1 = in_what2) and
(time_span1 = time_span2) and (value1 6= value2)

Figure 4: Specifications of Relations

3Chronological distance zero makes the relations synchronic.

A question that can arise is the following: How does time
affect the relations you create? To answer that question,
imagine having two identical messages, in different docu-
ments. If the documents have chronological distance zero,
then we have an agreement relation. If the messages come
from the same source but have chronological distance 1,
then we have a stability relation. Finally, if the messages
come from different sources and have chronological dis-
tance more than one, then we have no relation at all. Thus,
indeed, time does affect the relations.

An Example At this point we would like to give a more
concrete example. Two sources, A and B, for a particular
match, describe the performance of a player as follows:

A The performance of Nalitzis, for the whole match was
mediocre.

B In general, we can say that Nalitzis performed modestly,
throughout the match.

The messages that represent those two sentences are the
following:

A performance (Nalitzis, general, whole_match, 50)

B performance (Nalitzis, general, whole_match, 50)

The number 50 represents the mediocre performance of the
player, since the degree is realized as an integer in the
scale of 0 to 100. According to the specifications of the
relations (see Figure 4) we would have an Agreement syn-
chronic relations between those two messages. In the next
game we have the following description:

A Nalitzis shown an excellent performance throughout the game.

The message that results from this sentence is the follow-
ing:

A performance (Nalitzis, general, whole_match, 100)

Now, between the two messages from source A we have a
Positive Graduation diachronic relation.

3.2 The System
Our summarization system is a query-based one, since the
summary is an answer to a natural language query that a
user has posed. Such queries concern the evolution of sev-
eral events in the domain. In order to create the summaries
we have to extract, from the documents, the messages with
their arguments, and the relations that connect them, and
subsequently organize them into a structure which we call
a grid (see Figure 5). This grid reflects exactly the fact
that the domain that we have used in this case study ex-
hibits linear evolution. If we take a horizontal “slice” of the
grid, then we will have descriptions of events from all the
sources, for a particular time unit. If, on the other hand, we
take a vertical “slice” of the grid, then we have the descrip-
tion of the evolution of an event from a particular source.

In order to extract the messages from the documents, our
system employs an Information Extraction (IE) subcom-
ponent. Relations between the messages are identified ac-
cording to the conditions associated with each one. After

the user has issued the query, the system identifies the var-
ious messages that are relevant to this query, as well as the
relations that connect them. Thus, in essence the system
extracts a subgrid from the original grid which is, in fact,
the answer to the user query. This subgrid is passed to a
Natural Language Generation (NLG) subcomponent which
creates the final summary.

.

.

.

. . .

. . .

.

.

.

.
.

.

Time Unit t

Source 1 Source sSource 2

Time Unit 1

Time Unit 2

Figure 5: The Grid structure with Synchronic and Di-
achronic Relations

3.2.1 Messages Extraction
This subsystem was developed using the Ellogon text en-

gineering platform.4 Its architecture is depicted in Figure 6.
It involves the following processing stages.

Preprocessing. This stage includes the tokenization, sen-
tence splitting and the Named Entity Recognition and Clas-
sification (NERC) sub-stages. During NERC, we try to
identify the Named Entities (NEs) in the documents and
classify them into the categories that the ontology pro-
poses.

The next two processing stages are the core of message
extraction. In the first one we try to identify the type of
each extracted message, while in the second we try to fill
its argument values.

Message Classification. Concerning the identification of
the message types, we approached it as a classification
problem. From a study that we carried out, we concluded
that in most of the cases the mapping from sentences to
messages was one-to-one, i.e. in most of the cases one sen-
tence corresponded to one message. Of course, there were
cases in which one message was spanning more than one
sentence, or that one sentence was containing more than
one message. We managed to deal with such cases during
the arguments’ filling stage.

In order to perform our experiments we used a bag-of-
words approach according to which we represented each
sentence as a vector from which the stop-words and the
words with low frequencies (four or less) were removed.
The features used are divided into two categories: lexical
and semantic. As lexical features we used the words of the

4www.ellogon.org

- - - -
Splitting NERC Message Type

Classification

Argument
Extraction

Tokenization Sentence

Figure 6: The message extraction subsystem

sentences both stemmed and unstemmed. As semantic fea-
tures we used the NE types that appear in the sentence. Of
course, in order to perform the training phase of the exper-
iments, in each of the vectors we appended the class of the
sentence, i.e. the type of message; in case a sentence did
not corresponded to a message we labeled that vector as be-
longing to the class None. This resulted into four series of
vectors and corresponding experiments that we performed.

In order to perform the classification experiments we
used the WEKA platform (Witten & Frank 00). The Ma-
chine Learning algorithms that we used where three: Naïve
Bayes, LogitBoost and SMO. For the last two algorithms,
apart from the default configuration, we performed some
more experiments concerning several of their arguments.
Thus for the LogiBoost we experimented with the number
of iterations that the algorithm performs and for the SMO
we experimented with the complexity constant, with the ex-
ponent for the polynomial kernel and with the gamma for
the RBF kernel. For each of the above combinations we
performed a ten-fold cross-validation with the annotated
corpora that we had. The results of the above experiments
are presented in Table 2.

Taking a look at that table there are several remarks that
we can make. Firstly, the LogitBoost and the SMO classi-
fiers that we used outperformed, in all the cases, the Naïve
Bayes which was our baseline classifier. Secondly, the
inclusion of the NE types in the vectors gave a consider-
able enhancement to the performance of all the classifiers.
This is rather logical, since almost all the messages contain
in their arguments NEs. The third remark, concerns the
stemmed and the unstemmed results. As we can see from
the table, the algorithms that used vectors which contained
unstemmed words outperformed the corresponding algo-
rithms which used vectors whose words had been stemmed.
This is rather counterintuitive, since in most of the cases
using stemming one has better results.

Ultimately, the algorithm that gave the best results, in the
experiments we performed, was the SMO with the default
configuration for the unstemmed vectors which included
information on the NE types. This classifier managed to
correctly classify 2974 out of 3735 messages (including
the None class) or about 80% of the messages. Thus, we
integrated this trained classifier in the message extraction
subsystem, which you can see in Figure 6.

Arguments’ Filling In order to perform this stage
we employed several domain-specific heuristics. Those
heuristics take into account the constraints of the messages,
if they do have. As we noted above, one of the drawbacks
of our classification approach is that there are some cases
in which we do not have a one-to-one mapping from sen-
tences to messages. During this stage of message extraction

we used heuristics to handle many of these cases.
In Table 3 we show the final performance of the subsys-

tem as a whole, when compared against manually anno-
tated messages on the corpora used. Those measures con-
cern only the message types. As you can see from that
table although the vast majority of the messages extracted
are correct, these represent 68% of all the messages.

Precision : 91.1178
Recall : 67.7810
F-Measure : 77.7357

Table 3: Evaluation of the messages’ extraction stage

3.2.2 Extraction of Relations
As is evident from Figure 4, once we have identified the

messages in each document and we have placed them in
the appropriate position in the grid, then it is fairly straight-
forward, through their specifications, to identify the cross-
document relations among the messages.

In order to achieve that, we implemented a system which
was written in Java. This system takes as input the ex-
tracted messages with their arguments from the previous
subsystem and it is responsible for the incorporation of the
ontology, the representation of the messages and the ex-
traction of the synchronic and diachronic cross-document
relations. Ultimately, through this system we manage to
represent the grid, which carries an essential role for our
summarization approach.

The reason for this is that since our approach is a query
based one, we would like to be able to pose queries and get
the answers from the grid. The system that we have created
implements the API through which one can pose queries
to the grid, as well as the mechanism that extracts from
the whole grid structure the appropriate messages and the
relations that accompany them, which form an answer to
the question. Those extracted messages and relations form
a sub-grid which can then be passed to an NLG system for
the final creation of the summary.

Concerning the statistics of the extracted relation, these
are presented in Table 4. The fact that we have lower sta-
tistical measures on the relations, in comparison with the
message types, can be attributed to the argument extraction
subsystem, which does not perform as well as the message
classification subsystem.

Precision : 89.0521
Recall : 39.1789
F-Measure : 54.4168

Table 4: Recall, Precision and F-Measure on the relations

Classifier Correctly Classified
Instances

Classifier Correctly Classified
Instances

Without NE types Including NE types
Naïve Bayes 60.6693 % Naïve Bayes 63.8286 %
LogitBoost default 72.7443 % LogitBoost default 78.0991 %
LogitBoost I = 5 71.8876 % LogitBoost I = 5 76.1981 %

stemmed LogitBoost I = 15 72.2892 % stemmed LogitBoost I = 15 78.2062 %
SMO default 73.6011 % SMO default 75.9839 %
SMO C = 0.5 E = 0.5 G = 0.001 68.9692 % SMO C = 0.5 E = 0.5 G = 0.001 72.5301 %
SMO C = 1.5 E = 1.5 G = 0.1 74.4578 % SMO C = 1.5 E = 1.5 G = 0.1 75.7965 %
Naïve Bayes 62.2758 % Naïve Bayes 64.2035 %
LogitBoost default 75.8768 % LogitBoost default 78.9023 %
LogitBoost I = 5 74.9398 % LogitBoost I = 5 77.4565 %

unstemmed LogitBoost I = 15 76.6533 % unstemmed LogitBoost I = 15 79.4645 %
SMO default 79.2503 % SMO default 79.6252 %
SMO C = 0.5 E = 0.5 G = 0.001 75.2343 % SMO C = 0.5 E = 0.5 G = 0.001 76.8675 %
SMO C = 1.5 E = 1.5 G = 0.1 77.9920 % SMO C = 1.5 E = 1.5 G = 0.1 78.5007 %

Table 2: The results from the classification experiments

As of writing this paper, everything has been imple-
mented except the mechanism that transforms the natu-
ral language queries to the API that will extract the sub-
grid. Additionally, we do not have a connection with an
NLG system, but instead we have implemented some sim-
ple template-based mechanism.

4 Related Work

The work that we present in this paper is concerned
with multi-document summarization of events that evolve
through time. Of course, we are not the first to incorporate
directly, or indirectly, the notion of time in our approaches
to summarization. (Lehnert 81), for example, attempts to
provide a theory for what she calls narrative summariza-
tion. Her approach is based on the notion of “plot units”,
which connect mental states with several relations, and are
combined into very complex patterns. This approach is a
single-document one and was not implemented. Recently,
(Mani 04) attempts to revive this theory of narrative sum-
marization, although he also does not provide any concrete
computational approach for its implementation.

From a different viewpoint, (Allan et al. 01) attempt
what they call temporal summarization. In order to achieve
that, they take the results from a Topic Detection and Track-
ing system for an event, and they put all the sentences one
after the other in a chronological order, regardless of the
document that it belonged, creating a stream of sentences.
Then they apply two statistical measures usefulness and
novelty to each ordered sentence. The aim is to extract
those sentences which have a score over a certain thresh-
old. This approach does not take into account the docu-
ment sources, and it is not concerned with the evolution of
the events; instead they try to capture novel information.

As we have said, our work requires some domain knowl-
edge which is expressed through the ontology, and the mes-
sages’ and relations’ specifications. A system which is
based also on domain knowledge is SUMMONS (Radev &
McKeown 98; Radev 99). The domain knowledge for this
system comes from the specifications of the MUC con-
ferences. This system takes as input several MUC tem-
plates and, applying a series of operators, it tries to cre-
ate a baseline summary, which is then enhanced by various
named entity descriptions collected from the Internet. One

can argue that the operators that SUMMONS uses resem-
ble our cross-document relations. This is a superficial re-
semblance, since our relations are divided into synchronic
and diachronic, thus reporting similarities and differences
in two different directions: source and time. Additionally
our system is a query-based one.

Concerning now the use of relations, (Salton et al. 97)
for example, try to extract paragraphs from a single docu-
ment by representing them as vectors and assigning a rela-
tion between the vectors if their similarity exceeds a certain
threshold. Then, they present various heuristics for the ex-
traction of the best paragraphs.

Finally, (Radev 00) proposed the Cross-document Struc-
ture Theory (CST) which incorporated a set of 24 do-
main independent relations that exist between various tex-
tual units across documents. In a later paper (Zhang et al.
02) reduce that set into 17 relations and perform some ex-
periments with human judges. Those experiments reveal
several interesting results. For example, human judges
annotate only sentences, ignoring the other textual units
(phrases, paragraphs, documents) that the theory suggests.
Additionally, we see a rather small inter-judge agreement
concerning the type of relation that connects two sentences.
(Zhang et al. 03) and (Zhang & Radev 04) continue the
work with some experiments, during which they use Ma-
chine Learning techniques to identify the cross-document
relations. We have to note here that although a general
pool of cross-document relations might exist, we believe,
in contrast with (Radev 00), that those relations are de-
pendent on the domain, in the sense that one can choose
from this pool the appropriate subset of relations for the
domain under consideration, possibly enhancing this sub-
set with completely domain specific relations that will suit
ones needs. Another significant difference from our work,
is that our main goal is to create summaries that show the
evolution of an event, as well as the similarities or differ-
ences that the sources have during the evolution of an event.

5 Conclusions and Future Work

The aim of this paper was to present our approach to
the problem of multi-document summarization of evolving
events. We divide the evolution of the events into lin-
ear and non-linear. In order to tackle the problem, we

introduced cross-document relations which represent the
evolution of the events in two axes: synchronic and di-
achronic. Those relations connect messages, which rep-
resent the main events of the domain, and are dependent
on the domain ontology. We also presented, through a case
study, an implementation for a linearly evolving domain,
namely that of the descriptions of football matches. The
system we have built automatically extracts the messages
and the synchronic and diachronic relations from the text.
A particular point of concern is the recall (approximately
40%) of the relations’ extraction sub-system, which is due
to the heuristics used for the filling the arguments of the
messages. Apart from enhancing our heuristics, we also
plan to study their effect on the quality of the generated
summary.

Currently we are working on a more complicated do-
main, namely that of events with hostages, whose evolu-
tion, according to the specification that we gave in the in-
troduction of this paper, can be characterized as non-linear.
The main challenges in non-linear evolution concern the
synchronic relations. A related problem, which we investi-
gate, is that of the temporal expressions which may make
several messages refer back in time, in relation to the pub-
lication time of the article that contains the messages. We
also examine in depth the role that time has on the rela-
tions. Additionally, we examine the existence of relations
between different message types. Concerning now the clas-
sification experiments and the argument extraction, we in-
tend to enhance them by adding more semantic features
incorporating also the Greek WordNet.5

References
(Afantenos et al. 04) Stergos D. Afantenos, Irene Doura, Eleni Kapellou, and Vange-

lis Karkaletsis. Exploiting cross-document relations for multi-document evolv-
ing summarization. In G. A. Vouros and T. Panayiotopoulos, editors, Methods
and Applications of Artificial Intelligence: Third Hellenic Conference on AI,
SETN 2004, volume 3025 of Lecture Notes in Computer Science, pages 410–
419, Samos, Greece, May 2004. Springer-Verlag Heidelberg.

(Afantenos et al. 05a) Stergos D. Afantenos, Vangelis Karkaletsis, and Panagiotis
Stamatopoulos. Summarization from medical documents: A survey. Journal of
Artificial Intelligence in Medicine, 33(2):157–177, February 2005.

(Afantenos et al. 05b) Stergos D. Afantenos, Konstantina Liontou, Maria Salap-
ata, and Vangelis Karkaletsis. An introduction to the summarization of evolving
events: Linear and non-linear evolution. In Natural Language Understanding
and Cognitive Science NLUCS - 2005, pages 91–99, Maiami, USA, May 2005.

(Allan et al. 98) James Allan, Jaime Carbonell, George Doddington, Jonathan Yam-
ron, and Yiming Yang. Topic detection and tracking pilot study: Final report.
In Proceedings of the DARPA Broadcast News Transcription and Understanding
Workshop, pages 194–218, February 1998.

(Allan et al. 01) James Allan, Rahuk Gupta, and Vikas Khandelwal. Temporal sum-
maries of news stories. In Proceedings of the ACM SIGIR 2001 Conference,
pages 10–18, 2001.

(Lehnert 81) Wendy G. Lehnert. Plot units: A narrative summarization strategy.
In W. G. Lehnert and M. H. Ringle, editors, Strategies for Natural Language
Processing, pages 223–244. Erlbaum, Hillsdale, New Jersey, 1981.

(Mani & Bloedorn 99) Inderjeet Mani and Eric Bloedorn. Summarizing similari-
ties and differences among related documents. Information Retrieval, 1(1):1–23,
1999.

(Mani 01) Inderjeet Mani. Automatic Summarization, volume 3 of Natu-
ral Language Processing. John Benjamins Publishing Company, Amster-
dam/Philadelphia, 2001.

5www.ceid.upatras.gr/Balkanet/resources.
htm

(Mani 04) Inderjeet Mani. Narrative summarization. Journal Traitement Automa-
tique des Langues (TAL): Special issue on “Le résumé automatique de texte:
solutions et perspectives”, 45(1), Fall 2004.

(Radev & McKeown 98) Dragomir R. Radev and Kathleen R. McKeown. Generat-
ing natural language summaries from multiple on-line sources. Computational
Linguistics, 24(3):469–500, September 1998.

(Radev 99) Dragomir R. Radev. Generating Natural Language Summaries from
Multiple On-Line Sources: Language Reuse and Regeneration. Unpublished
PhD thesis, Columbia University, 1999.

(Radev 00) Dragomir R. Radev. A common theory of information fusion from mul-
tiple text sources, step one: Cross-document structure. In Proceedings of the
1st ACL SIGDIAL Workshop on Discourse and Dialogue, Hong Kong, October
2000.

(Salton et al. 97) Gerald Salton, Amit Singhal, Mandar Mitra, and Chris Buck-
ley. Automatic text structuring and summarization. Information Processing and
Management, 33(2):193–207, 1997.

(Witten & Frank 00) Ian H. Witten and Eibe Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations. Morgan Kaufmann,
San Francisco, 2000.

(Zhang & Radev 04) Zhu Zhang and Dragomir Radev. Learning cross-document
structural relationships using both labeled and unlabeled data. In Proceedings of
IJC-NLP 2004, Hainan Island, China, March 2004.

(Zhang et al. 02) Zhu Zhang, Sasha Blair-Goldensohn, and Dragomir Radev. To-
wards cst-enhanced summarization. In Proceedings of AAAI-2002, August 2002.

(Zhang et al. 03) Zhu Zhang, Jahna Otterbacher, and Dragomir Radev. Learning
cross-document structural relationships using boosting. In Proccedings of the
Twelfth International Conference on Information and Knowledge Management
CIKM 2003, pages 124–130, New Orleans, Louisiana, USA, November 2003.

