
Heuristi Bakbone Samplingfor Maximum Satis�abilityOrestis Telelis and Panagiotis StamatopoulosDepartment of Informatis and TeleommuniationsUniversity of AthensPanepistimiopolis, 157 84 Athens, Greeeftelelis,takisg�di.uoa.grAbstrat. The weighted maximum satis�ability (MAXSAT) problem isof great interest to the Arti�ial Intelligene ommunity, as a model forseveral onstraint satisfation problems (emerging e.g. from planning)whih require that an optimum subset of their onstraints be satis�ed.Reent researh on satis�ability (SAT) problems has reahed interest-ing onlusions regarding their hardness. In this paper, we introduean algorithm designed in a way inspired by these results. Based on thenewly introdued onept of the bakbone of a formula in onjuntivenormal form, we try to sample the most likely values of boolean variablesthrough an iterative proess. Experiments onduted on appropriate un-satis�able SAT instanes show that the algorithm onverges to a nearoptimum subset of satis�ed disjuntive lauses. Evidene of remarkablesuess on weighted MAXSAT instanes is also presented and disussed.1 IntrodutionThe boolean satis�ability problem (SAT) has attrated the interest of the AIommunity, as an aspet of fundamental importane for automated reason-ing systems. SAT was also the �rst ombinatorial problem shown to be NP-omplete [1℄.The problem involves determining a satisfying assignment on boolean vari-ables that partiipate in the formation of a boolean formula in onjuntive nor-mal form (CNF). A CNF formula is a onjuntion of lauses. Eah lause onsistsof the disjuntion of literals, where a literal is a boolean variable or its logialnegation.The optimization version of SAT (MAXSAT) is the problem of �nding anassignment over the variables of a CNF formula that maximizes the total numberof satis�ed lauses. In this paper, we also onsider the more generi weightedMAXSAT problem, where eah lause is assoiated with a positive weight. Theobjetive funtion of weighted MAXSAT maps an assignment of the booleanvariables to the sum of the weights of the satis�ed lauses. The aim is to maximizethe aforementioned sum. Setting all weights to 1 yields the unweighted form ofMAXSAT. For the rest of our disussion, MAXSAT will refer to the generiweighted form, unless otherwise stated.



MAXSAT onstitutes a speial ase of the generi valued Constraint Satis-fation Problem (valued-CSP) [11℄ and, as suh, it may be used to model sev-eral overonstrained problems, whih require that an optimal subset of theironstraints be satis�ed. As an example, we mention the Steiner Tree problemfaed in [4℄. Furthermore, several planning problems an be transformed intoboolean CNF formulae, whih require either omplete satisfation of all lauses,or satisfation of an appropriate subset, aording to some objetive optimalityriterion.We introdue HBS (Heuristi Bakbone Sampling), an iterative heuristi forMAXSAT problems. The main ontribution of the proposed methodology on-erns a stohasti initialization sheme, whih provides a simple hill limbingheuristi with potentially interesting startup states. Our work was inspired byreent studies on the hardness of SAT problems, whih have revealed the prop-erty of the bakbone [7℄ for CNF formulae. We onjeture that it may be possibleto measure the likelihood of a variable being assigned to a partiular value inseveral good assignments, given a set of good assignments. We then exploit thismeasure in produing stohastially a new assignment, whih is the startup stateof a hill limbing proedure.Several theoretial and experimental MAXSAT studies have appeared. Im-pressive approximation algorithms have been introdued, that aquire assign-ments of quality 75% of the optimum [15℄ and beyond [3℄. In [4℄, a modi�ationof the WalkSat [12℄ algorithm is presented, whih deals with MAXSAT prob-lems. In [10℄, a onstrutive proedure provides startup assignments for a hilllimbing heuristi (GRASP). Their ombination �nds near optimal solutions onmany MAXSAT instanes. Another algorithm whih performs remarkably betteron the same instanes appears in [14℄.The paper is organized as follows: In setion 2, we briey survey some issuesonerning the bakbone struture property. The proposed algorithm is disussedin setion 3. Experimental results and onlusions follow in setions 4 and 5.2 Phase Transition and the BakboneReent researh in SAT problems has provided several statistial and theoretialresults, onerning the hardness of satisfying CNF formulae. Early experimentalresults [6℄ have shown that randomly generated 3-SAT instanes (eah lauseontains exatly 3 literals) of M lauses and N variables with the property� = M=N ' 4:26 = � are hard to solve. Furthermore, instanes with a < �or a > � seem to be relatively easy to solve: their searh spae is either densein satisfying assignments, or empty, respetively, thus making it easy to provetheir satis�ability or unsatis�ability. This easy-hard-easy e�et is haraterizedas the phase transition of SAT.The statistial and theoretial study of phase transitions is intended to revealthe inrease in omplexity for the various distributions of SAT problems. In [8℄,through the appliation of methods from statistial mehanis and extended ex-



perimentations, the phase transition of K-SAT is investigated for the estimationof the omplexity inrease rate with problem size.An important strutural property of unweighted CNF formulae, namely thebakbone, has been revealed through the study of phase transitions [7, 9℄. Thebakbone stands for the set of variables whih appear onstrained to the samevalue in all optimal variable assignments. As shown experimentally in [9℄, thebakbone size is an important parameter for the ost of loal searh proedures.A large bakbone keeps most of the variables of the formula frozen to some valuein every optimal assignment, thus implying that all optimal assignments will liein a restrited area of the searh spae. Small bakbones, on the ontrary, tend topreserve a wider distribution of optimal assignments. Sine in a large bakbone,partiipating in the optimum assignment, many variables have a restrited value,there are many erroneous deisions (at least as many as the restrited variables)to be taken during searh. Bakbones of onsiderable size seem to emerge inCNF formulae lying on the phase transition and beyond (a � a). Ourreneof bakbones in optimization problems is also disussed in [13℄.Optimal and near optimal assignments are expeted to inlude at least asubset of the formula's bakbone onstrained to appropriate values. The ore ofHBS involves maintaining a set of the best assignments found so far. This set isused to determine the likelihood of a variable being assigned to 1. We expet that,at least for the variables of the bakbone, this likelihood measure will eventuallyonverge to some very small (near 0) or very large (near 1) value. A reentsystemati searh algorithm, whih exploits the bakbone is desribed in [2℄. Inthis work a onstrutive searh proedure is desribed, enhaned with analytitehniques for exploiting the bakbone onept, towards ahieving satisfyingassignments or deiding the unsatis�ability of 3-SAT CNF formulae. HBS is, toour knowledge, the �rst loal searh strategy, designed to apture the bakboneof (unweighted) MAXSAT problems, in a statistial manner, for guiding thesearh towards optimal assignments.3 The HBS AlgorithmIn this setion, we desribe the HBS algorithm. HBS is an iterative algorithm.In eah iteration, a stohasti proedure produes a new assignment, whih isfurther optimized by a hill limbing heuristi. The stohasti proedure is ex-amined �rst and a short desription of the hill limbing heuristi follows. In thefollowing paragraphs, we onsider a CNF formula built upon n boolean variables,xi; i = 1 : : : n. If a is an assignment, then we denote the value of variable xi ina with a(xi). The objetive funtion value orresponding to a is denoted withZ(a).3.1 The Stohasti Initialization ProedureThe stohasti initialization proedure is memory-based. A set S of restritedsize ontains the best assignments found during previous iterations of HBS. S isan input to the proedure.



A new startup assignment is produed by assigning xi the boolean value 1with probability: pi = �Xa2S faa(xi)�=�Xa2S fa�If we set fa = 1, then pi is equal to the frequeny of positive appearanes ofthe variable xi in the set S. Thus, pi intuitively ditates the most likely valueassignment of xi with respet to the assignments ontained in S. An alternativeway of obtaining a more representative pi value is setting fa = Z(a). In this way,we also assign a measure of importane to xi's value in the various assignmentsof S. We adopted the latter approah during our experimentations.HBS (t; I; jSj)1. Initialize S with random (P [xi = 1℄ = 0:5) assignments2. repeat I timesa. Calulate pi; i = 1 : : : nb. Pik the best assignment among t randomlyreated assignments, using the pi probabilities.. Do hill limbing until loal optimum, and store in Tall the evaluated assignments during this iteration.d. Insert in S the best assignment in Tnot already in S and better than the worst of S.Delete the worst in S.Fig. 1. The omplete HBS algorithm3.2 Hill ClimbingThe neighbourhood explored by the heuristi is the standard ip neighbourhoodfor SAT problems. A transition from one assignment to a neighbouring one isperformed by ipping a seleted variable (i.e. setting it to its omplementaryvalue). Let C+(xi) and C�(xi) be the sets of lauses that beome satis�ed andunsatis�ed respetively by ipping the variable xi. The gain obtained by ippingxi is then de�ned as:



gi = Xj2C+(xi)wj � Xj2C�(xi)wjThe steepest asent version of hill limbing performs in eah iteration a al-ulation of the g vetor and ips the variable xi with i = argmaxj(gj > 0). If(8j)(gj � 0), then a loal optimum has been reahed and the searh stops. Theomplete HBS algorithm appears in Fig. 1.3.3 Implementation DetailsWe larify here some implementation issues, not diretly disussed in previousparagraphs, but imposed by the desription in Fig. 1.The stohasti initialization sheme is repeated t times, as shown in the �g-ure. The t value is a parameter to the algorithm, whih tunes the probability of�nding randomly a startup assignment of high quality. During our experimenta-tions, we determined the value t in ombination with a lipping poliy for the pivalues: all pi values outside the range [0:1; 0:9℄ were appropriately lipped to themargins of this range. We then experimented with values of t � 10, so that eahboolean variable ould obtain randomly one of the two values with probabilityat least 10%. The bias of produing assignments extremely similar to the onesthat appear in the set S is thus redued.T stores andidate solutions for updating S. Updating S in the end of eah it-eration means inserting the best assignment a 2 T for whih Z(a) 6= Z(s), 8s 2S holds. Furthermore, the size of S is maintained onstant during the exeu-tion of the algorithm: eah time a new assignment enters the set, an assignmentof worst quality is erased. It appears plausible that the onvergene speed ofthe algorithm to high quality assignments is depended on jSj. Finally, we shouldnote that assignments produed during stohasti initialization whih ould on-tribute to the enrihment of S are also stored in T .4 Experimental ResultsThe behaviour of the algorithm was investigated through experiments arried onweighted and unweighted CNF formulae. In partiular, we experimented on theuuf125-538-100 dataset1 of unweighted formulae, whih ontains 100 unsatis�-able 3-SAT instanes of 125 variables and 538 lauses. All instanes are \phasetransition"-hard. Improved results are also disussed on the weighted MAXSATinstanes of [10℄. This dataset (jnh) ontains 44 CNF formulae with lausesof varying sizes and weights uniformly distributed in the range 1{1000. Theseproblems onsist of 100 variables and 800{900 lauses. All experiments were per-formed on a Sun Ultra SPARC 5 workstation with 269 MHz CPU and 128 MBRAM. The run time of HBS for I = 500 iterations did not exeed 3 seonds in1 Available from http://www.satlib.org
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Fig. 2. Performane of MRHC on uuf125-538-100our experiments. EÆieny of loal searh implementations has reeived onsid-erable attention. For HBS, storing and proessing of assignments onstitutes anoverhead to the hill limbing searh part. However, it still is a polynomial timeproess, whih we have eÆiently integrated within our implementation.4.1 On Unweighted CNF FormulaePerformane on unweighted CNF formulae is ompared towards the performaneof random multi-restart hill limbing (MRHC ), where eah restart is initiatedwith a random assignment (eah variable is set to true with probability 0.5).Figures 2 and 3 summarize the results. Eah of the ompared heuristis wasran independently 20 times on every SAT instane. The proposed algorithm ranunder the on�guration HBS (20; 300; 10), whereas for MRHC, the number ofrestarts was set to 300 per run.The barharts of Fig. 2 and Fig. 3 depit the amount of instanes for whih aertain number of satis�ed lauses was reahed. We onsider the highest ahievednumber of satis�ed lauses among twenty runs of the algorithms on eah instane.We might arefully observe a shift of the performane on the ore of the dataset,whih orresponds to a small inrease of satis�ed lauses at least by two. Im-provements in this range, however, are hardly ahievable by random MRHC,sine they bring most formulae to their optimum satis�ability state.In order to �ne tune the algorithm's lipping range of the pi values, we experi-mented with some lipping ranges over several instanes of the uuf-125-538-100dataset. A typial piture of the algorithm's performane is shown in Fig. 4. HBSquikly moves to a loally optimum area, whereas the seleted lipping range af-
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Fig. 3. Performane of HBS on uuf125-538-100fets its performane during the subsequent iterations. In our experiments theseleted [0:1; 0:9℄ range proved to be the most appropriate. In fat, shrinking therange orresponds to approahing the MRHC bias of produing a new startupassignment. On the ontrary, leaving the pi values unlipped biases the algo-rithm towards prodution of startup assignments highly dependent on the onesontained in S.4.2 On Weighted CNF FormulaeHBS was applied on the dataset2 of [10℄ with remarkable suess. Twenty runsof HBS (10; 500; 12) were onduted on eah instane. The best solution ahievedfor eah instane exeeded the solution quality reahed by GRASP in [10℄. Dueto lak of spae we only mention in Table 1(a) ten instanes with the greatestimprovement over GRASP's results. It is important to note that optimum solu-tion was reahed for 17 instanes, whereas GRASP managed to solve optimallyonly 3 instanes.Table 1(b) depits the best improvement ahieved by HBS over WalkSat(WSAT) on ten instanes. We experimented with the weighted MAXSAT versionof WSAT, as it appears in [4℄. The default parameters of WSAT were used (thatis, 0.5 noise, 10000 ips), as suggested in the authors' implementation. The bestimprovements were alulated over 20 runs of the algorithms on eah probleminstane. As shown in the table, solution qualities reahed by HBS exeeded theresults obtained by WSAT. In partiular, the least obtained best improvement2 Available from http://www.researh.att.om/~mgr/data/index.html
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Fig. 4. Average performane over ten runs for eah lipping rangeover the 44 instanes of the jnh dataset was 31. However, we should note thatWSAT performed slightly better on 13 out of 44 instanes, ontaining a minimumnumber of lauses.4.3 DisussionIn [5℄, it is shown that randomly initialized hill limbing sueeds almost alwaysin �nding a satisfying assignment for satis�able 3-SAT instanes. Furthermore,it is shown that this suess is also due to the small probability that the ran-domly generated initial assignment is bad (in the sense of sharing a small partin ommon with the satisfying assignment).However, searh spaes of MAXSAT problems are known to be seething withlarge amounts of loal optima [14℄. The existene of large bakbones makes iteven more diÆult to onstrut randomly an initial assignment that aptures agreat part of an optimal assignment (in fat, the probability of suess is expo-nentially small). Our experiments on the uuf125-538-100 dataset have shownthat HBS gradually manages, through sampling, to disover a great part of thebakbone. This is on�rmed by the progressive onvergene of the olletionP = fpiji = 1 : : : ng to a state of informative ertainty: many of the elements ofP approah 0 or 1. As a result of that, the stohastially produed assignmentstend to apture an even larger part of the bakbone from one iteration to thenext.Reahing a state of maximum ertainty for the olletion P orrespondsto maximizing the normalized sum of squares of deviations from 0.5: D =(4=n)Pni=1(pi�0:5)2. Figure 5 depits the maximization of D, whih ours dur-



Table 1. Performane on weighted formulae(a) (b)Deviations from OptimumProblem HBS GRASPjnh305 -142 -609jnh219 0 -436jnh8 -147 -578jnh18 -20 -423jnh214 -66 -462jnh19 -79 -436jnh308 -156 -502jnh304 0 -319jnh14 0 -314jnh15 -52 -359
HBS(10; 500; 12) vs. WSAT(0:5)Problem Best Improvementjnh302 564jnh305 450jnh303 295jnh307 239jnh211 194jnh308 194jnh216 142jnh310 141jnh15 129jnh8 121ing three exeutions of HBS (20; 300; 10) on a partiular instane of the dataset.As shown in the �gure, there is a rough orrespondene of the reahed D leveland the ahieved solution quality. In partiular, the optimum solution (OPT)was found during the run whih reahed the highest D value. The other two runsfound suessively worse solutions, OPT-1 and OPT-2 respetively, whereas thereahed D values were lower. Although this is not always the ase, it is generallydesirable that the algorithm reahes soon a state of high D value (apturing thebakbone) and keeps searhing in this state for a long time.The diagram of Fig. 5 on�rms experimentally the onvergene of the sampleset S to a olletion of bakbone assignments. Control of the onvergene speedand level (as indiated by D) remain as hallenging matters of study.5 Conlusions and Future WorkIn this paper, we examined experimentally the e�etiveness of sampling heuris-tially the bakbone struture for hard CNF formulae, in order to provide a hilllimbing heuristi with e�etive startup states. The algorithm HBS was intro-dued. Experimentations with HBS revealed remarkably improved behaviour onboth weighted and unweighted MAXSAT instanes.The introdued stohasti initialization sheme seems to be a omputingartifat whih bears theoretial investigation in ombination with the bakbonetheory. An interesting hallenge onerns estimating the expeted quality of astohastially produed assignment with respet to qualities ontained in S.Theoretial identi�ation of onditions ensuring that S will eventually onvergeto a olletion of bakbone assignments also onstitutes a matter of future work.Dynami tuning of HBS 's parameters is an interesting aspet in its ownright. Spei�ally, the size of the assignments sample S appeared to be of greatimportane for the method's performane during our experiments. For problem
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