
Compilers

Lecture 1

Introduction

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@Tufts)

222

Discussion
 What does a compiler do?

 Why do you need that?

 Name some compilers you have used

333

A Brief History of
High-Level Languages
 1953 IBM develops the 701

 Memory: 4096 words of 36 bits
 Speed: 60 msec for addition
 All programming done in assembly code

444

Programming
 What’s the problem?

 Assembly programming very slow and error-prone
 Software costs exceeded hardware costs!

 John Backus: “Speedcoding”
 Simulate a more convenient machine
 But, ran 10-20 times slower than hand-written assembly

 Backus
 Idea: translate high-level code to assembly
 Many thought this impossible

 Had already failed in other projects
 1954-7 FORTRAN I project

 By 1958, >50% of all code is in FORTRAN
 Cut development time dramatically – from weeks to hours

555

FORTRAN I
 The first compiler

 Huge impact on computer science
 Produced code almost as good as hand-written

 Led to an enormous body of work
 Theoretical work on languages, compilers
 Program semantics
 Thousands of new languages

 Modern compilers preserve the outlines of FORTRAN I

666

Language implementations

Can you think of
another strategy –

a “hybrid”?

777

Languages involved

int i = 10;

while (i > 0) {

 x = x * 2;

 i = i – 1;

}

 movl %esp, %ebp
 subl $4, %esp
 movl $10, -4(%ebp)
.L2:
 cmpl $0, -4(%ebp)
 jle .L3
 movl 8(%ebp), %eax
 sall %eax
 movl %eax, 8(%ebp)
 leal -4(%ebp), %eax
 decl (%eax)
 jmp .L2
.L3:
 movl 8(%ebp), %eax

Source

Target

888

The compilation problem
 Assembly language

 Converts trivially into machine code
 No abstraction: load, store, add, jump, etc.
 Extremely painful to program
 What are other problems with assembly programming?

 High-level language
 Easy to understand and maintain
 Abstractions: control (loops, branches); data (variables,

records, arrays); procedures
 Problem: how do we get from one to the other?

 (systematically)

999

Translation process

Words

Sentences

Meaning

Sentences

Words

Assembly/machine codeHigh-level language

Letters Letters

101010

Sounds easy!
 Translation can be tricky…

 Infallible source: the Internet

I saw the Pope (“el Papa”) I saw the potato (“la papa”)

It won't leak in your
pocket and embarrass
you (“no los embarass”)

It won't leak in your pocket
and make you pregnant
(“no embarazado”)

It takes a tough man to
make a tender chicken

It takes a hard man to
make a chicken
affectionate

111111

Job #1
 What is our primary concern?

 Words or code: translate it correctly

 How do we know the translation is correct?
 Specifically, how do we know the resulting machine code

does the same thing

 “Does the same thing”
 What does that even mean?

121212

Correctness
 Practical solution: automatic tools

 Parser generators, regular expressions, rewrite
systems, dataflow analysis frameworks, code
generator-generators

 Extensive testing

 Theoretical solution: a bunch of math
 Formal description of semantics
 A proof that the translation is correct

 Topic of current research

131313

Incorrectness
 What is this?

 The infamous
“Blue Screen of Death”

 Internal failure in the
operating system

 Buggy device driver

141414

Good enough?
 Is there more than correctness?

Drop your pants here for best results.

-Tokyo dry cleaner

Our wines leave you nothing to hope for.

-Swiss menu

When passenger of foot heave in sight, tootle the horn.
Trumpet him melodiously at first, but if he still
obstacles your passage then tootle him with vigor.

-Car rental brochure

151515

Job #2
 Produce a “good” translation

 What does that mean for compilers?
Good performance – optimization
 Reduce the amount of work (“be concise”)
 Utilize the hardware effectively (“choose your words

carefully”)

 How hard could that be?

161616

Past processors

 More speed, more complexity
 But, same machine code – why is that nice?

Pentium M

8086
29,000 transistors

140,000,000 transistors

171717

Tomorrow’s processors

 Parallel, heterogeneous
 Really hard to program!

Xbox 360
PS-3 CELL

Intel Core Duo

181818

Structure of a compiler

Words

Sentences

Meaning

Sentences

Words

Back EndFront End

Letters Letters

191919

Structure of a compiler

 Organized as a series of passes
 Lexical Analysis
 Parsing
 Semantic Analysis
 Optimization
 Code Generation

 We will follow this outline in the class

Front End

Back End

202020

What I want you to get
out of this class
 Understand how compilers work

 Duh

 See how theory and practice work together
 Yes, theory of computation is good for something
 Also: graph algorithms, lattice theory, more…

 Work with a large-ish software systems

 Learn to think about tradeoffs
 System design always involves tradeoffs
 Impossible to maximize everything

212121

Study of compilers
 Brings together many parts of CS

 Practical and theoretical
 Some solved problems, others unsolved

Compiler

Programming
languages

Operating
systems

Computer
architecture

Theory of
computation

Algorithms

222222

Course Structure
Course has theoretical and practical aspects

 Programming assignments = practice
 Three homework projects
 55% of final grade

 Final exam: 50%

 Need to pass both exam and projects

Late policy:

Up to five late days per
assignment, 5% penalty
per day

232323

Project
 Build a compiler for a subset of Java

 Implemented in Java

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

