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Discussion

® What does a compiler do?
® Why do you need that?

® Name some compilers you have used




A Brief History of
High-Level Languages

® 1953 IBM develops the 701
Memory: 4096 words of 36 bits
Speed: 60 msec for addition
All programming done in assembly code

701 OPERATORS PANEL




Programming

® What’s the problem?
Assembly programming very slow and error-prone
Software costs exceeded hardware costs!

® John Backus: “Speedcoding”

Simulate a more convenient machine

But, ran 10-20 times slower than hand-written assembly
® Backus

Idea: translate high-level code to assembly

Many thought this impossible

Had already failed in other projects

® 1954-7 FORTRAN I project

By 1958, >50% of all code is in FORTRAN

Cut development time dramatically — from weeks to hours




FORTRAN I

® The first compiler
Huge impact on computer science
Produced code almost as good as hand-written

® Led to an enormous body of work
Theoretical work on languages, compilers
Program semantics
Thousands of new languages

® Modern compilers preserve the outlines of FORTRAN |




Language implementations

e Two major strategies:

Interpretation Can you think of
Compilation another strategy -
a “hybrid”?

e \What are the main differences?
“Online”; read program, execute immediately
“Offline”. convert high-level program into assembly code

e Compilation is a language translation problem
What are the languages?
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movl %esp, %ebp
] ] subl $4, %esp
int 1 = 10; mov1l $10, -4(%ebp)
while (1 > 0) { L2:
n cmpl $0, -4(%ebp)
28 =28 2; jle .L3
1=1-1; movl 8(%ebp), %eax
sall %eax
} movl %eax, 8(%ebp)
Source leal -4(%ebp), %eax
decl (%eax)
jmp .L2
.L3:
movl 8(%ebp), %eax

% Target
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The compilation problem

® Assembly language
Converts trivially into machine code
No abstraction: load, store, add, jump, etc.
Extremely painful to program
What are other problems with assembly programming?

® High-level language
Easy to understand and maintain

Abstractions: control (loops, branches); data (variables,
records, arrays); procedures

Problem: how do we get from one to the other?

% (systematically)




Translation process

High-level language

Assembly/machine code




Sounds easy!

® Translation can be tricky...
Infallible source: the Internet

| saw the Pope (“el Papa”) == | saw the potato (“la papa”)

It won't leak in your It won't leak in your pocket
pocket and embarrass m=)> and make you pregnant
you (“no los embarass”) (“no embarazado”)

It takes a hard man to
m==> make a chicken
affectionate

It takes a tough man to
make a tender chicken
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Job #1

® What is our primary concern?
Words or code: translate it correctly

® How do we know the translation Is correct?

Specifically, how do we know the resulting machine code
does the same thing

® “Does the same thing”
What does that even mean?




Correctness

® Practical solution: automatic tools

Parser generators, regular expressions, rewrite
systems, dataflow analysis frameworks, code
generator-generators

Extensive testing

® Theoretical solution: a bunch of math
Formal description of semantics
A proof that the translation is correct
C> Topic of current research




Incorrecthness

® What Is this?

® Internal failure in the
operating system

® Buggy device driver

fin exception 06 has occured at 0028:C11B3ADC in WeD DiskTSD{03) +

p0001660, This was called from 0028:C11B40CE in WD voltrack({04) +

00000000, It may be possible to comtinue normally,

= Press any key to attempt to cont inue,
#® Press CTRL#ALTHRESET to restart your cowputer, You will
lose any unsaved information in all applications.

Press any ke to cont inue
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Good enough?

® |s there more than correctness?

Our wines leave you nothing to hope for.

-Swiss menu

When passenger of foot heave in sight, tootle the horn.
Trumpet him melodiously at first, but if he still
obstacles your passage then tootle him with vigor.

-Car rental brochure

Drop your pants here for best results.

-Tokyo dry cleaner
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Job #2

® Produce a “good” translation

® What does that mean for compilers?
Good performance — optimization
Reduce the amount of work (“be concise”)

Utilize the hardware effectively (“choose your words
carefully”)

® How hard could that be?
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Past processors

8086

29,000 transistors _
Pentium M

140,000,000 transistors
® More speed, more complexity
® But, same machine code — why is that nice?




Tomorrow’s processors

28

Intel Core Duo Xbox 360

® Parallel, heterogeneous
Really hard to program!

PS-3 CELL
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Structure of a compiler

Front End

Back End




Structure of a compiler cocs®

® Organized as a series of passes
“ Lexical Analysis
“ Parsing
¢ Semantic Analysis
¢ Optimization
“ Code Generation

® We will follow this outline In the class




What | want you to get
out of this class

® Understand how compilers work
Duh

® See how theory and practice work together
Yes, theory of computation is good for something
Also: graph algorithms, lattice theory, more...

® Work with a large-ish software systems

® | earn to think about tradeoffs

System design always involves tradeoffs
Impossible to maximize everything
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Study of compilers

® Brings together many parts of CS
Practical and theoretical
Some solved problems, others unsolved

Theory of Programming
computation languages
Operating
systems

Computer
architecture
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Course Structure

Course has theoretical and practical aspects

® Programming assignments = practice

Three homework projects
55% of final grade

® Final exam: 50%

Late policy:

Up to five late days per
assignment, 5% penalty
per day

® Need to pass both exam and projects
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Project

® Build a compiler for a subset of Java
Implemented in Java
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