Compilers

Lecture 1
Introduction

Yannis Smaragdakis, U. Athens
(original slides by Sam Guyer@ Tufts)

Discussion

® What does a compiler do?
® Why do you need that?

® Name some compilers you have used

A Brief History of
High-Level Languages

® 1953 IBM develops the 701
Memory: 4096 words of 36 bits
Speed: 60 msec for addition
All programming done in assembly code

701 OPERATORS PANEL

Programming

® What’s the problem?
Assembly programming very slow and error-prone
Software costs exceeded hardware costs!

® John Backus: “Speedcoding”

Simulate a more convenient machine

But, ran 10-20 times slower than hand-written assembly
® Backus

Idea: translate high-level code to assembly

Many thought this impossible

Had already failed in other projects

® 1954-7 FORTRAN I project

By 1958, >50% of all code is in FORTRAN

Cut development time dramatically — from weeks to hours

FORTRAN I

® The first compiler
Huge impact on computer science
Produced code almost as good as hand-written

® Led to an enormous body of work
Theoretical work on languages, compilers
Program semantics
Thousands of new languages

® Modern compilers preserve the outlines of FORTRAN |

Language implementations

e Two major strategies:

Interpretation Can you think of
Compilation another strategy -
a “hybrid”?

e \What are the main differences?
“Online”; read program, execute immediately
“Offline”. convert high-level program into assembly code

e Compilation is a language translation problem
What are the languages?

(Y X)
'YX
L X
) O
Languages involved T
O
movl %esp, %ebp
]] subl $4, %esp
int 1 = 10; mov1l $10, -4(%ebp)
while (1 > 0) { L2:
n cmpl $0, -4(%ebp)
28 =28 2; jle .L3
1=1-1; movl 8(%ebp), %eax
sall %eax
} movl %eax, 8(%ebp)
Source leal -4(%ebp), %eax
decl (%eax)
jmp .L2
.L3:
movl 8(%ebp), %eax

% Target
7

The compilation problem

® Assembly language
Converts trivially into machine code
No abstraction: load, store, add, jump, etc.
Extremely painful to program
What are other problems with assembly programming?

® High-level language
Easy to understand and maintain

Abstractions: control (loops, branches); data (variables,
records, arrays); procedures

Problem: how do we get from one to the other?

% (systematically)

Translation process

High-level language

Assembly/machine code

Sounds easy!

® Translation can be tricky...
Infallible source: the Internet

| saw the Pope (“el Papa”) == | saw the potato (“la papa”)

It won't leak in your It won't leak in your pocket
pocket and embarrass m=)> and make you pregnant
you (“no los embarass”) (“no embarazado”)

It takes a hard man to
m==> make a chicken
affectionate

It takes a tough man to
make a tender chicken

10

Job #1

® What is our primary concern?
Words or code: translate it correctly

® How do we know the translation Is correct?

Specifically, how do we know the resulting machine code
does the same thing

® “Does the same thing”
What does that even mean?

Correctness

® Practical solution: automatic tools

Parser generators, regular expressions, rewrite
systems, dataflow analysis frameworks, code
generator-generators

Extensive testing

® Theoretical solution: a bunch of math
Formal description of semantics
A proof that the translation is correct
C> Topic of current research

Incorrecthness

® What Is this?

® Internal failure in the
operating system

® Buggy device driver

fin exception 06 has occured at 0028:C11B3ADC in WeD DiskTSD{03) +

p0001660, This was called from 0028:C11B40CE in WD voltrack({04) +

00000000, It may be possible to comtinue normally,

= Press any key to attempt to cont inue,
#® Press CTRL#ALTHRESET to restart your cowputer, You will
lose any unsaved information in all applications.

Press any ke to cont inue

13

Good enough?

® |s there more than correctness?

Our wines leave you nothing to hope for.

-Swiss menu

When passenger of foot heave in sight, tootle the horn.
Trumpet him melodiously at first, but if he still
obstacles your passage then tootle him with vigor.

-Car rental brochure

Drop your pants here for best results.

-Tokyo dry cleaner

14

Job #2

® Produce a “good” translation

® What does that mean for compilers?
Good performance — optimization
Reduce the amount of work (“be concise”)

Utilize the hardware effectively (“choose your words
carefully”)

® How hard could that be?

15

Past processors

8086

29,000 transistors _
Pentium M

140,000,000 transistors
® More speed, more complexity
® But, same machine code — why is that nice?

Tomorrow’s processors

28

Intel Core Duo Xbox 360

® Parallel, heterogeneous
Really hard to program!

PS-3 CELL

17

Structure of a compiler

Front End

Back End

Structure of a compiler cocs®

® Organized as a series of passes
“ Lexical Analysis
“ Parsing
¢ Semantic Analysis
¢ Optimization
“ Code Generation

® We will follow this outline In the class

What | want you to get
out of this class

® Understand how compilers work
Duh

® See how theory and practice work together
Yes, theory of computation is good for something
Also: graph algorithms, lattice theory, more...

® Work with a large-ish software systems

® | earn to think about tradeoffs

System design always involves tradeoffs
Impossible to maximize everything

20

Study of compilers

® Brings together many parts of CS
Practical and theoretical
Some solved problems, others unsolved

Theory of Programming
computation languages
Operating
systems

Computer
architecture

21

Course Structure

Course has theoretical and practical aspects

® Programming assignments = practice

Three homework projects
55% of final grade

® Final exam: 50%

Late policy:

Up to five late days per
assignment, 5% penalty
per day

® Need to pass both exam and projects

22

Project

® Build a compiler for a subset of Java
Implemented in Java

23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

