
Compilers

ParsingParsing

Yannis Smaragdakis, U. Athens

(original slides by Sam Guyer@Tufts)

Next step

IR
Lexical

analyzer
Parsertokens

text
chars

Errors

22

� Parsing: Organize tokens into “sentences”

� Do tokens conform to language syntax ?

� Good news: token types are just numbers

� Bad news: language syntax is fundamentally more complex than
lexical specification

� Good news: we can still do it in linear time in most cases

Parsing

IR
Lexical

analyzer
Parsertokens

text
chars

Errors

33

� Parser

� Reads tokens from the scanner

� Checks organization of tokens against a grammar

� Constructs a derivation

� Derivation drives construction of IR

Study of parsing

� Discovering the derivation of a sentence

� “Diagramming a sentence” in grade school

� Formalization:

� Mathematical model of syntax – a grammar G

� Algorithm for testing membership in L(G)

44

� Algorithm for testing membership in L(G)

� Roadmap:

� Context-free grammars

� Top-down parsers

Ad hoc, often hand-coded, recursive decent parsers

� Bottom-up parsers

Automatically generated LR parsers

Specifying syntax with a grammar

� Can we use regular expressions?

� For the most part, no

� Limitations of regular expressions

� Need something more powerful

55

� Still want formal specification (for automation)

� Context-free grammar

� Set of rules for generating sentences

� Expressed in Backus-Naur Form (BNF)

Context-free grammar

� Example: # Production rule

1

2

sheepnoise → sheepnoise baa

| baa

“produces” or
“generates”

Alternative
(shorthand)

66

� Formally: context-free grammar is

� G = (s, N, T, P)

� T : set of terminals (provided by scanner)

� N : set of non-terminals (represent structure)

� s ∈∈∈∈ N : start or goal symbol

� P : set of production rules of the form N → (N ∪∪∪∪ T)*

Language L(G)

� Language L(G)

L(G) is all sentences generated from start symbol

� Generating sentences

� Use productions as rewrite rules

77

� Start with goal (or start) symbol – a non-terminal

� Choose a non-terminal and “expand” it to the right-hand

side of one of its productions

� Only terminal symbols left � sentence in L(G)

� Intermediate results known as sentential forms

Expressions

� Language of expressions

� Numbers and identifiers

� Allow different binary operators

� Arbitrary nesting of expressions

88

Production rule

1

2

3

4

5

6

7

expr → expr op expr

| number

| identifier

op → +

| -

| *

| /

Language of expressions

� What’s in this language?

Production rule

1

2

3

4

expr → expr op expr

| number

| identifier

op → +

Rule Sentential form

- expr

1

3

expr op expr

<id,x> op expr

99

We can build the string “x - 2 * y”
This string is in the language

4

5

6

7

op → +

| -

| *

| /

3

5

1

2

6

3

<id,x> op expr

<id,x> - expr

<id,x> - expr op expr

<id,x> - <num,2> op expr

<id,x> - <num,2> * expr

<id,x> - <num,2> * <id,y>

Derivations

� Using grammars

� A sequence of rewrites is called a derivation

� Discovering a derivation for a string is parsing

� Different derivations are possible

1010

� At each step we can choose any non-terminal

� Rightmost derivation: always choose right NT

� Leftmost derivation: always choose left NT

(Other “random” derivations – not of interest)

Left vs right derivations

� Two derivations of “x – 2 * y”

Rule Sentential form

-

1

3

expr

expr op expr

<id, x> op expr

Rule Sentential form

-

1

3

expr

expr op expr

expr op <id,y>

1111

3

5

1

2

6

3

<id, x> op expr

<id,x> - expr

<id,x> - expr op expr

<id,x> - <num,2> op expr

<id,x> - <num,2> * expr

<id,x> - <num,2> * <id,y>

3

6

1

2

5

3

expr op <id,y>

expr * <id,y>

expr op expr * <id,y>

expr op <num,2> * <id,y>

expr - <num,2> * <id,y>

<id,x> - <num,2> * <id,y>

Left-most derivation Right-most derivation

Derivations and parse trees

� Two different derivations

� Both are correct

� Do we care which one we use?

� Represent derivation as a parse tree

1212

� Represent derivation as a parse tree

� Leaves are terminal symbols

� Inner nodes are non-terminals

� To depict production αααα → β γ δβ γ δβ γ δβ γ δ
show nodes ββββ,γγγγ,δδδδ as children of αααα

Tree is used to build internal representation

Example (I)

expr

expropexpr

Parse tree

Rule Sentential form

-

1

3

6

1

expr

expr op expr

expr op <id,y>

expr * <id,y>

expr op expr * <id,y>

Right-most derivation

1313

� Concrete syntax tree
� Shows all details of syntactic structure

� What’s the problem with this tree?

expr op expr y*

x - 2

1

2

5

3

expr op expr * <id,y>

expr op <num,2> * <id,y>

expr - <num,2> * <id,y>

<id,x> - <num,2> * <id,y>

Abstract syntax tree
� Parse tree contains extra junk

� Eliminate intermediate nodes

� Move operators up to parent nodes

� Result: abstract syntax tree

expr *

1414

expr

expropexpr

expr op expr y*

x - 2

y

*

x

-

2

� Problem: Evaluates as (x – 2) * y

Example (II)

Rule Sentential form

-

1

3

5

expr

expr op expr

<id, x> op expr

<id,x> - expr

Left-most derivation

expr

expr op expr

Parse tree

1515

� Solution: evaluates as x – (2 * y)

5

1

2

6

3

<id,x> - expr

<id,x> - expr op expr

<id,x> - <num,2> op expr

<id,x> - <num,2> * expr

<id,x> - <num,2> * <id,y>

expr op exprx -

2 * y

Derivations

*-

1616

y

x

-

2

Left-most derivation Right-most derivation

y

*x

2

Derivations and semantics

� Problem:

� Two different valid derivations

� One captures “meaning” we want

(What specifically are we trying to capture here?)

� Key idea: shape of tree implies its meaning

1717

� Key idea: shape of tree implies its meaning

� Can we express precedence in grammar?

� Notice: operations deeper in tree evaluated first

� Solution: add an intermediate production

� New production isolates different levels of precedence

� Force higher precedence “deeper” in the grammar

Adding precedence

� Two levels: # Production rule

1

2

3

4

5

expr → expr + term

| expr - term

| term

term → term * factor

| term / factor

Level 1: lower precedence –
higher in the tree

Level 2: higher precedence –

1818

� Observations:

� Larger: requires more rewriting to reach terminals

� But, produces same parse tree under both left and right

derivations

5

6

7

8

| term / factor

| factor

factor → number

| identifier

Level 2: higher precedence –
deeper in the tree

Expression example

Rule Sentential form

-

2

4

8

expr

expr - term

expr - term * factor

expr - term * <id,y>

Right-most derivation Parse tree

expr

expr op term

1919

Now right derivation yields x – (2 * y)

8

6

7

3

6

8

expr - term * <id,y>

expr - factor * <id,y>

expr - <num,2> * <id,y>

term - <num,2> * <id,y>

factor - <num,2> * <id,y>

<id,x> - <num,2> * <id,y>

op

x

-

2

* y

term

fact

term fact

fact

With precedence

expr

expropexpr

expr

expr - term

expr

expr - term*

-

2020

expr op expr y*

x - 2

x 2

*

y

term

fact

term fact

fact

x 2

*

y

term

fact

term fact

fact y

x 2

Another issue

� Original expression grammar:

Production rule

1

2

3

expr → expr op expr

| number

| identifier

2828

� Our favorite string: x – 2 * y

3

4

5

6

7

identifier

op → +

| -

| *

| /

Another issue

Rule Sentential form

-

1

3

5

1

expr

expr op expr

<id, x> op expr

<id,x> - expr

<id,x> - expr op expr

Rule Sentential form

-

1

1

3

5

expr

expr op expr

expr op expr op expr

<id, x> op expr op expr

<id,x> - expr op expr

2929

� Multiple leftmost derivations

� Such a grammar is called ambiguous
� Is this a problem?

� Very hard to automate parsing

1

2

6

3

<id,x> - expr op expr

<id,x> - <num,2> op expr

<id,x> - <num,2> * expr

<id,x> - <num,2> * <id,y>

5

2

6

3

<id,x> - expr op expr

<id,x> - <num,2> op expr

<id,x> - <num,2> * expr

<id,x> - <num,2> * <id,y>

Ambiguous grammars

� A grammar is ambiguous iff:

� There are multiple leftmost or multiple rightmost derivations

for a single sentential form

� Note: leftmost and rightmost derivations may differ, even in

an unambiguous grammar

3030

an unambiguous grammar

� Intuitively:

� We can choose different non-terminals to expand

� But each non-terminal should lead to a unique set of

terminal symbols

� What’s a classic example?

� If-then-else ambiguity

If-then-else

� Grammar:

Production rule

1

2

3

stmt → if expr then stmt

| if expr then stmt else stmt

| …other statements…

3131

� Problem: nested if-then-else statements
� Each one may or may not have else

� How to match each else with if

3 | …other statements…

If-then-else ambiguity

� Sentential form with two derivations:
if expr1 then if expr2 then stmt1 else stmt2

if ifif

prod. 2 prod. 1

3232

expr1 then else

if

expr2 then

stmt2

stmt1

expr1 then

else

if

expr2 then

stmt2stmt1

expr1 then

else

if

expr2 then

stmt2stmt1

prod. 2

prod. 1

prod. 1

prod. 2

Removing ambiguity

� Restrict the grammar

� Choose a rule: “else” matches innermost “if”

� Codify with new productions

Production rule

1 stmt → if expr then stmt

3333

� Intuition: when we have an “else”, all preceding nested

conditions must have an “else”

1

2

3

4

5

stmt → if expr then stmt

| if expr then withelse else stmt

| …other statements…

withelse → if expr then withelse else withelse

| …other statements…

Ambiguity

� Ambiguity can take different forms

� Grammatical ambiguity (if-then-else problem)

� Contextual ambiguity

� In C: x * y; could follow typedef int x;

� In Fortran: x = f(y); f could be function or array

3434

� In Fortran: x = f(y); f could be function or array

Cannot be solved directly in grammar

� Issues of type (later in course)

� Deeper question:

How much can the parser do?

Parsing

� What is parsing?
� Discovering the derivation of a string

If one exists

� Harder than generating strings
Not surprisingly

� Two major approaches

3535

� Two major approaches
� Top-down parsing

� Bottom-up parsing

� Don’t work on all context-free grammars
� Properties of grammar determine parse-ability

� Our goal: make parsing efficient

� We may be able to transform a grammar

Two approaches

� Top-down parsers LL(1), recursive descent

� Start at the root of the parse tree and grow toward leaves

� Pick a production and try to match the input

� What happens if the parser chooses the wrong one?

Bottom-up parsers LR(1), operator precedence

3636

� Bottom-up parsers LR(1), operator precedence

� Start at the leaves and grow toward root

� Issue: might have multiple possible ways to do this

� Key idea: encode possible parse trees in an internal state
(similar to our NFA � DFA conversion)

� Bottom-up parsers handle a large class of grammars

Grammars and parsers

� LL(1) parsers
� Left-to-right input

� Leftmost derivation

� 1 symbol of look-ahead

LR(1) parsers

Grammars that they
can handle are called
LL(1) grammars

3737

� LR(1) parsers
� Left-to-right input

� Rightmost derivation

� 1 symbol of look-ahead

� Also: LL(k), LR(k), SLR, LALR, …

Grammars that they
can handle are called
LR(1) grammars

Top-down parsing

� Start with the root of the parse tree

� Root of the tree: node labeled with the start symbol

� Algorithm:

Repeat until the fringe of the parse tree matches input string

3838

Repeat until the fringe of the parse tree matches input string

� At a node A, select one of A’s productions

Add a child node for each symbol on rhs

� Find the next node to be expanded (a non-terminal)

� Done when:

� Leaves of parse tree match input string (success)

Example

� Expression grammar (with precedence)

Production rule

1

2

3

expr → expr + term

| expr - term

| term

3939

� Input string x – 2 * y

3

4

5

6

7

8

| term

term → term * factor

| term / factor

| factor

factor → number

| identifier

Example

Rule Sentential form Input string

- expr

expr

expr + term

1 expr + term ↑↑↑↑ x - 2 * y

3 term + term ↑↑↑↑ x – 2 * y

6 factor + term ↑↑↑↑ x – 2 * y

↑↑↑↑ x - 2 * y

Current position in
the input stream

4040

� Problem:

� Can’t match next terminal

� We guessed wrong at step 2

� What should we do now?

x

term

fact

6 factor + term ↑↑↑↑ x – 2 * y

8 <id> + term x ↑↑↑↑ – 2 * y

- <id,x> + term x ↑↑↑↑ – 2 * y

Backtracking

Rule Sentential form Input string

- expr

1 expr + term ↑↑↑↑ x - 2 * y

3 term + term ↑↑↑↑ x – 2 * y

6 factor + term ↑↑↑↑ x – 2 * y

8 <id> + term x ↑↑↑↑ – 2 * y

↑↑↑↑ x - 2 * y

Undo all these
productions

4141

� If we can’t match next terminal:

� Rollback productions

� Choose a different production for expr

� Continue

8 <id> + term x ↑↑↑↑ – 2 * y

? <id,x> + term x ↑↑↑↑ – 2 * y

Retrying

Rule Sentential form Input string

- expr

expr

expr - term
2 expr - term ↑↑↑↑ x - 2 * y

3 term - term ↑↑↑↑ x – 2 * y

6 factor - term ↑↑↑↑ x – 2 * y

8 <id> - term x ↑↑↑↑ – 2 * y

↑↑↑↑ x - 2 * y

4242

� Problem:

� More input to read

� Another cause of backtracking

x

term

fact

8 <id> - term x ↑↑↑↑ – 2 * y

- <id,x> - term x – ↑↑↑↑ 2 * y

3 <id,x> - factor x – ↑↑↑↑ 2 * y

7 <id,x> - <num> x – 2 ↑↑↑↑ * y

fact

2

Successful parse

Rule Sentential form Input string

- expr

expr

expr - term

2 expr - term ↑↑↑↑ x - 2 * y

3 term - term ↑↑↑↑ x – 2 * y

6 factor - term ↑↑↑↑ x – 2 * y

8 <id> - term x ↑↑↑↑ – 2 * y

↑↑↑↑ x - 2 * y

*

4343

x

term

fact

8 <id> - term x – 2 * y

- <id,x> - term x – ↑↑↑↑ 2 * y

4 <id,x> - term * fact x – ↑↑↑↑ 2 * y

6 <id,x> - fact * fact x – ↑↑↑↑ 2 * y

2

7 <id,x> - <num> * fact x – 2 ↑↑↑↑ * y
fact

- <id,x> - <num,2> * fact x – 2 * ↑↑↑↑ y

8 <id,x> - <num,2> * <id> x – 2 * y ↑↑↑↑

term * fact

y

Other possible parses

Rule Sentential form Input string

- expr

2 expr - term ↑↑↑↑ x - 2 * y

2 expr - term - term ↑↑↑↑ x – 2 * y

2 expr - term - term - term ↑↑↑↑ x – 2 * y

2 expr - term - term - term - term ↑↑↑↑ x – 2 * y

↑↑↑↑ x - 2 * y

4444

� Problem: termination

� Wrong choice leads to infinite expansion

(More importantly: without consuming any input!)

� May not be as obvious as this

� Our grammar is left recursive

2 expr - term - term - term - term ↑↑↑↑ x – 2 * y

Left recursion

� Formally,

A grammar is left recursive if ∃ a non-terminal A such that
A →* A αααα (for some set of symbols αααα)

What does →* mean?

4545

� Bad news:

Top-down parsers cannot handle left recursion

� Good news:

We can systematically eliminate left recursion

A → B x

B → A y

Notation

� Non-terminals

� Capital letter: A, B, C

� Terminals

� Lowercase, underline: x, y, z

4646

� Some mix of terminals and non-terminals

� Greek letters: α, β, γα, β, γα, β, γα, β, γ

� Example:

Production rule

1

1

A → B + x

A → B αααα
αααα = + x

Eliminating left recursion

� Fix this grammar:

Production rule

1

2

foo → foo αααα
| ββββ

Language is ββββ followed by
zero or more αααα

4747

� Rewrite as

Production rule

1

2

3

foo → ββββ bar

bar → αααα bar

| εεεε

New non-terminal

This production gives you
one ββββ

These two productions
give you zero or more αααα

Back to expressions

� Two cases of left recursion:

Production rule

1

2

3

expr → expr + term

| expr - term

| term

Production rule

4

5

6

term → term * factor

| term / factor

| factor

4848

� How do we fix these?

Production rule

1

2

3

4

expr → term expr2

expr2 → + term expr2

| - term expr2

| εεεε

Production rule

4

5

6

term → factor term2

term2 → * factor term2

| / factor term2

| εεεε

Eliminating left recursion

� Resulting grammar

� All right recursive

� Retain original language and

associativity

� Not as intuitive to read

Production rule

1

2

3

4

5

expr → term expr2

expr2 → + term expr2

| - term expr2

| εεεε
term → factor term2

4949

� Not as intuitive to read

� Top-down parser

� Will always terminate

� May still backtrack

5

6

7

8

9

10

term → factor term2

term2 → * factor term2

| / factor term2

| εεεε
factor → number

| identifier

There’s a lovely algorithm to do this
automatically, which we will skip

Top-down parsers

� Problem: Left-recursion

� Solution: Technique to remove it

� What about backtracking?
Current algorithm is brute force

5050

Current algorithm is brute force

� Problem: how to choose the right production?
� Idea: use the next input token (duh)

� How? Look at our right-recursive grammar…

Right-recursive grammar

Production rule

1

2

3

4

5

expr → term expr2

expr2 → + term expr2

| - term expr2

| εεεε
term → factor term2

Two productions
with no choice at all

All other productions are
uniquely identified by a
terminal symbol at the

5151

� We can choose the right

production by looking at the next

input symbol

� This is called lookahead

� BUT, this can be tricky…

5

6

7

8

9

10

term → factor term2

term2 → * factor term2

| / factor term2

| εεεε
factor → number

| identifier

terminal symbol at the
start of RHS

Lookahead

� Goal: avoid backtracking

� Look at future input symbols

� Use extra context to make right choice

� How much lookahead is needed?

In general, an arbitrary amount is needed for the full class

5252

� In general, an arbitrary amount is needed for the full class
of context-free grammars

� Use fancy-dancy algorithm CYK algorithm, O(n3)

� Fortunately,

� Many CFGs can be parsed with limited lookahead

� Covers most programming languages not C++ or Perl

Top-down parsing

� Goal:
Given productions A → α | β , the parser should be able to

choose between α and β

� Trying to match A

How can the next input token help us decide?

5353

How can the next input token help us decide?

� Solution: FIRST sets (almost a solution)

� Informally:

FIRST(α) is the set of tokens that could appear as the first
symbol in a string derived from α

� Def: x in FIRST(α) iff α →* x γ

Top-down parsing

� Building FIRST sets

We’ll look at this algorithm later

� The LL(1) property

� Given A → α and A → β, we would like:

5454

� Given A → α and A → β, we would like:

FIRST(α) ∩ FIRST(β) = ∅
� we will also write FIRST(A → α), defined as FIRST(α)

� Parser can make right choice by with one lookahead token

� ..almost..

� What are we not handling?

Top-down parsing

� What about ε productions?
� Complicates the definition of LL(1)

� Consider A → α and A → β and α may be empty

� In this case there is no symbol to identify α

5555

� Example:
� What is FIRST(#4)?

� = { ε }

� What would tells us we are matching production 4?

Production rule

1

2

3

4

S → A z

A → x B

| y C

| εεεε

Top-down parsing

� If A was empty

What will the next symbol be?

Production rule

1

2

3

4

S → A z

A → x B

| y C

| εεεε

5656

� What will the next symbol be?

� Must be one of the symbols that immediately follows an A

� Solution
� Build a FOLLOW set for each symbol that could produce ε
� Extra condition for LL:

FIRST(A→β) must be disjoint from FIRST(A→α) and FOLLOW(Α)

FOLLOW sets

� Example:

� FIRST(#2) = { x }

� FIRST(#3) = { y }

� FIRST(#4) = { ε }

Production rule

1

2

3

4

S → A z

A → x B

| y C

| εεεε

5757

� What can follow A?

� Look at the context of all uses of A

� FOLLOW(A) = { z }

� Now we can uniquely identify each production:

If we are trying to match an A and the next token is z, then we
matched production 4

FIRST and FOLLOW

more carefully

� Notice:
� FIRST and FOLLOW are sets

� FIRST may contain ε in addition to other symbols

� Question:
� What is FIRST(#2)?

Production rule

5858

� What is FIRST(#2)?

� = FIRST(B) = { x, y, ε }?

� and FIRST(C)

� Question:
When would we care
about FOLLOW(A)?

Answer: if FIRST(C) contains ε

1

2

3

4

5

6

7

S → A z

A → B C

| D

B → x

| y

| εεεε
C → . . .

LL(1) property

� Key idea:
� Build parse tree top-down

� Use look-ahead token to pick next production

� Each production must be uniquely identified by the terminal
symbols that may appear at the start of strings derived
from it.

5959

from it.

� Def: FIRST+(A → α) as
� FIRST(α) U FOLLOW(A), if ε ∈ FIRST(α)

� FIRST(α), otherwise

� Def: a grammar is LL(1) iff
A → α and A → β and

FIRST+(A → α) ∩ FIRST+(A → β) = ∅

Parsing LL(1) grammar
� Given an LL(1) grammar

� Code: simple, fast routine to recognize each production

� Given A → β1 | β2 | β3, with

FIRST+(βi) ∩ FIRST+ (βj) = ∅ for all i != j

/* find rule for A */

6060

/* find rule for A */
if (current token ∈ FIRST+(β1))

select A → β1

else if (current token ∈ FIRST+(β2))

select A → β2

else if (current token ∈ FIRST+(β3))

select A → β3

else
report an error and return false

Top-down parsing

� Build parse tree top down
Production rule

1

2

3

4

G → A αααα B ζζζζ
A → ββββ γ γ γ γ δδδδ
B → C D

| F

A αααα B ζζζζ

G

A B

6161

t1 t2 t3 t4 t5 t6 t7 t8 t9
… token stream

5 | εεεε
ββββ γ γ γ γ δδδδ

A B

?

t5 ∈∈∈∈ FOLLOW(B)

t5 ∈∈∈∈ FIRST(C D)

t5 ∈∈∈∈ FIRST(F)

εεεε

Consider all possible
strings derivable from “CD”

What is the set of tokens
that can appear at start?

Is “CD”?
disjoint?

C D

FIRST and FOLLOW sets

FIRST(αααα)

For some α ∈(T ∪ NT)*, define FIRST(α) as the set of
tokens that appear as the first symbol in some string that

derives from α

The right-hand side of
a production

6262

That is, x ∈ FIRST(α) iff α ⇒
* x γ, for some γ

and ε ∈ FIRST(α) iff α ⇒
* ε

FOLLOW(A)
For some A ∈ NT, define FOLLOW(A) as the set of symbols
that can occur immediately after A in a valid sentence.

FOLLOW(G) = {EOF}, where G is the start symbol

Computing FIRST sets

� Idea:

Use FIRST sets of the right side of production

� Cases:

F (A→B) = F (B)

A → B1 B2 B3 …

6363

� FIRST(A→B) = FIRST(B1)
� What does FIRST(B1) mean?

� Union of FIRST(B1→γγγγ) for all γγγγ

� What if ε in FIRST(B1)?

⇒⇒⇒⇒ FIRST(A→B) ∪= FIRST(B2) repeat as needed

� What if ε in FIRST(Bi) for all i?

⇒⇒⇒⇒ FIRST(A→B) ∪ = {ε} leave {εεεε} for later

Why ∪ = ?

Algorithm

� For one production: p = A → β

if (β β β β is a terminal t)

FIRST(p) = {t}

else if (ββββ == εεεε)

FIRST(p) = {εεεε} Why do we need
εεεε

6464

FIRST(p) = {εεεε}

else

Given ββββ = B1 B2 B3 … Bk

i = 0

do { i = i + 1;

FIRST(p) += FIRST(Bi) - {εεεε}

} while (εεεε in FIRST(Bi) && i < k)

if (εεεε in FIRST(Bi) && i == k) FIRST(p) += {εεεε}

to remove εεεε from
FIRST(Bi)?

Algorithm

� For one production:

� Given A → B1 B2 B3 B4 B5

� Compute FIRST(A→B) using FIRST(B)

� How do we get FIRST(B)?

What kind of algorithm does this suggest?

6565

� What kind of algorithm does this suggest?

� Recursive?

� Like a depth-first search of the productions

� Problem:

� What about recursion in the grammar?

� A → x B y and B → z A w

Algorithm
� Solution

� Start with FIRST(B) empty

� Compute FIRST(A) using empty FIRST(B)

� Now go back and compute FIRST(B)

� What if it’s no longer empty?

� Then we recompute FIRST(A)

6666

� Then we recompute FIRST(A)

� What if new FIRST(A) is different from old FIRST(A)?

� Then we recompute FIRST(B) again…

� When do we stop?

� When no more changes occur – we reach convergence

� FIRST(A) and FIRST(B) both satisfy equations

� This is another fixpoint algorithm

Algorithm

� Using fixpoints:

forall p FIRST(p) = {}

while (FIRST sets are changing)

pick a random p

6767

� Can we be smarter?

� Yes, visit in special order

� Reverse post-order depth first search
Visit all children (all right-hand sides) before visiting the left-
hand side, whenever possible

pick a random p

compute FIRST(p)

Example

Production rule

1

2

3

4

5

6

goal → expr

expr → term expr2

expr2 → + term expr2

| - term expr2

| εεεε
term → factor term2

FIRST(3) = { + }
FIRST(4) = { - }

FIRST(5) = { εεεε }

FIRST(7) = { * }
FIRST(8) = { / }

6868

6

7

8

9

10

11

term → factor term2

term2 → * factor term2

| / factor term2

| εεεε
factor → number

| identifier

FIRST(8) = { / }

FIRST(9) = { εεεε }

FIRST(1) = ?

FIRST(1) = FIRST(2)
= FIRST(6)
= FIRST(10) ∪∪∪∪ FIRST(11)
= { number, identifier }

Computing FOLLOW sets

� Idea:

Push FOLLOW sets down, use FIRST where needed

� Cases:

A → B1 B2 B3 B4 … Bk

6969

� Cases:

� What is FOLLOW(B1)?

� FOLLOW(B1) = FIRST(B2)

� In general: FOLLOW(Bi) = FIRST(Bi+1)

� What about FOLLOW(Bk)?

� FOLLOW(Bk) = FOLLOW(A)

� What if ε ∈ FIRST(Bk)?

⇒ FOLLOW(Bk-1) ∪= FOLLOW(A) extends to k-2, etc.

Example

Production rule

1

2

3

4

5

goal → expr

expr → term expr2

expr2 → + term expr2

| - term expr2

| εεεε

FOLLOW(goal) = { EOF }

FOLLOW(expr) = FOLLOW(goal) = { EOF }

FOLLOW(expr2) = FOLLOW(expr) = { EOF }

FOLLOW(term) = ?

FOLLOW(term) += FIRST(expr2)

7070

5

6

7

8

9

10

11

| εεεε
term → factor term2

term2 → * factor term2

| / factor term2

| εεεε
factor → number

| identifier

FOLLOW(term) += FIRST(expr2)

+= { +, -, εεεε }

+= { +, -, FOLLOW(expr)}

+= { +, -, EOF }

Example

Production rule

1

2

3

4

5

goal → expr

expr → term expr2

expr2 → + term expr2

| - term expr2

| εεεε

FOLLOW(term2) += FOLLOW(term)

FOLLOW(factor) = ?

FOLLOW(factor) += FIRST(term2)

+= { *, / , εεεε }

7171

5

6

7

8

9

10

11

| εεεε
term → factor term2

term2 → * factor term2

| / factor term2

| εεεε
factor → number

| identifier

+= { *, / , εεεε }

+= { *, / , FOLLOW(term)}

+= { *, / , +, -, EOF }

Computing FOLLOW Sets

FOLLOW(G) ←←←← {EOF }

for each A ∈ NT, FOLLOW(A) ←←←← Ø

while (FOLLOW sets are still changing)

for each p ∈ P, of the form A→→→→ … B1B2…Bk

FOLLOW(Bk) ←←←← FOLLOW(Bk) ∪∪∪∪ FOLLOW(A)

TRAILER ←←←← FOLLOW(A)

7272

TRAILER ←←←← FOLLOW(A)

for i ←←←← k down to 2

if εεεε ∈ FIRST(Bi) then

FOLLOW(Bi-1) ←←←← FOLLOW(Bi-1) ∪∪∪∪ (FIRST(Bi) – { ε }) ∪∪∪∪ TRAILER

TRAILER ←←←← TRAILER ∪∪∪∪ (FIRST(Bi) – { ε })

FOLLOW(Bi)

else

FOLLOW(Bi-1) ←←←← FOLLOW(Bi-1) ∪∪∪∪ FIRST(Bi)

TRAILER ←←←← FIRST(Bi)

LL(1) property

� Def: a grammar is LL(1) iff

A → α and A → β and
FIRST+(A → α) ∩ FIRST+(A → β) = ∅

� Problem

� What if my grammar is not LL(1)?

7373

What if my grammar is not LL(1)?

� May be able to fix it, with transformations

� Example:

Production rule

1

2

3

A → αααα ββββ1111

| αααα ββββ2222

| αααα ββββ3333

Production rule

1

2

3

4

A → αααα Z

Z → ββββ1111

| ββββ2222

| ββββ3333

Left factoring

� Graphically

Production rule

1

2

3

A → α βα βα βα β1111

| α βα βα βα β2222

| α βα βα βα β

A

αβ1

αβ2

7474

3 | α βα βα βα β3333

Production rule

1

2

3

A → α α α α Z

Z → ββββ1111

| ββββ2222

| ββββ3333

αβ3

αZ

β1

β3

β2
A

Expression example

After left factoring:

Production rule

1

2

3

factor → identifier

| identifier [expr]

| identifier (expr)

First+(1) = {identifier}

First+(2) = {identifier}

First+(3) = {identifier}

7575

After left factoring:

In this form, it has LL(1) property

Production rule

1

2

3

4

factor → identifier post

post → [expr]

| (expr)

| εεεε

First+(1) = {identifier}

First+(2) = { [}

First+(3) = { (}

First+(4) = ?

= Follow(post)
= {operators}

Left factoring

� Graphically

factor

identifier

[

(

]

)

identifier

identifier

expr

expr

7676

()identifier expr

No basis for choice

factor [

(

]

)

identifier expr

expr

εεεε

Next word determines choice

Left factoring

� Question
Using left factoring and left recursion elimination, can we turn an

arbitrary CFG to a form where it meets the LL(1) condition?

� Answer

Given a CFG that does not meet LL(1) condition, it is undecidable

7777

Given a CFG that does not meet LL(1) condition, it is undecidable
whether or not an LL(1) grammar exists

� Example

{an 0 bn | n ≥ 1} ∪ {an 1 b2n | n ≥ 1} has no LL(1) grammar

aaa0bbb

aaa1bbbbbb

Limits of LL(1)

� No LL(1) grammar for this language:

{an 0 bn | n ≥ 1} ∪ {an 1 b2n | n ≥ 1} has no LL(1) grammar

Production rule

7878

Production rule

1

2

3

4

5

6

G → a A b

| a B bb

A → a A b

| 0

B → a B bb

| 1

Problem: need an unbounded
number of a characters before you
can determine whether you are in
the A group or the B group

Predictive parsing

� Predictive parsing

� The parser can “predict” the correct expansion

� Using lookahead and FIRST and FOLLOW sets

7979

� Two kinds of predictive parsers

� Recursive descent

Often hand-written

� Table-driven

Generate tables from First and Follow sets

Recursive descent

� This produces a parser with six
mutually recursive routines:

� Goal

� Expr

� Expr2

� Term

Production rule

1

2

3

4

5

goal → expr

expr → term expr2

expr2 → + term expr2

| - term expr2

| εεεε

8080

� Term

� Term2

� Factor

� Each recognizes one NT or T

� The term descent refers to the
direction in which the parse tree is
built.

5

6

7

8

9

10

11

12

| εεεε
term → factor term2

term2 → * factor term2

| / factor term2

| εεεε
factor → number

| identifier

| (expr)

Example code

� Goal symbol:

main()

/* Match goal −−−−−−−−>>>> expr */

tok = nextToken();

if (expr() && tok == EOF)

then proceed to next step;

8181

� Top-level expression

then proceed to next step;

else return false;

expr()

/* Match expr −−−−−−−−>>>> term expr2 */

if (term() && expr2());
return true;

else return false;

Example code

� Match expr2

expr2()

/* Match expr2 −−−−−−−−>>>> + term expr2 */

/* Match expr2 −−−−−−−−>>>> - term expr2 */

if (tok == ‘+’ or tok == ‘-’)

Check FIRST and
FOLLOW sets to

distinguish

8282

if (tok == ‘+’ or tok == ‘-’)

tok = nextToken();

if (term())

then if (expr2())
return true;

else return false;

/* Match expr2 --> empty */

return true;

distinguish

Example code
factor()

/* Match factor --> (expr) */

if (tok == ‘(‘)

tok = nextToken();

if (expr() && tok == ‘)’)

return true;

else

8383

else

syntax error: expecting)

return false

/* Match factor --> num */

if (tok is a num)

return true

/* Match factor --> id */

if (tok is an id)

return true;

Top-down parsing

� So far:

� Gives us a yes or no answer

� Is that all we want?

� We want to build the parse tree

� How?

8484

� How?

� Add actions to matching routines

� Create a node for each production

� How do we assemble the tree?

Building a parse tree

� Notice:

� Recursive calls match the shape of the tree

main

expr

term

8585

� Idea: use a stack

� Each routine:
� Pops off the children it needs

� Creates its own node

� Pushes that node back on the stack

term

factor

expr2

term

Building a parse tree

� With stack operations

expr()

/* Match expr −−−−−−−−>>>> term expr2 */

if (term() && expr2())

expr2_node = pop();

8686

expr2_node = pop();

term_node = pop();

expr_node = new exprNode(term_node,
expr2_node)

push(expr_node);
return true;

else return false;

Generating (automatically)
a top-down parser

� Two pieces:

� Select the right RHS

� Satisfy each part

First piece:

Production rule

1

2

3

4

5

goal → expr

expr → term expr2

expr2 → + term expr2

| - term expr2

| εεεε

8787

� First piece:

� FIRST+() for each rule

� Mapping:

NT × Σ → rule#

Look familiar? Automata?

5

6

7

8

9

10

11

| εεεε
term → factor term2

term2 → * factor term2

| / factor term2

| εεεε
factor → number

| identifier

Generating (automatically)
a top-down parser

� Second piece

� Keep track of progress

� Like a depth-first search

� Use a stack

� Idea:

Production rule

1

2

3

4

5

goal → expr

expr → term expr2

expr2 → + term expr2

| - term expr2

| εεεε

8888

� Idea:

� Push Goal on stack

� Pop stack:

� Match terminal symbol, or

� Apply NT mapping, push RHS

on stack

5

6

7

8

9

10

11

| εεεε
term → factor term2

term2 → * factor term2

| / factor term2

| εεεε
factor → number

| identifier

This will be clearer once we see the algorithm

Table-driven approach

� Encode mapping in a table

� Row for each non-terminal

� Column for each terminal symbol

Table[NT, symbol] = rule#

if symbol ∈ FIRST+(NT -> rhs(#))

8989

+,- *, / id, num

expr2 term expr2 error error

term2 εεεε factor term2 error

factor error error (do nothing)

Code

push the start symbol, G, onto Stack
top ← top of Stack
loop forever

if top = EOF and token = EOF then break & report success
if top is a terminal then

if top matches token then
pop Stack // recognized top

9090

Missing else’s for error conditions

pop Stack // recognized top
token ← next_token()

else // top is a non-terminal
if TABLE[top,token] is A→ B1B2…Bk then

pop Stack // get rid of A
push Bk, Bk-1, …, B1 // in that order

top ← top of Stack

