
Edge Dominating Sets in Graphs
Author(s): M. Yannakakis and F. Gavril
Reviewed work(s):
Source: SIAM Journal on Applied Mathematics, Vol. 38, No. 3 (Jun., 1980), pp. 364-372
Published by: Society for Industrial and Applied Mathematics
Stable URL: http://www.jstor.org/stable/2100648 .
Accessed: 28/12/2011 14:24

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize, preserve and extend
access to SIAM Journal on Applied Mathematics.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=siam
http://www.jstor.org/stable/2100648?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp


SIAM J. APPL. MATH. ? 1980 Society for Industrial and Applied Mathematics 
Vol. 38, No. 3, June 1980 0036-1399/80/3803-0011 $01.00/0 

EDGE DOMINATING SETS IN GRAPHS* 

M. YANNAKAKISt AND F. GAVRILt 

Abstract. We prove that the edge dominating set problem for graphs is NP-complete even when 
restricted to planar or bipartite graphs of maximum degree 3. We show as a corollary that the minimum 
maximal matching and the achromatic number problems are NP-complete. A new linear time algorithm for 
finding minimum independent edge dominating sets in trees is described, based on an observed relationship 
between edge dominating sets and independent sets in total graphs. 

1. Introduction. In this paper we consider only finite, undirected graphs G(V, E) 
with no parallel edges and no self-loops, where V is the set of the graph vertices and E is 
the set of its edges. Two vertices u, v of G connected by an edge are called adjacent 
vertices and we denote the edge by (u, v). Two edges having a vertex in common or a 
vertex and its incident edge are also called adjacent. We say that an edge dominates its 
adjacent edges. A completely connected set of G is a set of vertices whose every two 
elements are adjacent. An independent set is a set of vertices no two of which are 
adjacent. For a set of edges M we denote by VM the set of their adjacent vertices. For 
two sets A, B we denote by A -B the set of elements of A which are not in B. The 
number of elements of a set A will be denoted by JAI. 

A node cover of a graph G is a set of vertices C such that every edge of G is 
adjacent to a vertex of C; y(G) will denote the size of a minimum node cover. 

A set of edges of a graph G(V, E) is called a matching if no two of its elements are 
adjacent. A matching is maximal if no other edges can be added to it. A set of edges M 
of G(V, E) is called an edge dominating set if every edge of E -M is adjacent to an 
element of M. The number of elements of a minimum edge dominating set will be 
denoted by $3(G). An independent edge dominating set is an edge dominating set in 
which no two elements are adjacent. An independent edge dominating set is in fact a 
maximal matching and a minimum independent edge dominating set is a minimum 
maximal matching (discussed in [4]). 

As pointed out in [8], the size of the minimum edge dominating set of a graph G is 
equal to the size of its minimum independent edge dominating set. In fact, given a 
minimum edge dominating set F of G we can construct in polynomial time a minimum 
independent edge dominating set of G as follows: Consider in F two adjacent edges 
(u, v) and (v, w), and let S be the set of edges different from (v, w) adjacent to w. It 
cannot be that S n F # 0 or that the elements of F - {(v, w)} dominate all the elements 
of S since in either case we could drop (v, w) from F, contradicting its minimality. 
Therefore, there is an edge (w, z) e S, z 0 v, such that (w, z) is dominated only by the 
edge (v, w) of F. Thus, by replacing (v, w) by (w, z) in F we obtain an edge dominating 
set of the same size having less pairs of adjacent edges. Continuing in this way we obtain 
a minimum independent edge dominating set having IFI elements. 

In the present paper we consider the problem of the existence of a polynomial time 
algorithm for finding minimum edge dominating sets or equivalently for finding 
minimum independent edge dominating sets. This problem has some very interesting 
applications. For example, let A be an m x n 0-1 matrix, and consider the problem of 
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finding a minimum set C of l's in A such that any other 1 of A is in the same row or 
column with an element of C. Let us construct a bipartite graph B(X, Y) by cor- 
responding to every row a vertex in X, to every column a vertex in Y and connecting a 
vertex in X to a vertex in Y by an edge if and only if A has a one at the intersection of the 
corresponding row and column. It is easy to see that a minimum set C of l's in A which 
dominates all the other l's corresponds to a minimum edge dominating set of B(X, Y) 
and conversely. 

Another application ([10]) is related to a telephone switching network built to 
route phone calls from incoming lines to outgoing trunks (we assume that a trunk can 
pass only one phone call at a time). The problem is to find the worst-case behavior of the 
network, i.e., the minimum number of routed calls when the network is saturated and 
no calls can be added. For this we construct a bipartite graph B by connecting a line to a 
trunk if and only if the line can be switched to the trunk. Then the problem is equivalent 
to finding the size of a minimum independent edge dominating set of B. 

A third application arises in the approximation of the node cover problem, known 
to be NP-complete ([9]). Let M be any maximal matching and VM the set of vertices 
that are adjacent to the edges of M Since M is a maximal matching, every edge of the 
graph is adjacent to a vertex of VM, i.e., VM is a node cover. On the other hand any node 
cover must contain at least one vertex from each edge of M, and therefore must be at 
least half the size of VM. Clearly it would be desirable here to first find a minimum 
maximal matching M 

Unfortunately, as we shall prove in ? 2 the edge dominating set problem is 
NP-complete even when restricted to planar or bipartite graphs with maximum degree 
3. Therefore, the above problems are "intractable." In ? 3 we show that there is a close 
relationship between edge dominating sets and independent sets in total graphs. Using 
this relationship we prove that the achromatic number problem is NP-complete, and 
describe in ? 4 a linear time algorithm for finding minimum independent edge dominat- 
ing sets in trees. A linear time algorithm for this problem has been described before in 
[12], but we shall point out why our algorithm is simpler. 

2. The NP-completeness of the edge dominating problem. As proved by Cook [2] 
and Karp [9] there exists a family of problems called NP-complete no member of which 
is known to have a polynomial time algorithm, but if any of them does have one, then 
they all have. It seems unlikely that the NP-complete problems have polynomial time 
algorithms and knowing that a problem is NP-complete may spare some work to 
researchers. For proving that a problem P is NP-complete it is enough to prove that 
P e NP and to show that a known NP-complete problem is reducible to P in polynomial 
time. The known NP-complete problems used in our reductions are: 

The node cover problem on planar cubic graphs [11]. 
Input: A planar cubic graph G(V, E) and a positive integer k; 
Property: G has a node cover with at most k elements. 
The SAT-3 restricted problem [13]. 
Input: A set of clauses C1, * * , Cp containing only variables, with at most three 

literals per clause, such that every variable occurs two times and its negation once. 
Property: There is a truth assignment of zeros and ones to the variables satisfying all 

the clauses. 
Our main task is to prove that the edge dominating set problem is NP-complete 

even when restricted to planar or bipartite graphs with maximum degree 3. This 
problem is defined as follows: 

The edge dominating set problem. 
Input: A graph G(V, E) and a positive integer k; 
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Property: G has a set of at most k edges which dominate all the other edges. 
THEOREM 1. The edge dominating set problem for planar graphs with maximum 

degree 3 is NP-complete. 
Proof. The reduction is from the node cover problem on planar cubic graphs. 
Let G( V, E) be a planar cubic graph. We fix an embedding of G on the plane and 

we replace each node vi of G by a part Hi shown in Fig. 1. 

Si, t 5:1 Si4 

IJ g II I. S . 1 Hi: 

FIG. 1 

The three edges incident to vi are attached to the three nodes ui, mi, pi. (There is some 
freedom here as to which of the 3! possible assignments is chosen. At the end we will see 
which assignment to choose so as to ensure our result.) The resulting graph G' has 
obviously maximum degree 3 and is planar (regardless of which assignment is chosen). 

Let us prove that 8 (G') = 21 VI + y(G); 
(i) Given a node cover C of G we define 

F = {(ui, wil), (mi, wi3), (pi, wi4)Ivi E C} U {(wi, wi), (wi3, wi4)1vi C}. 
Clearly, F is an edge dominating set (since C is a node-cover) with cardinality 
IFI = 21 VI + [Cl, hence f3(G') ' 21 VI + y(G). 

(ii) Conversely, let F be an edge dominating set of G'. For every Hi, F must 
contain one edge adjacent to wil, wi3, w14 in order to dominate the edges 
(Wil, Sil), (Wi3, Si3), (wi4, si4). Therefore F contains at least two edges from each Hi. 
Moreover if F has exactly two edges from Hi, then one is (wi3, wi4) and the other is 
(wil, wO2) or (ui, wi,) or (sie, wie) and in the last two cases the edge of vi adjacent to mi 
must belong to F (to dominate (wi2, mi)). If F has three or more edges from some H, we 
replace them by (ui, w01), (Mi, wi3), (pi, Wi4). The resulting set is dominating with at least 
as low cardinality. 

(a) Suppose that F has an edge of the form (ui, t,), i $ j, where t, is u; or mj or pi. If F 
has three edges from Hi, we delete (ui, t,) from F. If F has two edges from Hi, we replace 
them and (ui, t,) by (u;, wil), (Mi, Wj3), (pi, Wj4). 

(b) Suppose that F has an edge of the form (pi, tj), i $ j, where tj is mi or pi. Then we 
can apply the transformation of (a) above. 

Assume now that G' was constructed in such a way that it doesn't have any edges of 
the form (mi, mi), i # j. Then F has no edges from the original graph G and therefore 
whenever F contains exactly two edges from a part Hi these must be (wk3, wi4) and 
(wil, wi2). It follows that for every edge of G' connecting two different parts Hi, Hi, F 
must contain three edges in at least one of these parts, otherwise the edge is not 
dominated by F. Therefore the set C of the vertices vi of G such that F has three edges 
in Hi is a node cover of G. Hence ,8(G') _ 2n + y(G). 

Thus, the node cover problem for planar cubic graphs is reducible to the edge 
dominating set problem for planar graphs with maximum degree 3. 

It remains to show how to assign the edges adjacent to every vi such that G' has no 
edges of the form (mi, mi). 

Consider the graph G" = (V UE, E"), where E" = {(v, e): v e e}. Clearly G" is a 
bipartite graph with maximum vertex degree 3. Hence it can be 3-edge colored in 
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polynomial time (see [5]). Such a coloring yields the desired assignment of edges when 
the "colors" are u, m, and p. O 

THEOREM 2. The edge dominating set problem for bipartite graphs with maximum 
degree 3 is NP-complete. 

Proof. The reduction is from the SAT-3-restricted problem. Consider a set of 
clauses C1, C2, * * *, Cp with variables xl, x2, .., xn as input for the SAT-3-restricted 
problem. We construct a graph G(V, E) as follows: 

V = {ai, bi, ci, (ai, ji), (ai, Ij)', (bi, 12), (bi, 12)', (Ci, j3), (ci, 3)Y1 

Xi ECj 1 Cj2;ki e Cj3; 1 '!::in}U Idi, d'1 _<i 4-p }; 

E = {(ai, ci), (bi, ci), (ai, (ai, jl)), (bi, (b1, 12)), (ci, (ci, j3)), ((ai, ji), 

(ai, ji)'), ((bi, j2), (bi, fi)'), ((ci, fi), (ei, fi)'), ((ai, ji), djl), ((bi, j2), dj,), 

((Ci, fi), dj3)l1 _Ii_ n} U {(dj, di' )11 c5 j < p) 

... di, d13 . . d`12 

(ai, jJ)t /Ci, j3) (bi, j2) 

ai Ci b, 
FIG. 2 

The pattern corresponding in G to the variable xi is shown in Fig. 2. A bipartition (S, T) 
of V is 

S = {ai, bi, (ai, j1)', (b, j2)', (ci, j3)11 i < n} U {di1 -i '-p}, 

T = {ci, (ai, j1), (bi, j2), (Ci M3) _ i n} U {d: 1 '-i ' p}. 

(i) Given a satisfying assignment of the clauses define the setF of edges as follows: 

F = {((ai, jl), d1), ((bi, 12), dj2), ((Ci, j3), Ci)lXi = 1} 

U {((ai, ji), ai), ((bi, 12), bi), ((ci, 13), d;3)jxi = 0}. 

F is easily seen to be a dominating edge-set with Fl = 3n. 
(ii) Let F be a dominating edge-set for G with FI = 3n. Because of the edges 

((ai, jI), (ai, jj)'), etc., F must contain at least one edge incident to each of 
(ai, jI), (b1, Ig, (Ci, 13) for all i. Since IFI = 3n, it does not contain (ai, ci) or (bi, ci) and 
therefore it has either ((ci, j3), cO) or both ((ai, 1i), ai) and ((bi, 12), bi). 

Define a truth assignment i by setting xi = 1 in the first case and xi = 0 in the second 
case. Since IFI = 3n, for everyj we have (di, d;) L F and therefore F contains at least one 
edge incident to either di or d. Consequently r satisfies all clauses. 

The graph G constructed above has maximum degree 4. The degree-4 nodes are 
the di's, where Ci is a 3-literal clause. We can take care of that as follows: Replace the 
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nodes di and d' by the graph H of the Fig. 3. The three edges between the nodes, 
corresponding to variables and di are now attached to x, y, z. 

It is easy to show by a straightforward case analysis that H has the following 
properties: 

H - {x, y, z} consists of three u - v paths of length 4. Therefore it needs at least 
four edges for its domination, i.e., even if all three edges incident to x, y, z are in F, F 
must contain four more edges from H. 

If at least one of these three edges is in F, then four edges from H still suffice. (In the 
figure we show them with heavy lines in the case that the edge incident to x is in F.) If 
however none of these three edges belongs to F, then F must contain at least five edges 
from H. O 

Xe * 

N \~u 

H: V 

z 

FIG. 3. (Nodes belonging to the one set of the bipartition of H are circled.) 

3. Edge dominating sets and total graphs. For a graph G( V, E) we can construct a 
graph T(G) called the total graph of G by corresponding a vertex in T(G) to every 
element of V U E and connecting by an edge two vertices of T(G) if and only if the 
corresponding elements of V U E are adjacent in G. A vertex of T(G) corresponding to 
a vertex of G is called a v-vertex and a vertex corresponding to an edge of G is called an 
e-vertex. These graphs were discussed in [1] and [7]. 

Consider a graph G(V, E) and its total graph T(G). As we shall prove, there is a 
direct connection between the minimum independent edge dominating sets of G and 
the maximum independent sets of T(G). Let M be a set of edges of G. 

LEMMA 1. If M is a maximal matching of G then MU (V - VM) is a maximal 
independent set of T(G). Also IM U (V- VM)I = I VI - IMI. 

Proof. Since M is a maximal matching of G it follows that V - VM is an indepen- 
dent set of G, hence M U (V - VM) is independent in T(G). Since every element of 
T(G) not in MU(V- VM) is incident to M or is in V- VM it follows that MU 
(V - VM) is a maximal independent set. Also IM U (V - VM)I = IMI + I VI - 21MI = 
IVI-IMI. OI 

LEMMA 2. If M is a maximal matching of G and M U (V - VM) is a maximum 
independent set of T(G) then M is a minimum independent edge dominating set of G. 

Proof. Assume that G has a minimum independent edge dominating set M' such 
that IM'I < IMI. Then M' is a maximal matching of G, and by Lemma 1 M' U (V- VM') 
is a maximal independent set of T(G) such that IM' U (V- VM')I = I VI - IM'I. There- 
fore, M' U (V - VM') is an independent set greater than M U (V - VM), contradicting 
our assumption. O 

THEOREM 3. Let A be a maximum independent set of T(G) and let M be the set of 
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e-vertices of A. Then, for every maximal matching M' of G such that M c M', the set 
M'U (V - VM') is a maximum independent set of T(G) and M' is a minimum 
independent edge dominating set of G. 

Proof. Let M' be any maximal matching of G such that M c M'. Consider an edge 
e eM' -M Clearly, e is not adjacent in T(G) to any element of M Also, e cannot be 
adjacent to two v-vertices xi, x2 of A, otherwise xl and X2 would be adjacent in T(G). 
Therefore, every element e E M' - M is adjacent in T(G) to exactly one element x of A 
and x must be a v-vertex. Hence, by adding M'-M to A and deleting from A the 
v-vertices adjacent to elements of M'-M we obtain an independent set A' of T(G) 
such that IA'l = AI and A' =M'U (V- VM). Also, by Lemma 2, M' is a minimum 
independent edge dominating set of G. 0 

THEOREM 4. If M is a minimum independent edge dominating set of G then 
M U (V - VM) is a maximum independent set of T(G). 

Proof. By Lemma 1, M U (V - VM) is a maximal independent set of T(G). Let A 
be a maximum independent set of T(G), and let M be the set of e-vertices of A. Let M' 
be any maximal matching of G such that M c M'. By Theorem 3, M' U (V - VM') is also 
a maximum independent set of T(G). Also, IM' U (V - VM')l = I VI - IM'I, IM U 
(V - VM)l = I VI - IMI and I VI - IM'I _ I VI - IMI, hence IMI _ IM'I. On the other hand 
IM'l >-IMI since M is a minimum independent edge dominating set of G. Therefore 
IMI = IM'I and M U (V - VM) is a maximum independent set of T(G). 0 

From Theorems 3 and 4 we can conclude that for every graph G, we can construct 
in polynomial time a minimum independent edge dominating set of G from a maximum 
independent set of T(G) and conversely. Combining this conclusion with Theorem 2 we 
have 

COROLLARY 1. The independent set problem for the total graphs of bipartite graphs is 
NP-complete. 

We can describe another related problem. Consider a graph G(V, E). An 
achromatic coloring of G is a coloring of its vertices such that no two adjacent vertices 
have the same color, and for every two colors i and i there are two adjacent vertices one 
colored i and one colored j. The achromatic coloring problem is: Given G and a positive 
integer k, does G have an achromatic coloring with k colors? The maximum k for which 
G has an achromatic coloring is called the achromatic number of G. Given a graph G we 
can construct the independence graph S of G as follows: we represent each independent 
set of G by a vertex in S, and we connect by an edge two vertices of S if and only if the 
corresponding independent sets I1, I2 of G are disjoint and there are two adjacent 
vertices vi, V2 of G such that vl E I1, V2 E I2. It is not hard to see that every achromatic 
coloring of G corresponds to a maximal completely connected set of S and conversely. 
Therefore, it appears that the smaller are the independent sets of G, the easier would be 
the problem. Then, let us assume that G is the complement of a bipartite graph G'; i.e., an 
independent set of G is a vertex or a pair of vertices. It is easy to prove that in this case 
the independence graph S of G is exactly the complement of the total graph T(G') of 
G'. Hence the achromatic colorings of G correspond to the maximal independent sets 
of T(G'), and from Corollary 1 we can deduce 

COROLLARY 2. The achromatic number problem is NP-complete even for comple- 
ments of bipartite graphs. 

Let us now consider a fixed k. It is NP-complete to determine whether the 
chromatic number of a graph is at most k = 3. But we can answer in polynomial time 
whether the achromatic number is at least k for any fixed k. This, because the 
achromatic number of a graph G is at least k if and only if there is a subset W of at most 
k(k - 1) vertices of G which can be partitioned into k independent sets with at least one 
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edge connecting two different subsets and the subset W can be chosen in at most 
/ n 

(k(k - 1)) ways. 

4. Minimum independent edge dominating sets in trees. In this section we will use 
the results of the previous section to describe a linear time algorithm for finding 
minimum independent edge dominating sets in trees. As we mentioned in the Intro- 
duction, a linear time algorithm for this problem has been described before in [12]. 
Their algorithm finds first a minimum edge dominating set, and then constructs from it a 
minimum independent edge dominating set by interchanging edges, as described in the 
Introduction. Our algorithm is somewhat simpler in that it finds directly a minimum 
independent edge dominating set. We shall first prove a theorem which shows the 
structure of the total graphs of trees. 

A graph G is called chordal if every simple circuit with more than three vertices has 
an edge connecting two nonconsecutive vertices. These graphs were discussed in [3] and 
[6]. As proved in [3] every chordal graph has a vertex v called simplicial such that the set 
of vertices adjacent to v is a completely connected set. 

THEOREM 5. A connected graph G is a tree if and only if its total graph is chordal. 
Proof. Assume that G is a tree. Let v be a terminal vertex of G, and let e, = (u, v) be 

the only edge incident to v in G. In T(G) v is simplicial since it is adjacent only to u and 
e,, and u and e, are also adjacent. Let us delete v from T(G) to obtain T1. The vertex ev 
of T1 is also simplicial. Let us delete also ev from T1 to obtain T2. It is easy to see that T2 
is the total graph of the graph obtained from G by deleting v and ev. Therefore, by the 
induction hypothesis T2 is chordal and so are T1 and T(G). 

Conversely, let us assume that T(G) is chordal. If G has only one edge, it is clearly 
a tree. Let us assume that G has more than one edge. 

Let x be a simplicial vertex of T(G). Let us assume that x is an e-vertex and 
x = (u, v) in G. Since G has more than one edge and it is connected, there is an edge e 
incident to u (or v). Then, in T(G) e is not adjacent to v, contradicting the fact that x is 
simplicial. 

Therefore x must be a v-vertex. Let us assume that x is adjacent to two v-vertices 
xl, x2. Since x is simplicial, x, xl and x2 are mutually adjacent in T(G), and so they are 
also in G. Denote in G: e1 = (x, xi), e2 = (x, X2). But then, in T(G), X2 is not adjacent to 
ei, while ei is adjacent to x, contradicting the fact that x is simplicial. Therefore, x can 
be adjacent in T(G) to only one v-vertex, and to only one e-vertex. (Note that if x is 
adjacent to two e-vertices, then it has to be adjacent also to two v-vertices.) Therefore x 
has degree one in G. By deleting x and its edge from G and T(G) we obtain G1 and T1 
such that T1 is the total graph of G1. Therefore, by the induction hypothesis G1 is a tree, 
and by adding to it x and its edge we obtain that G is also a tree. 0 

A simple algorithm for finding a minimum independent edge dominating set of a 
tree G works as follows: Construct T(G). Find a maximum independent set A of the 
chordal graph T(G), as described in [6]. Let M be the set of e-vertices of A. Then, any 
maximal matching M1 containing M is a minimum independent edge dominating set of 
G. This algorithm requires 0(I V12) steps. 

We can construct a more efficient algorithm by finding a maximum independent set 
of T(G) and at the same time a minimum independent edge dominating set of G 
directly from the tree G. We do this in the following way. 

We assume that the tree is rooted at any vertex r of it. Let k be the height of G and 
let Ai, 0 ' i ' k, be the vertices of G which are at distance i from the root. We arrange 
the vertices and edges of G on levels by putting on level 2i the elements of Ai, and on 
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level 2i + 1 the edges connecting the vertices of Ai to their sons. Now, we construct a set 
of edges M (at the beginning M = 0) and we label the vertices and edges of G as 
follows: We go on every level starting with level 2k and down to level 0. On level 2j, we 
traverse its vertices in some order, let us say from left to right, and for every unlabeled 
vertex vi encountered we label by "-vi" the unlabeled elements on levels 2j, 2j- 1, 
2j - 2 which are adjacent to v;. On level 2j - 1, we traverse similarly its edges, and for 
every unlabeled edge e we label by "+" all the elements on levels 2j- 1, 2j - 2, 2j - 3 
which are adjacent to e (overwriting any previous labels), and we add e to M. Now, 
suppose that some edge e' from the same level 2j- 1 was previously unlabeled, i.e., e' 
was labeled for the first time from e. Let v be the vertex of e' at level 2j. We claim that v 
has label "-w" for some son w of it. For, if v is unlabeled then e' would have been 
labeled "-v " from vertex v; if v is labeled "+" from some edge at level 2j + 1, then e' 
would have been labeled also "+" from the same edge. For every such edge e' that was 
previously unlabeled we add the edge (v, w) to M Finally on level 0 if the root r has 
label "-u," for some son u of it, we add the edge (r, u) to M. 

It is easy to see that the set M obtained in the above algorithm is a matching. 
Suppose that there is an edge e = (vi, vi-1) which is not adjacent to any edge of M, with 
vi E Ai, vi-1 E Ai-1. Then e must be labeled " -vi," vi-1 must be labeled "-w" for some 
son w of it (possibly vi), and thus, if vi-1 is the root then (vi-1, w) E M. If vi-1 is not the 
root then the edge e' that is adjacent to vi-1 at level 2i - 3 is still unlabeled when we start 
traversing the elements of its level. Thus either it remains unlabeled, in which case 
eI E M, or it is labeled "+" from some edge on the same level, in which case (vi_1, w) E 
M. Therefore, M is a maximal matching of G. Now, consider the set S of unlabeled 
vertices and edges. It is easy to see that S is an independent set of T(G). For every x E S 
let B_ be the set containing x and the elements labeled from x. Clearly B. is a completely 
connected set of T(G). Thus, the family {BX}XEs is a covering by completely connected 
sets of T(G). Since no independent set can contain more than one element from each 
Bx, S must be a maximum independent set. Since M is a maximal matching that contains 
all the edges of S, it must be by Theorem 3 a minimum independent edge dominating set 
of G. With an adequate data structure the algorithm works in 0(I VI) steps. 

0 V 
I 

v, 

2 V 
3~~~~~~~~~~~~~~~~~~~~~~~ 

3 + ~+ 

V4V8 v -Vio 6 7 -V12 

6 
V8 V9 Vio Vii V12 V 13 

FIG. 4 

Consider for example the tree G of Fig. 4. The levels 0, , 6 are noted on the 
side. Starting on level 6, we label (V8, V4) and V4 by "-vs," (v9, V4) by "-v9" and we 
proceed similarly with the rest of the vertices of level 6. Continuing on level 5, we 
encounter no unlabeled elements. On level 4 we label (V6, V3) and V3 by "-v6.". On 
level 3, the edge (V4, V2) is unlabeled, hence we add it to M and we label "+" the 
elements (v5, v2), v2 and (v2, vl). Since (v5, V2) was previously unlabeled, we add 
(v5, v10) toM Similarly we add (V7, V3) toM, and label "+" V3, (V6, V3) (overwriting their 
previous labels) and the edge (V3, v1). On levels 2 and 1 there are no unlabeled 
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elements, and on level 0 the root is unlabeled. Therefore, a minimum independent edge 
dominating set of G is M = {(V4, V2), (V10, V5), (V7, V3)}, and a maximum independent set 
of T(G) is S = {V8, V9, V10, Vll, V12, V13, V6, (V4, V2), (V7, V3), V1}. 

5. Conclusions. We considered the problem of finding a minimum (independent) 
edge dominating set in graphs. We proved that this problem is NP-complete even when 
restricted to planar or bipartite graphs of maximum degree 3. Also, we described a 
linear time algorithm which solves the problem for trees. 

Three other related problems were proven to be NP-complete: 
(a) the independent set problem for total graphs of bipartite graphs; 
(b) the achromatic number problem, even when restricted to complements of 

bipartite graphs; 
(c) finding in an 0-1 matrix a set of k l's which dominate all the other l's. 
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