
Improving the Performance and
Energy-efficiency of Virtual Memory

A Range-based Approach

Vasileios Karakostas
Department of Computer Architecture

Universitat Politècnica de Catalunya

A dissertation submitted in fulfillment of
the requirements for the degree of

Doctor of Philosophy / Doctor per la UPC

April 2016

mailto:vasilis.karakostas@bsc.es
http://docencia.ac.upc.edu/
http://www.upc.edu








Dedicated to my family for always making the impossible possible





Abstract

Virtual memory improves programmer productivity, enhances process security,
and increases memory utilization. These benefits are provided by introducing
an indirection level between the virtual address space that the process sees and
the physical memory that the operating system manages and allocates for each
process. Thus, virtual memory requires an address translation from the virtual
to the physical address space on every memory operation.

Page-based implementations of virtual memory divide physical memory into
fixed size pages, and use a per-process page table to map virtual pages to phys-
ical pages. The hardware key component for accelerating the address transla-
tion is the Translation Lookaside Buffer (TLB), that holds recently used map-
pings from the virtual to the physical address space. The TLB used to be a
small monolithic structure. Due to the criticality of the TLB in the system’s
performance, commodity processors have employed a per-core two-level TLB
organization with additional support for huge pages. However, the address
translation still incurs high (i) performance overheads due to costly page table
walks after TLB misses, and (ii) energy overheads due to frequent TLB lookups
on every memory operation. This thesis quantifies these overheads and pro-
poses techniques to mitigate them.

In this thesis we argue that fixed size page-based approaches for address trans-
lation exhibit limited potential for improving TLB performance because they
increase the TLB reach by a fixed amount. To overcome the limitations of such
approaches, we introduce the concept of range translations and we show how
they can significantly improve the performance and energy-efficiency of ad-
dress translation.

We first comprehensively quantify the address translation performance over-
head on a collection of emerging scale-out applications. We show that address
translation accounts for up to 16% of the total execution time. We find that
huge pages may improve the application performance by reducing the time
spent in page walks, enabling better exploitation of the available execution re-
sources. However, the limited hardware support for huge pages in combination
with the workloads’ low memory locality leave ample space for performance
optimizations. In response, we present upper bounds for perfect optimizations



in the address translation path that motivate rethinking its design in the context
of memory intensive applications.

To reduce the performance overheads of address translation, we propose Re-
dundant Memory Mappings (RMM). RMM leverages ranges of pages and pro-
vides an efficient alternative representation of many virtual-to-physical map-
pings. We define a range translation be a subset of a process’s pages that are
virtually and physically contiguous. RMM translates each range translation
with a single range table entry, enabling a modest number of entries to translate
most of the process’s address space. RMM operates in parallel with standard
paging and introduces a software range table and a hardware range TLB with
arbitrarily large reach that is accessed in parallel with the regular L2-page TLB.
We modify the operating system to automatically detect ranges and to increase
their likelihood with eager page allocation. RMM is thus transparent to applica-
tions. We prototype RMM software in Linux and emulate the hardware. RMM
reduces the overhead of virtual memory to less than 1% on average on a wide
range of workloads.

To reduce the energy cost of address translation, we propose the Lite mecha-
nism and the TLBLi te and RMMLi te designs. Lite is a mechanism that monitors
the performance and utility of L1 TLBs, and adaptively changes their sizes with
way-disabling. The resulting TLBLi te organization targets commodity proces-
sors with TLB support for huge pages and opportunistically reduces the dy-
namic energy spent in address translation with minimal impact on TLB miss
cycles. To further provide more energy-efficient address translation, we pro-
pose RMMLi te that leverages the RMM address translation mechanism. RMMLi te

adds to RMM an L1-range TLB, that is accessed in parallel with the regular L1-
page TLB, and the Lite mechanism. The high hit ratio of the L1-range TLB
allows Lite to downsize the L1-page TLBs more aggressively. RMMLi te reduces
the dynamic energy spent in address translation by 71% on average. Above
the near-zero L2 TLB misses from RMM, RMMLi te further reduces the overhead
from L1 TLB misses by 99%.

The proposed designs target current and future high-performance and energy-
efficient memory systems to meet the ever increasing memory demands of ap-
plications.



Acknowledgements

My “short” journey in Barcelona started with a six-month visit as part of my
undergraduate studies and ends after several years with completing a PhD de-
gree (for the moment). The journey was not short. But it was a really great
experience, thanks to the support of many people that I wish to acknowledge
here.

First of all, I would like to express my deepest gratitude to my advisors Mario
Nemirovsky, Osman S. Unsal, and Adrian Cristal. Mario’s enthusiasm and solid
criticism in discussing ideas helped me a lot in identifying interesting problems
and asking the right questions. His extremely positive and supportive character
helped me in surpassing the obstacles that I encountered in my way. Osman
and Adrian trusted me from day one, first with accepting me as an intern, and
later with allowing me to continue my graduate studies at Barcelona Super-
computing Center. I sincerely thank them for their sound and technical advice,
but more importantly for their immense confidence, endless help, and constant
support, and for giving me the freedom to work on what I was interested in.

I also had the unique opportunity to have three exceptional external faculty
collaborators that I would like to gratefully thank: Prof. Mark D. Hill, Prof.
Michael M. Swift, and Prof. Kathryn McKinley. They all greatly helped me
in shaping and communicating the ideas presented in this thesis. Moreover,
they taught me many things about research, and contributed further into my
transition from student to researcher. In particular, I feel indebted to Michael
for the many technical discussions we had during his sabbatical in Barcelona,
and for forming our great collaboration team. In addition, I would like to
especially thank Mark, Michael, Prof. David A. Wood, and all the people from
the Wisconsin Multifacet Project for making me feel more than welcomed in
Madison during my short visit—an experience I will always remember.

I would like to thank Jayneel Gandhi for having the great pleasure to meet and
collaborate extensively. His hard-working but also positive attitude helped me
a lot with meeting difficult deadlines. I would also like to thank Jayneel for his
help in this thesis, especially in the RMM work.

I would like to thank Prof. Guri Sohi, Prof. Uri Weiser, and Prof. Francisco Ca-
zorla for serving in my thesis committee and providing very useful suggestions
that improved this document.



I would like to thank all my collaborators and co-authors, and particularly Gok-
cen Kestor, Ibrahim Hur, and Carlos Villavieja for their help and support at the
beginning of my graduate studies.

During my graduate studies I had the luck to meet and exchange ideas with
many great researchers. In particular, I would like to thank Prof. Avi Mendelson
and Dr. Tim Harris for always providing constructive feedback.

I would like to thank Xavier Salazar for his help and patience in preparing the
documents for my scholarship applications.

I am also indebted to all my friends and colleagues from Barcelona Supercom-
puting Center for their support during these years. Many thanks go to Nehir
Sonmez, Adria Armejach, Sasa Tomic, Vladimir Subotic, Oriol Arcas, Srdjan
Stipic, Gulay Yalcin, Vesna Smiljkovic, Azam Seyedi, Nikola Markovic, Daniel
Nemirovsky, Ferad Zyulkyarov, Behzad Salami, Furkan Ayar, Damian Roca,
Francesco Ciaccia, Josue Quiroga, Vladimir Gajinov, Oscar Palomar, Omer Sub-
asi, Javier Arias, Timothy Hayes, Milovan Djuric, Milan Stanic, Ivan Ratkovic,
Cristian Perfumo, Paul Carpenter, Nebojsa Miletic, and Ruben Titos. I sincerely
thank them all for their help and all the great moments we had together.

Finally, I would like to thank my friends and family for supporting me during
all these years. My deepest thanks to Efi for her love, for being next to me, and
for reminding me always that there is also a life to live. This dissertation would
have not been possible without her.



Contents

Contents ix

List of Figures xiii

List of Tables xvii

List of Algorithms xix

1 Introduction 1

1.1 Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Architectural Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Evolution of Address Translation Hardware Support . . . . . . . . . . . 2

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5.1 Quantifying Address Translation Overheads . . . . . . . . . . . . . . . . 6

1.5.2 Reducing Address Translation Performance Overheads . . . . . . . . . . 6

1.5.3 Improving Address Translation Energy-Efficiency . . . . . . . . . . . . . 8

1.6 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background on Virtual Memory 11

2.1 Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Architectural Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

ix



CONTENTS

2.3.1 Page Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Translation Lookaside Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 MMU cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.4 Huge Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Address Translation in the Multicore Era . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Accessing memory with virtual memory . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Segmented Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Quantifying Address Translation Performance Overheads 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.1 Scale-out Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Huge Pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 MMU Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 How much time is spent in TLB misses? . . . . . . . . . . . . . . . . . . . 39

3.4.2 Do Huge Pages help? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.3 Do TLB misses affect performance? . . . . . . . . . . . . . . . . . . . . . 42

3.4.4 How often do TLB misses occur? . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.5 What is the cost of a TLB miss? . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.6 Comparison with other benchmark suites . . . . . . . . . . . . . . . . . . 46

3.4.7 Interference in the cache hierarchy . . . . . . . . . . . . . . . . . . . . . . 47

3.4.8 Interaction with Hardware Prefetchers . . . . . . . . . . . . . . . . . . . 49

3.4.9 Instruction TLB misses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.10 Summary & Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Potential Improvements in the MMU . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Virtual Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.2 Perfect MMU Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.3 Perfect Cache Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.4 Perfect TLBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

x



CONTENTS

4 Fast Address Translation with Ranges 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Redundant Memory Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Architectural Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Range TLB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.2 Range table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.3 Handling misses in the range TLB . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Operating System Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 Managing range translations . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.2 Contiguous memory allocation . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.8.1 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8.2 Range TLB sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8.3 Impact of eager paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8.4 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Energy-Efficient Address Translation 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Trends in TLBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Energy Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.1 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.2 Where is the energy spent? . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.3 Do huge pages help? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.4 Does RMM help? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.5 Do larger TLB organizations help? . . . . . . . . . . . . . . . . . . . . . . 102

xi



CONTENTS

5.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Efficient Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.1 Opportunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.2 The Lite Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4.3 RMMLi te for Energy-Efficient TLBs . . . . . . . . . . . . . . . . . . . . . . 110

5.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.6.1 Dynamic Energy & Performance . . . . . . . . . . . . . . . . . . . . . . . . 117

5.6.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6 Conclusions 129

6.1 Broader Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Further Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Publications 133

References 135

xii



List of Figures

2.1 Virtual memory abstraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Architectural support for address translation. . . . . . . . . . . . . . . . . . . . . 14

2.3 Page Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Page table format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Translation Lookaside Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 The TLB hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Memory Management Unit (MMU) cache. . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Virtual memory abstraction with huge pages. . . . . . . . . . . . . . . . . . . . . 23

2.9 TLB support for multiple pages sizes. . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.10 Virtual memory abstraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.11 Accessing memory hierarchy with virtual memory. . . . . . . . . . . . . . . . . . 26

3.1 Execution time spent in page walks due to data accesses with 4 KB and 2 MB

pages for scale-out workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Normalized cycles spent in page walks due to data accesses with 4 KB and

2 MB pages for scale-out workloads. . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Speedup due to increasing the page-size from 4 KB to 2 MB for scale-out

workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Page walks per thousand instructions due to data accesses with 4 KB and

2 MB pages for scale-out workloads. . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Average number of cycles per page walk due to data accesses with 4 KB and

2 MB pages for scale-out workloads. . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Comparison of the MMU performance with other benchmark suites. . . . . . . 47

xiii



LIST OF FIGURES

3.7 Percentage of reduced cache misses (L1, L2 and LLC) due to increasing the

page-size from 4 KB to 2 MB for scale-out workloads. . . . . . . . . . . . . . . . 48

3.8 Cache misses (L1, L2 and LLC) per 1000 instructions with 4 KB and 2 MB

pages for scale-out workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 Page walk overhead due to instruction TLB misses for scale-out workloads. . 52

3.10 Comparison of page walks and LLC misses per thousand instructions due to

data accesses with 2 MB pages for scale-out workloads. . . . . . . . . . . . . . 54

3.11 Upper-bound results for potential improvements in the MMU organization

for scale-out workloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Address space layout with Redundant Memory Mappings . . . . . . . . . . . . 62

4.2 Redundant Memory Mappings design: the application’s memory space is

represented redundantly by both pages and range translations. . . . . . . . . . 67

4.3 RMM hardware support: the Range TLB. . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 RMM software support: the Range Table. . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Comparison of RMM with other schemes in reducing the execution time

overheads due to page walks for various TLB-intensive workloads from Spec

2006, Parsec, BioBench, and big-memory workloads. . . . . . . . . . . . . . . . 83

4.6 Sensitivity analysis of the range TLB miss ratio as a function of the number

of range TLB entries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 A common per-core two-level TLB organization that supports multiple page

sizes (4 KB, 2 MB, and 1 GB) through separate L1 TLBs. . . . . . . . . . . . . . 94

5.2 Dynamic energy spent in address translation and cycles spent in TLB misses

for various TLB intensive workloads with 4 KB pages, Transparent Huge

Pages, and RMM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Sensitivity analysis of the dynamic energy spent in address translation for

various cache hit ratios for the page walk references with 4 KB pages. . . . . . 102

5.4 Opportunity for Lite: L1 TLB misses per thousand instructions during the

execution of 50 billion instructions for astar, cactusADM, GemsFDTD, and

mcf, with various TLB organizations. . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Opportunity for Lite: L1 TLB misses per thousand instructions during the

execution of 50 billion instructions for omnetpp, zeusmp, mummer, and

canneal, with various TLB organizations. . . . . . . . . . . . . . . . . . . . . . . . 105

xiv



LIST OF FIGURES

5.6 Lite divides the execution time of an application into intervals. . . . . . . . . . 106

5.7 Lite introduces lru-distance-counters per L1 TLB to track the utility of ways. . 108

5.8 RMMLi te introduces an L1-range TLB and Lite to the L1-page TLBs, in

addition to the architectural support of RMM. . . . . . . . . . . . . . . . . . . . 111

5.9 TLB configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.10 Dynamic energy spent in address translation and cycles spent in TLB misses

for various TLB intensive workloads. . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.11 L1 and L2 TLB misses per thousand instructions for various TLB configurations.121

5.12 Dynamic energy reduction for the rest of Spec2006 and Parsec workloads. . . 123

5.13 Dynamic energy spent in address translation and cycles spent in TLB misses

for RMMLi te with perfect eager paging and with our actual eager paging

implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xv





List of Tables

3.1 TLB hierarchy of the test machine. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Metrics and corresponding hardware performance counters. . . . . . . . . . . 36

3.3 Memory usage statistics for scale-out workloads. . . . . . . . . . . . . . . . . . . 37

3.4 Page walks per 1000 instructions, average cycles per page walk, and cycles

spent in page walks for scale-out workloads with 2 MB pages, normalized to

4 KB pages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Page walks per 1000 instructions, average cycles per page walk, and cycles

spent in page walks for scale-out workloads with 2 MB pages for various

prefetcher configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Comparison of Redundant Memory Mappings with previous approaches for

reducing virtual memory overhead. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Comparison of required translation entries to map the application’s memory

with pages and ranges, for various memory intensive workloads. . . . . . . . . 66

4.3 Overview of Redundant Memory Mappings. . . . . . . . . . . . . . . . . . . . . . 68

4.4 System configurations and per-core TLB hierarchy. . . . . . . . . . . . . . . . . . 80

4.5 Performance model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Workload description and memory footprint. . . . . . . . . . . . . . . . . . . . . 82

4.7 Impact of eager paging on ranges, time, and memory compared to demand

paging with Transparent Huge Pages. . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Details of the private, per-core, data TLB hierarchy for the three latest Intel

processor architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xvii



LIST OF TABLES

5.2 Dynamic energy and leakage power for the memory structures that partici-

pate in the address translation path. . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Dynamic energy and performance models. . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Workload description and memory footprint. . . . . . . . . . . . . . . . . . . . . 116

5.5 Percentage of lookups with N active ways in the L1-page TLBs for TLBLi te

and RMMLi te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Percentage of hits in the L1 TLBs for TLBLi te and RMMLi te. . . . . . . . . . . . . 120

xviii



List of Algorithms

4.1 Pseudocode of memory allocation with Eager Paging. . . . . . . . . . . . . . . . . 77

5.1 Pseudocode of Lite’s decision algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 109

xix





1
Introduction

In this chapter, we first present the basic concepts of page-based virtual memory and the

evolution of the address translation support. We then discuss the motivation behind our

work and state the problems that we tackle in this thesis. Then we present our approach

for reducing the performance and energy overheads of virtual memory, and, finally, we

provide an overview of our contributions.

1.1 Virtual Memory

Virtual memory provides the programmer with an “infinite” amount of memory by virtual-

izing the available physical memory. This functionality increases programmer productivity,

enables process isolation, and enhances system consolidation.

To provide all these benefits, virtual memory introduces an indirection level between

the virtual address space that each process sees and the physical memory that the operating

system manages and allocates for all processes. However, the indirection cost of virtual

memory does not come for free: virtual memory implies that each memory operation made

1



1. INTRODUCTION

by an application requires an address translation to obtain the physical address, incurring

high performance [27, 28, 68, 77, 90] and energy [2, 3, 49, 71, 72, 73] overheads.

1.1.1 Architectural Support

Page-based implementations of virtual memory are ubiquitous in modern computing sys-

tems. They divide physical memory into fixed size pages, typically 4 KB, and use a per-

process page table to map virtual pages to physical pages. The page table is typically or-

ganized in an hierarchical fashion that requires multiple memory references for retrieving

a virtual to physical mapping. The Memory Management Unit (MMU) is responsible for

performing fast address translation in hardware, avoiding accesses in the page table. The

MMU primarily consists of the Translation Lookaside Buffer.

Translation Lookaside Buffer (TLB) is the hardware key component for accelerating ad-

dress translation. The TLB holds recently used mappings from the virtual to the physical

address space. The processor accesses the TLB on every memory request to obtain the ad-

dress translation, either before or in parallel with accessing the cache hierarchy. In case of

TLB hit, the address translation is obtained fast, and the memory request continues with

accessing the memory hierarchy. However, in case of TLB miss, a page walk occurs, i.e.,

a hardware state machine walks the page table. The page walk introduces extra multiple

memory references to fetch the address translation from the page table, e.g., four memory

references in the x86-64 architecture. Thus, the performance of the TLB depends on the

TLB reach, i.e., the memory for which the TLB may service address translation requests

without experiencing a miss.

1.1.2 Evolution of Address Translation Hardware Support

For a long time since their invention in the 1960s [44], TLBs have been a small monolithic

structure and were able to deliver high performance. Commercial processors, however,

keep on devoting more resources to memory and address translation to meet the ever

increasing memory demands of memory intensive workloads. The common organization

of the MMU found in today’s processors includes: (i) per-core multi-level TLBs, (ii) with

support for huge pages, (iii) backed by MMU caches.

2



Two-level TLB organization. Due to the criticality of the TLB in the system’s performance,

processor vendors have employed a per-core two-level TLB organization. The L1 TLB is

small and features a very fast search operation to serve the processor as fast as possible.

The L2 TLB is larger and slower than the L1 TLB, and aims at holding as many translations

as possible in order to reduce the number of the costly page walks. To boost the system’s

performance further, processors provide separate TLBs for data and instruction accesses.

TLB Support for Huge Pages. To increase further the TLB reach and improve TLB perfor-

mance, processors provide TLB support for huge pages. For example, x86-64 architectures

provide TLB support for 2 MB and 1 GB pages, in addition to 4 KB pages. Thus, a single

TLB entry for a huge page maps the same memory as if multiple TLB entries for regular

base pages were used.

MMU cache. To reduce the impact of the page walk latency in performance, commercial

processors back the TLB organization with MMU caches. The MMU cache reduces the cost

of page walks by caching intermediate levels of the page table, while the TLB only caches

the leaves of the page table. A hit in the MMU cache enables the processor to skip one or

more levels of the page table in order to complete the address translation with less memory

operations.

1.2 Motivation

Mismatch Between TLBs, Memories, and Emerging Workloads

Page-based virtual memory used to deliver high performance, since TLBs serviced the vast

majority of address translation requests. Unfortunately, the performance of paging is suf-

fering. While memory sizes—both on-chip and off-chip—increase due to Moore’s law, TLB

sizes have merely increased within the evolution of processors with respect to memories.

The reason for this mismatch is straight-forward: TLBs are on the critical path of accessing

the memory hierarchy. Adding more entries in the TLBs may increase the hit ratio. How-

ever, the TLB latency also increases due to the larger size, affecting the translation cost for

all memory operations—including TLB hits. In addition, because the TLBs are accessed on

every memory reference, they consume important percentage of processor energy. Adding

more entries in the TLBs will also increase their energy consumption. Consequently, the

3



1. INTRODUCTION

TLBs remain practically stagnant with respect to memory sizes, and introduce significant

performance and energy overheads for those workloads that deal with large working sets

and exhibit poor memory locality. Without new designs, the mismatch between TLBs,

memory sizes, and application behavior will likely keep growing.

1.3 Problem Statement

Previous works have highlighted the impact of the address translation path in terms of

performance and energy overheads. This thesis quantifies these overheads and proposes

techniques to mitigate them.

High Address Translation Performance Overheads. The performance of page-based vir-

tual memory is suffering due to limited TLB reach. Recent studies and this thesis show that

modern workloads can experience performance overhead due to page table walks [27,

28, 68, 77, 90]. This overhead is likely to grow, because physical memory sizes are still

growing.

The first goal of this thesis is to quantify the performance overhead of address trans-

lation for an emerging class of workloads, and to eliminate the performance overheads of

virtual memory with a robust virtual memory implementation that is transparent to appli-

cations and that enables fast address translation across a variety of workloads.

High Address Translation Energy Overheads. The TLBs have been reported to consume a

significant fraction of energy spent by the processor since the time they were monolithic [2,

3, 49, 71, 72, 73]. The recent growth in the complexity of the TLBs has further increased

their energy consumption. A recent industrial report suggests that TLBs are responsible for

3-13% of a processor’s power [108].

The second goal of this thesis is to analyze the sources of inefficiency in the address

translation path, and to improve opportunistically the energy efficiency of TLBs in the

presence of mechanisms that increase TLB reach while improving also the performance.

4



1.4 Thesis Approach

Fixed size page-based approaches exhibit limited potential for improving TLB performance

because they increase the TLB reach by a fixed amount. As memory sizes increase more

aggressively than TLB sizes, we believe that the virtual memory overheads that manifest in

today’s systems with 4 KB pages, will manifest similarly in tomorrow’s systems with larger

but fixed size mappings. Our experiments show that such cases exist already.

In this thesis we take a different approach and introduce the concept of range trans-

lations for translating contiguous virtual pages that are mapped to contiguous physical

pages. Range translations enable an efficient alternative representation of many virtual-

to-physical mappings. We show that range translations can significantly reduce the per-

formance and energy overheads spent in address translation. Hence, we argue that range

translations is the next logical step in the evolution of virtual memory.

1.5 Thesis Contributions

This thesis makes the following contributions:

• We quantify the performance overheads of address translation under the execution

of scale-out applications that dominate in datacenter computing. We find that a

significant percentage of the total execution time is spent in page walks due to TLB

misses, even when huge pages are employed.

• To reduce the address translation performance overheads, we propose Redundant

Memory Mappings (RMM), a hardware/software co-designed implementation of vir-

tual memory that reduces significantly the number of TLB misses that trigger page

walks through the notion of range translations.

• To reduce the energy overheads and to provide energy-efficient address translation,

we introduce the Lite mechanism, and we propose TLBLi te that targets commodity

processors with TLB support for huge pages, and RMMLi te that builds on RMM and

leverages the architectural support for ranges.

Next we highlight the most important concepts of each contribution.

5



1. INTRODUCTION

1.5.1 Quantifying Address Translation Overheads

Scale-out applications target various domains of datacenter computing including data an-

alytics, key-value caching and storing, graph analytics, and web-searching, among others.

These applications operate on large datasets with low memory locality, exhibiting ineffi-

cient execution in traditional server architectures [50]. In response, researchers proposed

novel designs to increase the efficiency of various components of the microprocessors for

scale-out applications [69, 86, 87]. However, the performance overhead of address trans-

lation in the Memory Management Unit (MMU) for scale-out applications has been largely

ignored. There have been very few studies that primarily focused on solutions to mitigate

the performance cost of the MMU [27, 28].
In this thesis, we perform a comprehensive performance analysis of the MMU under the

execution of various scale-out applications. We conduct our analysis leveraging the use of

performance counters on an x86-64 real system.

We find that the performance overhead of address translation accounts for up to 16%

of the total execution time, due to the high number of TLB misses that trigger page walks

and the interference between page walks and application data in the cache hierarchy. We

find that the performance improves by reducing the time spent in page walks, enabling

better exploitation of the available execution resources.

We observe that huge pages are beneficial for most applications without being an

“always-win” option due to limited hardware support. We also quantify the interference

between the application data and the page table in the cache hierarchy, and show how

page walks are affected by hardware prefetchers.

Finally, we present upper-bound analyses and provide potential directions for improv-

ing the MMU performance.

1.5.2 Reducing Address Translation Performance Overheads

Page-based virtual memory incurs high performance overheads due to costly page table

walks after TLB misses. Previous research has aimed on increasing TLB reach by improving

the efficiency of paging with: (i) Multipage mappings [96, 97, 111], that translate several

pages with a single TLB entry, (ii) Huge pages [5, 8], that translate much larger aligned

memory with a single TLB entry, and (iii) Direct segments [27, 52], that provide a single

arbitrarily large segment along with standard paging. However, all these efforts suffer

6



from various limitations; multipage mappings and huge pages have size and alignment

restrictions, and still provide limited TLB reach with respect to the ever-growing physical

memories, while direct segments require application modifications and do not provide

performance benefits for all workloads.

In this thesis, we propose Redundant Memory Mappings (RMM), a novel hardware/soft-

ware co-designed implementation of virtual memory. RMM exploits the natural contiguity

in address space and introduces a redundant mapping named range translation, in addi-

tion to page tables, that provides a more efficient representation of translation information

for ranges of pages that are both virtually and physically contiguous with uniform protec-

tion. With range translations, RMM increases the TLB reach and reduces significantly the

number of page walks, enabling a robust virtual memory implementation with near zero

performance overhead.

RMM relies on the concept of range translation. Each range translation maps a con-

tiguous virtual address range to contiguous physical pages with uniform protection access

rights, and uses BASE, LIMIT, and OFFSET values to perform translation of an arbitrary

sized range. Range translations are only base-page-aligned and redundant to paging; the

page table still maps the entire virtual address space.

Analogous to paging, RMM introduces three novel components to perform address

translation with range translations: (i) range TLBs, (ii) range tables, and (iii) eager pag-

ing allocation. More specifically, RMM introduces a hardware range TLB that is accessed

in parallel with the L2-page TLB. The range TLB caches recently used range translations,

accelerates their address translation, increases TLB reach, and reduces the number of page

walks. RMM introduces also a software managed range table that stores in memory all

range translations for each process. To increase contiguity in range translations, we extend

the operating system’s default lazy demand page allocation strategy to perform eager pag-

ing. Eager paging instantiates pages in physical memory at allocation request time, rather

than at first-access time as with demand paging. Because range tables are redundant to

page tables, RMM offers all the flexibility of paging and the operating system may use or

revert solely to paging when necessary. The resulting operating system automatically maps

most of process’s virtual address space with orders of magnitude fewer ranges than paging.

Overall, RMM reduces the overhead of virtual memory to less than 1% on average,

while combining the benefits and surpassing the limitations of previous proposals.

7



1. INTRODUCTION

1.5.3 Improving Address Translation Energy-Efficiency

Page-based virtual memory incurs also high energy overheads because the TLB is accessed

on every memory operation. Prior research has focused on reducing the dynamic energy of

TLBs through various techniques [20, 21, 38, 38, 41, 49, 71, 82]. However, those energy

optimization techniques do not take into account hardware support for increasing the TLB

reach (e.g., huge pages).

In this thesis, we analyze the energy spent in the address translation path, using as

baseline a common per-core two-level TLB organization with a separate set-associative L1

TLB for each supported page size, e.g., for 4 KB, 2 MB, and 1 GB pages. Our findings

show that the L1 TLBs are the primary source of dynamic energy overhead in the address

translation path. We also find that page walks consume significant amount of energy with

4 KB pages. While huge pages and other techniques that increase TLB reach [27, 51, 78,

96, 97, 111] reduce the energy due to page walks, we observe that the “innocent” L1 TLB

hits remain the dominant source of dynamic address translation, because multiple separate

L1 TLBs are accessed on every memory operation.

To reduce the energy cost of address translation, we first propose Lite. Lite monitors

the utility of ways in the L1 TLBs for each page size in an interval fashion based on the

distance of TLB hits from the least-recently-used (LRU) position, similar to the accounting

cache [47] and utility-based cache partitioning [102]. At the end of each interval, Lite

evaluates the utility of L1 TLBs. In case the utility of active ways is insignificant, Lite

opportunistically downsizes each of the L1 TLBs individually by disabling ways [16]. Lite

thus accesses fewer ways in the L1 TLBs, saving energy at the cost of introducing a few

additional misses. The resulting TLBLi te organization targets commodity processors with

TLB support for huge pages, requires minimal modifications, and opportunistically reduces

L1 TLB energy with negligible impact on performance.

We additionally propose RMMLi te to further augment the potential of Lite for reducing

the energy in L1 TLBs while at the same time reducing both the energy and performance

overheads due to L1 TLB misses. RMMLi te builds on RMM, and introduces a small L1-range

TLB and the Lite resizing mechanism. The L1-range TLB is accessed in parallel with the

L1-page TLB and is small (e.g., 4 entries) in order to meet the tight timing requirements

of L1-TLBs. Yet the L1-range TLB is powerful; each range TLB entry can hold a mapping of

unlimited size, that enables the L1-range TLB to enjoys a high hit ratio. That allows Lite to

8



downsize L1-page TLBs more aggressively without affecting the performance.

Our evaluation results show that TLBLi te reduces opportunistically the dynamic energy

spent in address translation by 23% while slightly increasing the cycles spent in TLB misses

compared to huge pages [5]. RMMLi te reduces the dynamic energy spent in address trans-

lation by 71% on average compared to huge pages. Above the near-zero L2 TLB misses

from RMM, RMMLi te further reduces the overhead from L1 TLB misses by 99%.

Overall, TLBLi te and RMMLi te improve both energy efficiency and performance of ad-

dress translation.

1.6 Thesis Organization

Chapter 2 provides additional background on virtual memory and address translation with

emphasis on page-based systems with hardware-managed TLBs.

Chapter 3 analyzes the performance of the Memory Management Unit under scale-out

workloads, focusing on the cost of TLB misses that trigger page walks and their interaction

with other processor components. This chapter follows mostly from our work published in

2014 IEEE International Symposium on Workload Characterization (IISWC 2014) [77].
Chapter 4 presents Redundant Memory Mappings (RMM), a hardware/software co-

designed implementation of virtual memory that eliminates the number of page walks. This

chapter follows mostly from our work published in the 42nd International Symposium on

Computer Architecture (ISCA 2015) [78] and summarized in the IEEE Micro Special Issue

on Top Picks from 2015 Computer Architecture Conferences [53].
Chapter 5 presents the Lite mechanism, and the TLBLi te and RMMLi te organizations

that improve the energy-efficiency of address translation. This chapter follows mostly from

our work published in the 22nd International Symposium on High Performance Computer

Architecture (HPCA 2016) [79].
Chapter 6 concludes this thesis and points to future research directions.

9





2
Background on Virtual Memory

This chapter provides background information on virtual memory. More specifically, we

introduce the basic concepts of page-based virtual memory and the role of address transla-

tion, then we describe the software and hardware components of the architectural support

for virtual memory, and finally we discuss briefly the variation of segment-based virtual

memory. Since in this thesis we mainly focus in the x86-64 architecture, we explain here

in more detail how address translation is performed in that architecture. Note that the

problems that we tackle in this thesis are not specific to the implementation of virtual

memory in the x86-64 architecture, i.e., high performance and energy overheads due to

address translation, and that similar issues hold for other architectures as well. For more

information about the implementation of virtual memory in other architectures, we refer

the interested readers to [66, 67].

11



2. BACKGROUND ON VIRTUAL MEMORY

Virtual
Address
space

Physical
Address
space

Address
Translation

Figure 2.1: The abstraction of the page-based virtual memory. The virtual and the physical address
spaces are divided into pages. The application “sees” the virtual address space. The operating
system manages the physical address space. The address translation implements the abstraction of
virtual memory with mapping the virtual addresses to physical addresses.

2.1 Virtual Memory

Virtual memory was originally introduced in the computing systems to overcome the prob-

lem of limited physical memory. Without virtual memory, the programmer had to make

sure that the program fitted in the physical memory. This restriction was responsible for

decreased software productivity and limited software portability. With virtual memory, the

programmer sees a big flat memory without bothering about the actual implementation

and limitations of the physical memory or memory system.

Virtual memory provides several benefits that have rendered its presence ubiquitous in

the computing systems for several decades now. Among others, virtual memory improves

process isolation and security and enhances programmer productivity, since the operating

system manages the mappings from the per-process virtual address space to the system’s

physical address space. In addition, virtual memory enables the operating system to consol-

idate more efficiently multiple running processes by managing better the available physical

memory.

2.2 Basic Concepts

The abstraction of page-based virtual memory relies on four basic concepts, as shown in

Figure 2.1: the virtual address space, the physical address space, the pages, and the address

translation. Next we introduce these basic concepts.

12



Virtual address space. The virtual address space is a set of address areas that the process

sees. The operating system allocates these virtual address areas and makes them available

to the process.

Physical address space. The physical address space is the actual physical memory, i.e., the

main memory that a computing system is equipped with. The operating system manages

the physical memory and allocates portions of the available physical memory to map parts

or the entire virtual address space of a process.

Pages. Both virtual and physical address spaces are divided and managed in fixed size

pages or in page granularity. The typical base size of pages for most architectures is 4 KB.

The virtual address space is divided into uniform virtual pages, each of which is identified

by a virtual page number. Similarly, the physical address space or physical memory is

divided into uniform physical pages, each of which is identified by a physical page number

or physical frame number.

Address Translation. When a process requests to access a memory location, an address

translation from the virtual address space to the physical address space needs to be per-

formed. The address translation is the function that provides that virtual-to-physical map-

ping; it receives as input a virtual page number, or simply a virtual address, and produces

as output a physical page number, or simply a physical address. Based on the physical

address, the process accesses the requested memory location and reads or writes data. Be-

cause the process always “sees” the virtual memory only, an address translation is necessary

on every memory reference.

2.3 Architectural Support

The implementation of virtual memory is a great example of hardware/software co-design

between the processor (hardware) and the operating system (software). The operating

system allocates physical memory, and maps the virtual addresses of a process to physical

addresses by keeping the translation information in a software structure called Page Table.

The processor accelerates virtual memory with the Memory Management Unit (MMU). The

MMU consists of two kinds of special address translation caches: the Translation Lookaside

Buffer (TLB) that holds recently used page table entries, and the MMU cache that holds

13



2. BACKGROUND ON VIRTUAL MEMORY

Architectural Support for
Address Translation

Page
Table

(software) (hardware)

Memory
Management

Unit

Translation
Lookaside

Buffer

MMU cache

Page Table Walker

Figure 2.2: The architectural support for address translation consists of the Page Table (software
component) and the Memory Management Unit (hardware component). The MMU consists of the
Translation Lookaside Buffer, the MMU cache, and the page table walker.

intermediate levels of the page table. Figure 2.2 shows the basic components of the archi-

tectural support for address translation.

2.3.1 Page Table

The page table implements the abstraction between the virtual and the physical address

space. The page table is an architecture-visible software data structure that is managed by

the operating system. The page table stores in memory all the translations from the virtual

to the physical address space for each process.

Page Table Entry (PTE). The page table consists of the page table entries. Each page table

entry contains information for a virtual page that is (potentially) mapped by a physical

page. This information is kept in a compact way, in order to keep the size of the page

table entry reasonable and to prevent the page table itself from occupying the physical

memory. The most common information found inside the page table entry across various

architectures usually includes:

• the valid bit that indicates whether that page is actually mapped in the physical

address space, and thus this page table entry holds valid information,

• the physical page number that holds the actual address translation of the correspond-

ing virtual page,

14



• the protection access rights that define what memory operations are permitted in that

page, e.g., no access, read-only access, or read/write access is permitted,

• the privilege access level that indicates whether user code or supervisor code can ac-

cess that page,

• the no-execute bit that indicates whether that page may hold any code information

or not, to prevent malicious software from inserting code into a data section and

running their own code,

• the cache-disabled bit that defines whether that page is cacheable in the memory

hierarchy or not,

• the access bit that indicates whether that page was recently accessed; the operating

system uses this information to decide which pages to reclaim from the processes

when serving new memory allocation requests, and

• the modify bit that indicates whether the processor wrote any data in that page;

when set, the operating system writes back the contents of that page to the disk

before reclaiming it from a process (i.e., swapping).

Hierarchical Page Table Organization. The page table could be organized as a flat table

that holds all the mappings from the virtual to the physical address space for every process,

including those mappings that correspond to currently non-allocated pages. However, such

an organization would be clearly inefficient because it would waste a lot of memory for the

page table itself.

To overcome the limitations of a flat table, the page table is usually organized in an

hierarchical fashion1. The hierarchical page table organization splits the page table in

various levels, so that entries in higher levels (closer to the root of the page table) hold

information for larger regions of memory. Thus, the size of the hierarchical page table

depends on the number of the virtual pages that a process uses.

Figure 2.3 shows the implementation of the page table for the x86-64 architecture. The

page table is implemented in four levels named as PML4, PDP, PD, and PT. Figure 2.4 shows

1Another approach for organizing the page table is the inverted page table that is used in the PowerPC
architecture [66, 67].

15



2. BACKGROUND ON VIRTUAL MEMORY

Sign Extend
Page-Map

Level-4 Offset
(PML4)

Page-Directory-
Pointer Offset

(PDP)

Page-Directory
Offset
(PD)

Page-Table
Offset
(PT)

Physical-Page
Offset

0

Virtual Address

1112202129303839474863

Page-Map
Level-4
Table

PML4E

Page-
Directory-

Pointer
Table

PDPE

Page-
Directory

Table

PDE

Page
Table

PTE

4 KB
Physical

Page

Physical
Address

CR 3
Register

Figure 2.3: The design of the page table in x86-64 architecture. The page table is organized in a
four-level hierarchical fashion, and thus address translation requires four memory operations.

the fields for each level of the page table. The virtual address is divided into parts and each

part serves as index in that level’s page table. The entries of each level hold pointers to

the entries of the next level. The last-level PT of the page table (PTE) holds the translation

information for that virtual address. Hence, each PT entry holds translation information

for a single 4KB page of physical memory, each PD entry points to a PT and may hold

translation information for a 2 MB memory area, each PDP entry points to a PD and may

hold translation information for a 1 GB memory area, and each PML4 entry points to a PDP

and may hold translation information for a 512 GB memory area.

Page Walk. Page walk is the process that involves: (i) accessing the page table with the vir-

tual address, (ii) traversing the page table, and (iii) obtaining eventually the corresponding

page table entry that contains the address translation for that virtual address. The x86-64

architecture walks the hierarchical page table in a top-down fashion2. The walk is per-

formed by the page table walker, a hardware finite state machine as explained next.

The physical address of the root of the page table is stored in the process control block,

a per-process data structure that the operating system uses to hold various information

2Another approach for accessing the hierarchical page table is the bottom-up method that is used in MIPS
and Alpha architectures [66, 67].

16



6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

M1 M-1 3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Reserved CR3

X
D

1 PML4E:
present

Ignored 0
PML4E:

not
present

X
D

Prot.
Key

1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDPTE:

1GB
page

X
D

Ignored Rsvd. Address of pagedirectory Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDPTE:
page

directory

Ignored 0
PDTPE:

not
present

X
D

Prot.
Key

Ignored Rsvd. Address of
2MBpage frame Reserved

P
A
T

Ign. G 1 D A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
2MB
page

X
D

Ignored Rsvd. Address of page table Ign. 0
I
g
n

A
P
C
D

P
W
T

U
/S

R
/
W

1
PDE:
page
table

Ignored 0
PDE:
not

present

X
D

Prot.
Key

Ignored Rsvd. Address of 4KBpage frame Ign. G
P
A
T

D A
P
C
D

P
W
T

U
/S

R
/
W

1
PTE:
4KB
page

Ignored 0
PTE:
not

present

Rs
Vd

Address of PML4 table Ignored

Ignored Rsvd.
Address
of 1GB

page frame
Reserved

P
A
T

GIgn.

Ignored Rsvd. Address of page-directory-pointer table Ign.

Ign.
P
W
T

P
C
D

P
W
T

P
C
D

I
g
n

A
U
/
S

R
/

W

bits

Figure 2.4: Format of the CR3 register and of the page table’s entries of each level (PML4, PDP, PD,
PT) for the x86-64 architecture [64]. M: the size of the physical address space, e.g., 48- to 52-bits.
R/W: read/write bit. U/S: user/supervisor bit. PWT: page write through bit. PCD: page cache
disable bit. A: accessed bit. D: dirty bit. G: global bit. XD: execute-disable bit.

17



2. BACKGROUND ON VIRTUAL MEMORY

for each process in the system. When the operating system schedules a process to a core

(context switch), the OS copies also the physical address of the root of the page table in

the CR3 register, an architecture-visible register. The hardware state machine uses the CR3

register to walk the page table when TLB misses occur.

Figure 2.3 shows the process of page walk for the x86-64 architecture, i.e., translating

a virtual address to a physical address with the page table. The CR3 register points to the

root of the PML4 table. The hardware walker uses the CR3 register as base, that points to

the root of the PML4 table, and the 47-39 bits of the virtual address as index in the PML4

table to read the corresponding PML4 entry (first memory operation). That PML4 entry

points to the root of a PDP table; the hardware walker uses the 38-30 bits of the virtual

address as index in the PDP table to read the corresponding PDP entry (second memory

operation). That PDP entry points to the root of a PD table; the hardware walker uses the

29-21 bits of the virtual address as index in the PD table to read the corresponding PD

entry (third memory operation). Finally, that PD entry points to the root of a PT table; the

hardware walker uses the 20-12 bits of the virtual address as index in the PT table to read

the corresponding PT entry (fourth memory operation).

Page Fault. A page fault occurs when no page table entry or no valid translation is found

in the page table, or when the process performs a memory operation that violates the ac-

cess rights (e.g., read/write, user/supervisor, etc.) of that page. The page fault triggers

an interrupt and the control is passed to the operating system that executes the page fault

handler. The page fault handler is a software routine that first checks the reason that trig-

gered that page fault, and then takes the corresponding action. In case the page fault was

due to accessing for the first time a page that is allocated in the virtual address space but is

not allocated yet in the physical address space (due to demand paging), then the operating

system allocates a physical page and updates the corresponding page table entry. In case

the page fault was due to accessing the backing storage (e.g., disk), then the operating

system fetches the corresponding data from the backing storage into memory and updates

the page table. Finally, in case the page fault was due to illegal access because of protection

rights violation, then the operating system terminates the process with an error signal.

18



[V47 V46 ......  ... V12] [V11 ... V0]

TLB

Page Table
Walk

Hit
Y

N

[P47 P46 ......  ... P12] [P11 ... P0]

Virtual Address

Physical Address

V Tag Phys. Page Number Prot

Figure 2.5: The Translation Lookaside Buffer accelerates address translation by caching recently
used page table entries. In case of TLB miss, a hardware state machine walks the page table.

2.3.2 Translation Lookaside Buffer

With virtual memory, each memory operation made by a process requires an address trans-

lation to obtain the physical address. This would imply that for each memory operation

in the x86-64 architecture, the processor should: (i) first perform four additional memory

operations to obtain the physical address from the page table, and (ii) then perform the

actual memory operation that was requested in the first place. Clearly such an approach

would have high impact in the performance that would probably outweigh the benefits of

virtual memory.

To accelerate virtual memory, processors employ the Translation Lookaside Buffer (TLB).

The TLB is a small cache that only holds recently used page table entries. With respect to

Figure 2.3, the TLB holds mappings from virtual pages to physical pages bypassing the

intermediate levels of the page table. The processor accesses the TLB on every memory

operation with the requested virtual address. In case of a hit, the TLB returns to the

processor the corresponding physical address, and the processor proceeds with accessing

the memory hierarchy. Thus, a TLB hit provides fast address translation without accessing

the page table, as shown in Figure 2.5.

19



2. BACKGROUND ON VIRTUAL MEMORY

[V47 V46 ......  ... V12] [V11 ... V0]

L2 TLB

Page Table
Walk

Hit
Y

N

[P47 P46 ......  ... P12] [P11 ... P0]

L1 TLB

Hit
Y

N

Figure 2.6: To increase TLB reach, processors have employed an hierarchical two-level TLB organi-
zation. The L1 TLB is small, set or fully associative, and features a very fast search operation, while
the L2 TLB is larger and aims at holding more translations.

In case of a TLB miss, a page walk occurs that fetches from the page table the miss-

ing address translation. The page walk can either be performed in hardware (hardware-

managed TLB) or in software (software-managed TLB). The x86-64 architecture uses hard-

ware-managed TLB, and thus the page walk is performed by a hardware finite state ma-

chine or simply hardware walker. The hardware state machine walks the page table, finds

the missing page table entry, and copies it in the TLB so that future memory references

that access the same page will hit in the TLB. During the page walk, the pipeline continues

with executing instructions that are independent of the instruction that caused that TLB

miss [66, 67].

TLB Reach. The performance of the TLB depends on the TLB reach, i.e., the total amount of

memory for which the TLB may service address translation requests without experiencing

a miss. Because TLB address translation is on the processor’s critical path, it requires low

access times which constrain TLB size, and thus the TLB reach.

20



Hierarchical TLBs. The TLB used to be a small monolithic structure with high or fully-

associative index methods. Due to the criticality of the TLB in the system’s performance

and energy, processor vendors have employed an hierarchical two-level TLB organization,

similar to the cache hierarchy. Figure 2.6 shows an hierarchical TLB organization: the L1

TLB is small, set or fully associative, and features a very fast search operation, while the

L2 TLB is larger and aims at holding more translations. To boost the system’s performance

further, processors provide separate TLBs for data and instructions. Note that in this thesis

we use the term “TLB” to refer either to the general structure of the TLB or to the TLB

hierarchy as a whole depending on the context, whereas we use the terms “L1 TLB” or “L2

TLB” to refer explicitly to that (L1 or L2) level’s TLBs.

Updating TLB entries. The TLB is a read-only hardware structure that never holds dirty

data. When the operating system changes the translation information for a page, e.g., due

to relocating that page or due to changing that page’s protection access rights, the TLB

needs to be updated. This happens with the following procedure: the operating system (i)

issues the INVLPG instruction to invalidate the stale virtual to physical translation, and (ii)

updates the corresponding entries in the page table. Hence, the next memory reference in

that page will cause a TLB miss, the hardware state machine will walk the page table and

will install correctly the updated translation entry in the TLB.

Summary. The TLB is the hardware key component for accelerating virtual memory. The

TLB accelerates address translation and is on the critical path of every memory operation.

Due to its important functionality, the TLB performance (hit/miss ratio) affects significantly

the total performance [27, 28, 68, 77, 90] and energy consumption [2, 3, 49, 71, 72, 73]
of the processor.

2.3.3 MMU cache

To minimize the performance overhead of the TLB misses that trigger page walks, proces-

sors have employed MMU caches [23, 28]. The MMU cache reduces the cost of page walks

by caching intermediate levels of the page table, i.e., entries from the PML4, PDP, and PD

levels.

Figure 2.7 shows the design of MMU cache for the Intel x86-86 processors. The MMU

cache is organized into three individual structures; the PD-structure is tagged with the 47-

21



2. BACKGROUND ON VIRTUAL MEMORY

[V47 V46 .........  V21 V20 ... V12] [V11 ... V0]

Virtual Address

PML4 bitsV PDP bits PD bits

47-39 38-30 29-21

PDE
PD structure

PML4 bitsV PDP bits

47-39 38-30

PDPE
PDP structure

PML4 bitsV

47-39

PML4E
PML4 structure

MMU cache

Figure 2.7: The Memory Management Unit (MMU) cache reduces the cost of page walks by caching
intermediate levels of the page table.

21 bits, the PDP-structure is tagged with the 47-30 bits, and the PML4-structure is tagged

with the 47-39 bits. The hardware walker accesses all structures of the MMU cache with

the missing-in-the-TLB virtual address. A hit in the MMU cache enables the hardware

walker to skip one or more levels of the page table. The lookup request in the MMU cache

may generate three hits, one for each structure; the hardware walker chooses that hit

with the longest prefix that enables skipping most levels of the page table. Thus, a page

walk requires between one and four memory operations to retrieve the missing address

translation, based on the contents of the MMU cache; one memory operation in case of

hit in the PD-structure, two memory operations in case of hit in the PDP-structure, three

memory operations in case of hit in the PML4-structure, and four memory operations in

case of a complete miss in all structures of the MMU cache.

Note that the memory hierarchy may also cache any level of the page table. For ex-

ample, Intel processors may cache the page table in any level of the memory hierarchy,

up to the L1 cache. The difference between the MMU cache and the memory hierarchy

in caching page table contents lies in the purpose they serve. The MMU cache defines the

number of memory operations per page walk and the hardware walker accesses the mem-

ory hierarchy for that many times to retrieve the missing page table entry. The memory

22



Virtual
Address
space

Physical
Address
space

Huge pages Base pages

Figure 2.8: Virtual memory abstraction with huge pages.

hierarchy holds close to the processor the contents of the page table to accelerate each

page walk reference made by the hardware walker.

2.3.4 Huge Pages

To improve the limited TLB reach that 4 KB pages provide, most architectures provide

support for multiple page size through large or huge pages. For example, the x86-64 ar-

chitecture supports mixing 4 KB with 2 MB and 1 GB pages, while other architectures

support more sizes [91, 101, 107]. Figure 2.8 shows the abstraction of virtual memory

that supports both base pages and huge pages.

Huge pages [5, 8] increase the TLB reach by mapping very large regions with a single

entry. However, huge pages need to be size-aligned in both virtual and physical address

spaces, i.e., a 2 MB mapping may exist only if there is a free 2 MB-aligned page in the

virtual address space that can be mapped by a free 2 MB-aligned page in the physical

address space.

Page Table Support. Supporting huge pages in an hierarchical page table requires mini-

mal modifications when the available page sizes are defined by the levels of the hierarchical

page table. As mentioned before, the x86-64 architecture supports 4 KB, 2 MB, and 1 GB

page sizes, and uses a four-level hierarchical tree. The PT entries of the page table hold

translation information for 4 KB chunks of memory, the PD entries of the page table hold

translation information for 512 * 4 KB = 2 MB chunks, and the PDP entries of the page

table hold translation information for 512 * 2 MB = 1 GB chunks. Thus, to store transla-

tion information for huge pages, the page table simply holds the address translation in its

23



2. BACKGROUND ON VIRTUAL MEMORY

[V47 V46 ......  ... V12] [V11 ... V0]

Page Table
Walk

Hit
Y N

[P47 P46 ......  ... P12] [P11 ... P0]

Hit
Y N

Hit
YN

L2 TLB

L1-4KB TLB L1-2MB TLB

Hit
Y

N

L1-1GB TLB

Figure 2.9: TLB support for multiple page sizes in Intel x86-64 processors. Separate pages sizes are
supported with separate L1 TLBs, with each L1 TLB caching entries for a specific page size.

corresponding level (depending on the page size), instead of having a pointer to the next

of the page table.

Note that huge pages may not only increase the TLB reach, but may also reduce the

latency of the page walk because less levels in the page table are accessed. A page walk for

4 KB, 2 MB, and 1 GB pages requires up to 4, 3, and 2 memory references, depending on

the contents of the MMU cache.

TLB Support. The TLB support for huge pages usually includes either a separate set asso-

ciative L1 TLB for each page size, as in Intel processors [56] and shown in Figure 2.8, or

a single fully associative L1 TLB that supports both 4 KB and huge pages, as in SPARC and

AMD processors [14, 107]. These two approaches dominate because supporting all page

sizes in a single set associative TLB is not straight-forward: the page size defines the index

bits to access the TLB, but the page size is unknown during the TLB lookup time [95, 112].

24



TLB

Core 0

TLB

Core 1

TLB

Core 2

TLB

Core n-1

memory

Figure 2.10: In a multicore system, each core is equipped with a private TLB hierarchy.

2.4 Address Translation in the Multicore Era

In a multicore system, each core is equipped with a private TLB hierarchy (Figure 2.10).

In contrast to the memory hierarchy of a cache-coherent system, the TLBs are read-only

structures and, thus, lack hardware support for coherency.

TLB Shootdown. Similarly to when the translation information for a page changes in a

single-core system, it is again the operating system that is responsible for keeping the TLBs

coherent and consistent in a multicore system. This happens with a process known as TLB

shootdown [34].

The TLB shootdown is a two-phase commit transaction that ensures that all cores evict

the affected mapping that may currently hold in their TLBs. The operating system first

locks the affected page table entry, creates a list of cores that could hold the affected map-

ping, and sends expensive inter-processor interrupts to notify those cores to invalidate that

mapping. Because the operating system lacks precise information about which mappings

each TLB holds, it usually notifies all cores—interrupting some of them falsely—to ensure

correctness. After all involved cores acknowledge the invalidation in their private TLB hi-

erarchy, the operating system continues with updating the corresponding page table entry

and releasing the lock. A future memory reference that accesses that page will trigger a

TLB miss, and the page walker will fetch the updated entry from the page table.

2.5 Accessing memory with virtual memory

The TLB is on the critical path of the processor for accessing the cache hierarchy. Fig-

ure 2.11 shows the three different design points in the co-organization of the TLB and

25



2. BACKGROUND ON VIRTUAL MEMORY

Core 0

TLB

L1 Cache

memory

Core 0

TLBL1 Cache

memory

Core 0

TLB

L1 Cache

memory

(a) Physically Indexed - 
Physically Tagged

(PIPT)

(b) Virtually Indexed - 
Physically Tagged

(VIPT)

(b) Virtually Indexed - 
Virtually Tagged

(VIVT)

Figure 2.11: There are three possible configurations for the processor to access the memory hier-
archy with virtual memory: (a) Physically-indexed/physically-tagged (VIPT) caches, (b) Virtually-
indexed/Physically-tagged (VIPT) caches, and (c) Virtually-indexed/Virtually-tagged (VIVT) caches
or Virtual caches.

cache hierarchy: (i) the physically-indexed/physically-tagged caches, (ii) the virtually-

indexed/physically-tagged caches, and (iii) the virtually-indexed/virtually-tagged (VIVT)

caches or virtual caches. Next we explain in more detail the role of the TLB in these designs.

Physically-indexed/physically-tagged (PIPT) caches use the physical address for both

the index and the tag bits [58]. The processor accesses first the TLB to obtain the physical

address and then the cache. PIPT caches form a simple cache organization and avoid

problems with synonyms, i.e., when multiple virtual pages are mapped to the same physical

page. However, the latency of the cache access depends directly on the latency of the TLB

lookup, even in the case of TLB hit, limiting thus TLB sizes.

Virtually-indexed/Physically-tagged (VIPT) caches use part of the virtual address for the

index bits and the physical address for the tag bits [58]. The processor accesses the cache

and the TLB in parallel. Thus, a VIPT cache can achieve lower latency compared to a PIPT

cache, as the cache line can be looked up in parallel with the TLB translation. VIPT caches

form a faster cache organization than PIPT caches and avoid problems with homonyms,

i.e., when the same virtual page is mapped to multiple physical pages. However, similar

to the PIPT cache organization, the TLB lookup still needs to be fast because the cache tag

cannot be compared until the physical address is available, and thus the TLB size remains

26



limited. Note that the PIPT and VIPT organizations are the most common in commodity

processors.

Virtually-indexed/Virtually-tagged (VIVT) caches or Virtual caches form an alterna-

tive option that removes the address translation from the critical path in accessing mem-

ory [26, 36, 37, 54, 65, 80, 100, 116, 120]. Virtual caches use virtual addresses to access

the cache hierarchy down to a certain level and only consult the TLB on a cache miss

beyond the supported level in the cache hierarchy. Although virtual caches reduce the per-

formance and energy overheads of the TLB by only translating after a cache miss, ensuring

correct execution requires extra hardware support and complexity for handling synonyms,

homonyms, coherence, and protection access rights. In addition, for workloads that suffer

many TLB misses due to poor locality, virtual caches just shift the translation to a lower

level of the cache hierarchy.

2.6 Segmented Virtual Memory

In the previous section we described the basic concepts and architectural support for page-

based virtual memory. In this section we discuss segmentation that is another approach for

providing and implementing virtual memory.

Segmentation. With segmented virtual memory, the virtual and physical address spaces

are divided and managed into segments of arbitrary length, instead of fixed-size pages as

with paged virtual memory.

Segments typically correspond to parts of a process such as the stack, the heap, and

code sections. A process may create multiple segments for multiple program modules, or

for multiple classes of memory usage such as code and data segments. Each segment is

identified with a segment identifier, and holds information related to the segment, such as

its length (the limit) and permissions access rights. In the case of pure segmentation, each

segment holds also address translation information (the offset), as explained next.

The primary roles of segmentation is to enforce memory protection and to enhance

memory sharing between multiple processes or multiple modules of a single process. With

segmentation, a process is allowed to make a reference into a segment, only if the type of

reference is allowed by the permissions, and if the offset lies within the segment.

27



2. BACKGROUND ON VIRTUAL MEMORY

However, one of the important differences between segmented and paged virtual mem-

ory is that segmentation is visible to the processes, as part of the memory model semantics.

Hence, segmentation structures memory into multiple spaces, removing the “illusion” of a

single large space that paged virtual memory provides.

Pure Segmentation. Some commercial processors have used pure segmentation without

paging to implement virtual memory, such as the Burroughs B5000 [85], the 8086 [4], and

iAPX 432 [60] processors. Each segment holds the base, i.e., information that indicates

where the segment is located in memory. When a program references a memory location,

the offset is added to the segment base to generate a physical memory address.

Although pure segmentation seems a good approach for reducing the overheads of vir-

tual memory, it suffers from various drawbacks. Pure segmentation requires that entire

segments be swapped back and forth between the physical memory and the backing stor-

age. Furthermore, the memory management becomes complex for the operating system.

When a process requests to allocate a segment, the operating system has to allocate enough

contiguous free memory to hold the entire segment. This often results in external memory

fragmentation.

Paged Segmentation. To overcome these limitations, some architectures provide paged

segmentation or segmentation over paging, such the PowerPC and the x86 architectures [66,

67]. In paged segmentation, segments serve only memory protection and sharing purposes.

However, segments are backed by pages as well. Thus, address translation still occurs in

page granularity.

With paged segmentation, the operating system only moves individual pages between

main memory and backing storage, similar to page-based virtual memory. Pages of the

segment can be located anywhere in main memory and need not be contiguous, and thus

the memory fragmentation is reduced.

In the x86 architecture, the segmentation adds one more level in the address translation

path. The application issues memory references using the virtual address space. A virtual

address is translated first to a linear address using the segmentation support, i.e., a few

(e.g., 6) segment registers, and then the linear address is translated to physical address

using the paging support, i.e., the TLB and the page table, as in paged virtual memory.

The x86-64 architecture does not use segmentation over paging. Four of the six segment

28



registers (CS, SS, DS, and ES) are hard-coded and ignored, and only two segment registers

(FS and GS) are used by the operating system for special purposes.

29





3
Quantifying Address Translation

Performance Overheads

3.1 Introduction

In recent years, companies like Amazon, Google and Facebook have invested resources to

build big datacenters where their software infrastructure runs on a large number of inex-

pensive computers. The datacenters aim to provide the most scalable and economical way

to leverage the vast amount of available processing power. Given the high cost of building

and maintaining datacenters, a single-digit performance improvement in the utilization of

datacenters translates directly into savings in money. To this end, datacenter infrastruc-

tures have received attention during the last years in improving the performance of all the

involved components such as processors, storage, and interconnection networks.

To stimulate the research in the topic of datacenters, the CloudSuite benchmark suite

was recently introduced [50]. CloudSuite is a collection of popular scale-out applications

that target various domains of datacenter computing including data analytics (MapRe-

31



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

duce), key-value caching (MemCached) and storing (NoSQL), large-scale graph analyt-

ics (GraphLab), and web-searching (Nutch) among others. Scale-out applications operate

on large datasets with low memory locality exhibiting inefficient execution in traditional

server architectures [50]. In response, computer architects proposed novel designs to in-

crease the efficiency of microprocessors for scale-out applications through improvements in

the processor pipeline [87], the memory hierarchy [69], and the on-chip interconnection

network [86].

However, the overhead of address translation in the Memory Management Unit (MMU)

for scale-out applications has been largely ignored. There have been very few studies

on the performance cost of the MMU that proposed solutions to mitigate them through

either reducing the number of TLB misses [27] or the cost of page walks [28]. Still, these

studies did not provide an extensive characterization of the MMU behavior in the context

of datacenter computing.

Our goal in this chapter is to understand how the MMU (i) performs under the ex-

ecution of scale-out applications, (ii) affects the application performance, (iii) interacts

with other components of the processor, and (iv) can be potentially improved to boost

the performance of datacenters. To this end we analyze the performance of the Memory

Management Unit under the execution of various scale-out applications. We conduct our

analysis leveraging the use of performance counters on an x86-64 real system.

In summary, the main contributions of this chapter are:

• We perform a comprehensive performance analysis of the MMU for several scale-

out applications showing that the MMU overhead accounts up to 16% of the total

execution time.

• We find that by reducing the MMU overheads, the performance improves by up to

13.9% enabling better exploitation of the available execution resources.

• We observe that huge pages are beneficial for most applications without being an

“always-win” option due to limited hardware support.

• We quantify the interference between the application data and the page-table struc-

tures in the cache hierarchy, and show how page walks are affected by hardware

prefetchers.

32



• We present upper-bound analyses and provide potential directions for improving the

MMU performance.

In Section 3.2 we provide background information regarding the scale-out applications

that we use in our study, while in Section 3.3 we explain our methodology. We present

the performance analysis of the MMU under the execution of the scale-out workloads in

Section 3.4, and we discuss potentials for improving the MMU performance in Section 3.5.

Finally, in Section 3.6 we review the related work and in Section 3.7 we conclude our study.

3.2 Background

In this section we briefly describe the scale-out applications from CloudSuite [6, 50] that

we use in our study. Note that Chapter 2 provides background information about the

hardware support of the MMU—the Translation Lookaside Buffer (TLB) and the MMU

cache—of the x86-64 architecture which constitutes the dominant processor architecture

deployed in today’s datacenters [25].

3.2.1 Scale-out Applications

Scale-out computing increases the computational power of a datacenter in an horizontal

fashion by adding more inexpensive nodes to the datacenter, in contrast to scale-up com-

puting [18]. Typically, these nodes are based on commodity components and connected

through high-performance inter-connection networks. Such datacenter infrastructures tar-

get the execution of scale-out applications that: (i) operate on large data sets that are

split across nodes, (ii) serve independent requests exhibiting very low inter-node sharing,

and (iii) are designed for datacenters with unreliable nodes. Next we briefly describe the

scale-out applications that we use in our study.

Data-analytics (MapReduce). This benchmark uses Mahout, a scalable machine learning

and data mining library designed for the Hadoop MapReduce framework. The benchmark

performs the Bayesian classification algorithm for a large input set of Wikipedia articles.

Data-caching (MemCached). MemCached is a distributed memory caching system that

speeds up dynamic database-driven websites by caching data in main memory to reduce

33



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

the number of accesses in the database. The benchmark simulates the behavior of a caching

server for Twitter.

Data-serving (NoSQL). This benchmark targets the domain of NoSQL databases which

have gained growing industry use in big data and real-time web applications. The bench-

mark uses Cassandra, a column-oriented database server, and simulates an update-heavy

workload.

Graph-analytics (GraphLab). This benchmark relies on GraphLab, an abstraction frame-

work that expresses asynchronous, dynamic, graph-parallel computation. The benchmark

is a GraphLab-based implementation of tunkrank that measures a person’s influence on

Twitter.

Media-streaming (QuickTime). This benchmark targets the domain of media-streaming

services and uses the DarwinStreaming Server (open-source equivalent of Apple QuickTime

Server) that streams media to clients across the Internet.

Software-testing (Cloud9). This benchmark uses Cloud9, an automated software-testing

platform that parallelizes symbolic execution.

Web-search (Nutch). This benchmark targets web search engines that dominate among

the internet services [70]. The benchmark uses the distributed version of Nutch, an open

source web search engine, with content crawled from http://en.wikipedia.org/.

3.3 Methodology

Here we describe the experimental environment and the methodology we followed to an-

alyze the MMU performance.

3.3.1 System Setup

We conduct our study on a 4-core Intel Xeon E3-1230 (Sandy Bridge) running at 3.2 GHz

with hyper-threading enabled and equipped with 16 GB memory. Each core has a private

TLB hierarchy, as shown in Table 3.1: an L1 dTLB for data accesses, an L1 iTLB for instruc-

tion accesses, and a unified L2 TLB, i.e. shared between the L1 iTLB and L1 dTLB [62].

34



Per-core TLB Hierarchy

L1 iTLB 4 KB 128 entries 4-way assoc.
2 MB 8 entries fully assoc.

L1 dTLB 4 KB 64 entries 4-way assoc.
2 MB 32 entries 4-way assoc.

L2 TLB 4 KB 512-entries 4-way assoc.
2 MB —

Table 3.1: TLB hierarchy of the test machine.

Note that in this chapter we focus on the impact of L2 TLB misses and L1-2MB TLB misses,

i.e., misses to 2 MB pages, both of which trigger page walks.

The system runs OpenSuse 12.3 with the 3.7.10-1.4 Linux kernel. We used seven out of

the eight scale-out applications from CloudSuite [6]; we faced tuning problems with web-

serving. For all the server-oriented applications (data-caching, data-serving, web-serving,

and web-search), we set up both clients and servers on the same machine pinning each to

unique cores through the taskset utility and we measured only the activity of the server

programs. Finally, to access the performance counters we use the perf utility [11] and we

report the average results of three runs. Table 3.2 summarizes the performance events

and the metrics that we use. Because our metrics require getting information about more

performance events than the available hardware performance counters that our machine

provides, therefore we run multiple times for a separate set of performance events to avoid

multiplexing and to get accurate measurements. Note that our machine lacks TLB support

for 1 GB pages and support for counting performance events related to the MMU cache.

Consequently we limit our evaluation of varying the page-size to 4 KB and 2 MB, and do

not present performance events for the MMU cache.

3.3.2 Huge Pages

Linux provides two mechanisms for enabling huge 2 MB pages: (i) Transparent Huge Pages

(THP) [5] and (ii) libhugetlbfs [8]. THP attempts to allocate huge pages to service appli-

cation’s memory requests that are naturally 2 MB-aligned in the anticipation of subsequent

memory allocations. If no huge pages are available, the kernel falls back to 4 KB pages,

and periodically scans through the memory to substitute several 4 KB pages with a huge

page. On the other hand, with libhugetlbfs [8], huge pages must be set aside at boot

35



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

Equations & Performance events

(%) Cycles spent in page walks = (DTLB_LOAD_MISSES.WALK_DURATION +
due to data accesses DTLB_STORE_MISSES.WALK_DURATION) /

CPU_CLK_UNHALTED.THREAD_P

Page walks per 1000 instr. = (DTLB_LOAD_MISSES.WALK_COMPLETED +
due to data accesses DTLB_STORE_MISSES.WALK_COMPLETED) /

(INST_RETIRED.ANY_P / 1000)

Average cycles per page walk = (DTLB_LOAD_MISSES.WALK_DURATION +
due to data accesses DTLB_STORE_MISSES.WALK_DURATION) /

(DTLB_LOAD_MISSES.WALK_COMPLETED +
DTLB_STORE_MISSES.WALK_COMPLETED)

(%) Cycles spent in page walks = (ITLB_MISSES.WALK_DURATION /
due to instruction accesses CPU_CLK_UNHALTED.THREAD_P)

Page walks per 1000 instr. = (ITLB_MISSES.WALK_COMPLETED * 1000) /
due to instruction accesses INST_RETIRED.ANY_P

Average cycles per page walk = (ITLB_MISSES.WALK_DURATION /
due to instruction accesses ITLB_MISSES.WALK_COMPLETED)

L1 Cache misses = L1D.REPLACEMENT

L2 Cache misses = (MEM_LOAD_UOPS_RETIRED.LLC_HIT +
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT +
MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM +
MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS)

Last-level Cache (LLC) misses = MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS

Table 3.2: Metrics and corresponding performance events based on hardware performance counters
that we use in Section 3.4. The naming of performance events is according to [63].

36



Benchmark Working Anonymous Anonymous
Set Total Pages % Huge Pages %

Data-analytics 5 GB 99.84 72.53
Data-caching 8 GB 99.91 99.89
Data-serving 7 GB 46.42 37.61
Graph-analytics 12 GB 99.89 62.69
Media-streaming 700 MB 99.82 —
Software-testing 700 MB 97.11 25.67
Web-search 6 GB 99.37 75.07

Table 3.3: Memory usage statistics. The first column shows the size of the working set, the second
column indicates the percentage of allocated anonymous pages over the working set, and the third
column shows the percentage of anonymous pages that were allocated as huge pages with THP.

time and they are not swappable. There are two important differences between THP and

libhugetlbfs. The first difference is that THP supports 2 MB pages transparently to applica-

tion, whereas libhugetlbfs requires that the application must explicitly request 2 MB pages

during memory allocation. The second difference between the two mechanisms is that

THP supports 2 MB pages only for anonymous pages, i.e., pages that are not backed by or

associated with files, while libhugetlbfs supports 2 MB pages for memory-mapped files as

well.

We use the following methodology to decide which mechanism we should enable in

this study. We run the scale-out applications only with THP enabled and we periodically

collect memory statistics from the proc filesystem [9] regarding (i) the active working set,

(ii) the percentage of the allocated pages that are anonymous, and (iii) the percentage of

the allocated huge pages over the total working set. Table 3.3 summarizes the results.

We observe that most scale-out applications use anonymous pages for more than 96% of

their working set. The exception is data-serving whose working set is mainly divided among

the java heap that uses anonymous pages (46%) and the NoSQL database that is memory-

mapped. Regarding the ability of THP to successfully allocate huge pages, we find that huge

pages cover: (i) 72% for data-analytics, 99% for data-caching, and 75% for web-search, (ii)

more than 62% for graph-analytics, (iii) only the java heap (37%) for data-serving, (iv)

25% for software-testing and surprisingly 0% for media-streaming. These results indicate

that THP are able to provide huge pages for most of the scale-out applications. Finally,

to get more confidence about our execution environment we run the applications with

libhugetlbfs. We find that the performance is similar among the two configurations for all

37



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

0

2

4

6

8

10

12

14

16

4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB

data-
analytics

data-
caching

data-
serving

graph-
analytics

media-
streaming

software-
testing

web-
search

Pe
rc

en
ta

ge
 o

f 
R

u
n

ti
m

e 
(%

) 

Application Loads Application Stores Kernel Loads Kernel Stores

Figure 3.1: Percentage of execution time spent in page walks due to data accesses with 4 KB and
2 MB pages. The MMU overhead accounts up to 16% of the total execution time.

applications, including data-serving and media-streaming, after spending significant effort

in tuning libhugetlbfs for the needs of each application. Thus, we decide to use 2 MB pages

through Transparent Huge Pages.

3.4 MMU Performance Analysis

In this chapter we analyze the performance of the Memory Management Unit (MMU) under

the execution of scale-out applications. We mainly focus on the data accesses that typically

stress the MMU more than the instruction accesses [29, 75]. We measure the overhead

due to page walks and its impact on the application’s performance, we quantify how often

a page walk occurs in terms of TLB misses per 1000 instructions (MPKI), and we report the

average cost of a page walk. Moreover, we evaluate the interference between the appli-

cation data and the page walks in the cache hierarchy, we show how the cache hardware

prefetchers affect the MMU performance, and we discuss the performance of the MMU for

instruction accesses. Finally, we summarize the key findings and their implications in the

MMU performance.

38



3.4.1 How much time is spent in TLB misses?

The MMU overhead is dictated by the time spent in TLB misses that trigger page walks,

because short L1 TLB misses that hit in the L2 TLB may be overlapped with execution.

Figure 3.1 shows the percentage of the execution time spent in page walks due to data

accesses with 4 KB pages (left bar). We make the following observations.

First, we find that all applications suffer from high MMU overheads with 4 KB pages.

More specifically, data-serving and media-serving spend more than 10% of the execution

time in page walks, while data-analytics and graph-analytics reach almost 14% and 16%,

respectively. These applications operate on large datasets (Table 3.3) with low locality [50]
stressing the performance of the MMU. To confirm this behavior, we also calculate the

number of cold TLB misses based on the working set and the page-size. We find that

the cold TLB misses contribute less than 0.02% to the total TLB misses for all the scale-

out applications. These results indicate that the MMU overhead is practically dictated by

capacity and conflict TLB misses due to the limited MMU resources and the low memory

locality of the workloads, rather than by cold TLB misses.

Second, we find that the page walks due to kernel code contribute significantly to

the total MMU overhead for data-caching, data-serving, media-streaming and web-search.

The reason is that these applications stress the network and the file-system stack [50,

84]. Indeed we find that data-caching, data-serving, media-streaming, and web-search spend

68.6%, 25.5%, 67.2%, and 10.7% of the total execution time in kernel code, respectively.

We analyze the kernel page walks and categorize them according to the execution

code path. More than 85% of the kernel page walks take place in functions due to

both file-system and network activity for data-caching, media-streaming, and web-search,

while 44.3% accounts to both file-system and scheduler/synchronization activities for data-

serving. Moreover, we identify two hotspot functions responsible for page walks: 7.1% for

data-caching and 16.9% for media-streaming of total page walks occur only in the ker-

nel function tcp_poll() due to network activity, and 5.7% for data-caching, 14.3% for

media-streaming and 9.1% for web-search only in fget_light() due to both network and

file-system activity.

Findings

• The MMU overhead for the scale-out applications is significantly high up to 16%.

39



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

• The kernel page walks may contribute more than 50% of the total MMU overhead

mainly due to network and file-system activity.

3.4.2 Do Huge Pages help?

To observe the impact of the page-size in the performance of the MMU, we leverage Trans-

parent Huge Pages (THP) that enable 2 MB pages when possible and fall back to 4 KB

pages, as explained in Section 3.3.2. Depending on the application behavior, huge pages

may decrease the time spent in page walks due to: (i) reducing the number of TLB misses

by increasing the TLB reach (Section 3.4.4), and/or (ii) reducing the average cost of page

walk by requiring one memory reference less (Section 3.4.5). Figure 3.2 shows the cycles

spent in page walks due to the employment of 2 MB pages normalized to the page walk

cycles with 4 KB pages.

First, we notice that increasing the page-size reduces mostly the MMU overhead by up

to 65.9% for data-analytics, data-serving and graph-analytics. Data-serving gets the least

benefits from 2 MB pages among these three applications (23.6%). The reason is that

data-serving accesses the NoSQL database through memory-mapped files. However, THP

lack support for memory-mapped files, as discussed in Section 3.3.1. Consequently, the

THP mechanism covers with 2 MB pages less part of the working set (only the java heap)

for data-serving than for data-analytics and graph-analytics (Table 3.3).

Second, we notice that huge pages reduce slightly the time spent in page walks by less

than 2% for data-caching. We find that the number of page walk cycles due to user code

with huge pages decreases by 31% on one hand. On the other hand, the number of the

dominant page walks cycles due to kernel code increases by 19%. The reason for this

behavior is the combination of the application’s poor locality with the increased pressure

on the TLB for 2 MB pages: (i) the TLB supports only 32 entries for 2 MB pages, (ii) the

kernel typically uses 2 MB pages for its internal structures [5, 46], (iii) with THP enabled

there is contention between user-level and kernel-level TLB entries in the limited-sized

TLB for 2 MB pages, since x86-64 architecture does not lock TLB entries for kernel usage.

Consequently, the time spent in page walks for the application data decreases at the cost

of increasing the kernel overheads.

Third, we notice that for web-search, increasing the page-size actually increases the

time spent in page walks by 54%. Similarly to data-caching, the reason for this behavior

40



0

20

40

60

80

100

120

140

160

data-
analytics

data-
caching

data-
serving

graph-
analytics

media-
streaming

software-
testing

web-
search

N
o

rm
al

iz
ed

 c
yc

le
s 

sp
en

t 
 

in
 p

ag
e 

w
al

ks
 (

%
) 

4KB Pages 2MB Pages

Figure 3.2: Normalized cycles spent in page walks due to data accesses with 4 KB pages and 2 MB
pages.

is the limited TLB support for 2 MB pages in combination with the low data locality of the

application.

Fourth, 2 MB pages bring negligible benefits for media-streaming and software-testing.

Surprisingly we found THP fail to allocate any 2 MB pages for media-streaming. The reason

is that this scale-out application performs a small number of memory allocations (mmap())

with such arguments, i.e., size, flags, and access rights, that do not allow the THP mecha-

nism to allocate huge pages. Finally, the reduction of page walk cycles for software-testing

is limited by the ability of THP to back only 25.7% of the application’s working set with

2 MB pages.

Figure 3.1 shows the percentage of execution time spent in TLB misses that trigger

page walks with 2 MB pages (right bar). This percentage is now computed based on the

total execution time with 2 MB pages (we discuss the actual performance differences in

Section 3.4.3). We observe that an important fraction of time—more than 6%—is still spent

in page walks even for those applications that benefit from 2 MB pages (e.g. data-analytics

and graph-analytics). For the rest of the applications the percentage remains practically the

same. These results indicate that in case the application performance depends directly on

any improvements in the MMU performance, there is still ample space for optimizing the

MMU.

41



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

Findings

• Huge pages reduce the MMU overhead for some scale-out applications by up to

65.9%. However, the limited hardware support for huge pages may actually increase

the MMU overhead by up to 54%.

• Huge pages put more pressure on the TLB for those applications that suffer from a

high number of kernel page walks due to the limited support for 2 MB.

• The software implementation of some scale-out applications cannot use huge pages.

• Even if huge pages benefit the application performance, still a significant percentage

of time is spent in page walks leaving space for optimizations.

3.4.3 Do TLB misses affect performance?

In this section we quantify the application speedup due to improving the MMU perfor-

mance by changing the page-size from 4 KB to 2 MB. To assess the importance of the

MMU performance in the processor pipeline, we compute also the expected performance

with 2 MB pages based on Equation 3.1 [27]. The expected performance with 2 MB pages

is computed as the measured number of execution cycles with 4 KB pages reduced by the

measured improvement in cycles spent in page walks when increasing the page-size from

4 KB to 2 MB. In other words, the expected performance assumes that the page walks

do not affect at all (neither positively nor negatively) the processor pipeline (out-of-order

execution, memory hierarchy, etc.).

Ex pectedTotalC ycles2M = TotalC ycles4K − T l bC ycles4K + T l bC ycles2M (3.1)

Figure 3.3 shows the measured speedup that is achieved due to employing huge pages

on the left bar, and the expected speedup based on Equation 3.1 on the right bar.

Regarding the measured speedup we see that the performance increases for those appli-

cations that reduce the time spent in page walks (Figure 3.2). More specifically, 2 MB pages

boost the performance of data-analytics, data-serving, and graph-analytics by 9.7%, 6.4%

and 13.9% respectively. The rest of the applications achieve negligible speedup, while the

42



0.9

0.95

1

1.05

1.1

1.15

data-
analytics

data-
caching

data-
serving

graph-
analytics

media-
streaming

software-
testing

web-
search

Sp
ee

d
u

p
 (

%
) 

Measured Expected

Figure 3.3: Speedup due to increasing the page-size from 4 KB to 2 MB. The left bar corresponds
to the actual measurements, while the right bar corresponds to the expected speedup based on
Equation 3.1. The difference indicates the positive impact of reducing the MMU overhead in the
processor pipeline. Note that we do not report expected speedup for those applications that use
throughput as performance metric, i.e. media-streaming, software-testing and web-search.

performance of web-search slightly drops by 2% as expected due to spending more cycles

in page walks.

Regarding the expected speedup we notice a positive gap between the expected speedup

and the measured one, i.e., 9.7% vs. 7.2% for data-analytics, 6.4% vs. 2.6% for data-serving

and 13.9% vs. 10.5% for graph-analytics. We believe that this difference is due to the im-

pact of page walks on the out-of-order and hyper-threading execution, and the memory

hierarchy. The page walks occur less frequently and need less cycles to complete with huge

pages, allowing better utilization of the available pipeline resources. To verify this behav-

ior, we measure also the number of stalled cycles in the back-end of the processor pipeline.

We find that by using 2 MB pages, the number of back-end stalled cycles reduces by 16.7%

for data-analytics, by 10.7% for data-serving, and by 10.1% for graph-analytics, and we

also find that the IPC increases by 12.3% for data-analytics, by 8.1% for data-serving, and

by 7.4% for graph-analytics. We also observe fewer cache misses with 2 MB pages as we

will explain next in Section 3.4.7. Our results suggest that future improvements in MMU

performance will allow better exploitation of the available execution resources.

43



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

0

1

2

3

4

5

6

7

8

4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB

data-
analytics

data-
caching

data-
serving

graph-
analytics

media-
streaming

software-
testing

web-
search

M
is

se
s 

p
er

 1
0

0
0

 in
st

ru
ct

io
n

s 

Application Loads Application Stores Kernel Loads Kernel Stores

Figure 3.4: Page walks (i.e. TLB misses) per 1000 instructions (MPKI) due to data accesses with
4 KB and 2 MB pages.

Findings

• Improved MMU performance speeds up the scale-out applications by up to 13.9%.

However, the limited hardware support for 2 MB pages may reduce the application

performance by 2%.

• The difference between the expected and the measured application speedup indicates

that optimizations in the MMU will result in more efficient utilization of the execution

pipeline.

3.4.4 How often do TLB misses occur?

Figure 3.4 shows the number of TLB misses that trigger page walks per thousand instruc-

tions (MPKI) due to data accesses when using 4 KB and 2 MB pages. By changing the

page-size from 4 KB to 2 MB, the MPKI reduces for those applications that the page walk

overhead decreases (e.g. data-analytics, data-serving and graph-analytics), but not in the

same ratio as in Figure 3.1 since 2 MB pages reduce also the cost per TLB miss as we ex-

plain in the following subsection. However, we notice that the MPKI actually increases for

data-caching and web-search with 2 MB pages. This behavior confirms the limited hardware

support for 2 MB in current MMUs.

44



0

10

20

30

40

50

60

data-
analytics

data-
caching

data-
serving

graph-
analytics

media-
streaming

software-
testing

web-
search

A
ve

ra
ge

 c
yc

le
s 

p
er

 p
ag

e 
w

al
k 

4KB Pages 2MB Pages

Figure 3.5: Average number of cycles per page walk due to data accesses with 4 KB and 2 MB pages.

Findings

• The frequency of page walks decreases for some applications due to huge pages.

However the limited TLB support for 2 MB pages may increase the MPKI.

3.4.5 What is the cost of a TLB miss?

Figure 3.5 shows the average cost of a TLB miss that triggers a page walk with 4 KB and

2 MB pages. We observe that the average cost of page walk with 4 KB pages is far lower

than 100 cycles for all applications. This indicates that resolving a page walk does not

require any off-chip memory access on average. Our results corroborate previous stud-

ies [23, 89] that focused on different applications and concluded that the page walks ref-

erences typically hit in the cache hierarchy.

The latency of the average cost per page walk depends on (i) the performance of the

MMU cache, which dictates how many memory accesses (up to four) are necessary to

resolve the page walk, and (ii) the locality of the page table references in the data cache

hierarchy (i.e., L1, L2, or LLC). Unfortunately, our experimental machine does not provide

any performance events for measuring the behavior of the MMU cache. However, we

perform an upper-bound analysis of perfect MMU caches in Section 3.5.2, and we draw

some conclusions about the locality of the page table references in the cache hierarchy.

By comparing the results for the two page-size configurations, we observe that the

45



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

Benchmark Page walks Average cycles Time spent
per 1000 instr. per page walk in page walks

Data-analytics 0.68 0.71 0.48
Data-caching 1.17 0.83 0.98
Data-serving 0.78 0.97 0.76
Graph-analytics 0.81 0.46 0.34
Media-streaming 1.01 0.98 0.99
Software-testing 0.95 1.01 0.98
Web-search 2.32 0.67 1.54

Table 3.4: Summarized results for page walks per 1000 instructions, average cycles per page walk,
and cycles spent in page walks with 2 MB pages, normalized to 4 KB pages (lower is better).

average cost per page walk is lower for most scale-out applications with 2 MB pages. In

conjunction with the results of the previous sections, which are summarized in Table 3.4,

we observe that the average cost of a page walk with 2 MB pages reduces significantly

for data-analytics and graph-analytics as expected. For data-caching and web-search, the

average cost also decreases and compensates the increase in MPKI, while for data-serving,

media-streaming, and software-testing, that have low use of 2 MB pages, the average cost

remains practically the same.

Findings

• The average TLB miss cost indicates that page walk references typically hit in the

data cache hierarchy.

3.4.6 Comparison with other benchmark suites

In this section we compare the performance of the MMU across different benchmark suites.

Figure 3.6 shows the percentage of execution time spent in page walks for SPEC 2006 [12],
BioBench [15], Parsec [32], and CloudSuite.

We observe that the scale-out applications consistently stress the MMU more compared

to other benchmark suites in terms of runtime overhead. Moreover, we find that scale-

out applications suffer almost an order of magnitude more frequently from page walks

than other benchmarks; the number of page walks per 1000 instructions is well below 1

for the majority of Spec, BioBench and Parsec applications even with 4 KB pages (35 out

of 47 applications). The reason is that these suites consist of several benchmarks with

46



0

1

2

3

4

5

6

7

8

SpecInt SpecFp BioBench Parsec CloudSuite

Pe
rc

en
ta

ge
 o

f 
R

u
n

ti
m

e 
(%

) 

4KB Pages 2MB Pages

Figure 3.6: Comparison of the MMU performance with other benchmark suites (geometric mean
per suite).

small working sets that fit in the TLB hierarchy. Although there are some benchmarks that

cause high MMU overheads (e.g. mcf, omnetpp, cactusADM, mummer, tigr, canneal) they

still have smaller working sets, exhibit less kernel activity, and enjoy better performance

improvement with huge pages compared to the scale-out applications. Based on these

findings, we corroborate a previous study [50] that pointed out the distinct characteristics

of scale-out applications compared to other benchmarks, and we further show that the

same observation holds with respect to the MMU behavior.

Findings

• Scale-out applications stress more the MMU performance compared to other compute-

intensive and multi-threaded applications.

3.4.7 Interference in the cache hierarchy

In this section we quantify the interference in the data-cache hierarchy between the appli-

cation data and the page table references. To accomplish this, we count the number of L1,

L2, and LLC misses for the two page-size configurations. Figure 3.7 shows the percentage

of reduced cache misses due to changing the page-size from 4 KB to 2 MB, and Figure 3.8

shows the number of cache misses (L1, L2 and LLC) per 1000 instructions with 4 KB and

2 MB pages.

47



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

-2

0

2

4

6

8

10

12

data-
analytics

data-
caching

data-
serving

graph-
analytics

media-
streaming

software-
testing

web-
search

R
ed

u
ce

d
 m

is
se

s 
(%

) 

L1 misses L2 misses LLC misses

Figure 3.7: Percentage of reduced L1, L2 and Last Level Cache (LLC) misses due to increasing
the page-size from 4 KB to 2 MB. The results show that by improving the MMU performance, less
interference occurs in the cache hierarchy between the application data and the page table.

0

5

10

15

20

25

30

35

40

data-
analytics

data-
caching

data-
serving

graph-
analytics

media-
streaming

software-
testing

web-
search

M
is

se
s 

p
er

 1
0

0
0

 In
st

ru
ct

io
n

s 

L1 misses - 4KB L1 misses - 2MB L2 misses - 4KB L2 misses - 2MB LLC misses - 4KB LLC misses - 2MB

Figure 3.8: Cache misses (L1, L2 and LLC) per 1000 instructions with 4 KB and 2 MB pages.

48



We observe that the number of cache misses for most scale-out applications reduces by

up to 11.2% for L1 cache (software-testing), 4.8% for L2 cache (graph-analytics) and 6.5%

for LLC (data-analytics). This happens due to the improved MMU performance that causes

fewer memory accesses due to page walks. In addition, improved MMU performance re-

duces the interference between the application data and the page table in the cache hi-

erarchy because: (i) the page table occupies less memory space due to the elimination of

one level for those memory regions that are mapped by 2 MB pages, as explained in Sec-

tion 2.3.4, and (ii) page walks occur less often and are cheaper (Figures 3.4 and 3.5). The

only exceptions are data-caching and web-search which suffer more frequently from page

walks with 2 MB than with 4 KB pages as we showed earlier in Section 3.4.4, increasing

slightly the number of LLC misses.

Moreover, we notice that just reducing the number of L1 misses, as it happens for

(software-testing), does not affect significantly the performance because the L1 misses can

be hidden by the out-of-order execution. However, we observe a correspondence between

performance improvement and reduced data-cache interference—in L2 cache and LLC—

for those applications that benefit most from 2 MB pages (data-analytics, data-serving, and

graph-analytics).

Findings

• Poor MMU performance can result in increased interference between the application

data and the page table in the cache hierarchy.

3.4.8 Interaction with Hardware Prefetchers

Previously we showed the interference between the application data and the page table in

the cache hierarchy. However, the page table can be cached up to the L1 cache. Here we

quantify this interference due to the activity of the hardware prefetchers from the MMU

performance point of view.

Our experimental machine has four prefetching mechanisms; two of them (DCU and

IP stride) are responsible for prefetching data into the L1 cache, while the other two (ACL

and Spatial) are responsible for prefetching data into the L2 and the LLC [63]. Table 3.5

summarizes the results of the MMU performance due to data accesses with 2 MB pages

for three different prefetcher configurations: (i) all prefetchers are disabled, (ii) only L1

49



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

prefetchers (DCU and IP prefetchers) are enabled, and (iii) all prefetchers are enabled.

The table shows the total number of page walks, the average number of cycles per page

walk, and the total number of cycles spent in page walks, normalized to the case when all

prefetchers are disabled. We make the following observations.

We see that the total number of page walks changes for different prefetcher configura-

tions and actually increases for most scale-out applications compared to when all prefetch-

ers are disabled. These results were not expected since the prefetcher requests are sup-

posed not to trigger page walks [63]. We speculate that the number of page walks differs

across configurations because the prefetch requests either affect the TLB replacement pol-

icy (positively or negatively depending on the application), or indeed trigger page walks.

Similarly, we observe that the total number of cycles spent in page walks (and the

average cost of page walk respectively) changes across the various configurations. More

specifically, the number of page walk cycles is lower when all prefetchers are disabled for

most of the scale-out applications. These results indicate that the prefetchers fetch aggres-

sively application data that interfere with the page table in the cache hierarchy. However,

we see that the hardware prefetchers reduce by 47% the cycles spent in page walks for

graph-analytics, even though the number of page walks is reduced by only 4%. Thus, we

observe an interaction between the hardware prefetchers and the MMU performance that

require further research and documentation.

Findings

• The interference between the application data and the page table in the cache hier-

archy due to the activity of the hardware prefetchers suggest that there is potential

for reducing the MMU overhead if there is isolation between them in the memory

hierarchy.

50



ON only L1 prefetchers ON all prefetchers

Benchmark #page walks
#average cycles #cycles spent

#page walks
#average cycles #cycles spent

per page walk in page walks per page walk in page walks

Data-analytics 1.11 1.49 1.65 1.00 1.28 1.29
Data-caching 0.79 1.08 0.86 0.77 1.17 0.90
Data-serving 1.22 1.02 1.25 1.22 0.98 1.20
Graph-analytics 0.98 0.85 0.83 0.96 0.55 0.53
Media-streaming 1.00 1.05 1.05 1.06 1.07 1.14
Software-testing 0.81 1.02 0.83 1.04 1.14 1.19
Web-search 1.62 0.94 1.53 1.66 0.95 1.57

Table 3.5: Summarized results for page walks, average cycles per page walk and cycles spent in page walks with 2 MB pages for
various prefetcher configurations normalized to the case when all prefetchers are disabled (lower is better).

51



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

0

0.5

1

1.5

2

2.5

4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB 4KB 2MB

data-
analytics

data-
caching

data-
serving

graph-
analytics

media-
streaming

software-
testing

web-
search

Pe
rc

en
ta

ge
 o

f 
R

u
n

ti
m

e 
(%

) 

Application Kernel

Figure 3.9: Page walk overhead due to instruction TLB misses.

3.4.9 Instruction TLB misses

Scale-out applications have been shown to suffer from high instruction cache-miss rates [50].
Figure 3.9 shows the time spent in TLB misses that trigger page walks due to instruction

accesses. We see that all scale-out applications, except for data-serving, spend a negligible

amount of time in page walks due to instruction accesses (less than 0.6%). However, data-

serving spends 2.45% of the total execution time in page walks due to instruction accesses

with 4 KB pages. This MMU overhead accounts for 25% of the total MMU overhead, and

far exceeds typical TLB results for instruction accesses [29]. The reason lies on the soft-

ware implementation of data-serving which is based on a high-level language (Java) with

a managed runtime and extensive use of libraries. When 2 MB pages are employed, we

find that the MPKI reduces by almost 50%, possibly due to the lower interference between

instruction and data entries in the L2 TLB. However, the MPKI of TLB misses due to in-

struction accesses is still comparable to that of TLB misses due to data accesses (0.8 MPKI

for instruction TLB misses vs. 3.7 MPKI for data TLB misses).

Findings

• Instruction references may add non-negligible MMU overheads due to high-level lan-

guages and libraries.

52



3.4.10 Summary & Implications

We have shown that the MMU overhead for the scale-out applications is significantly high,

up to 16% of the total execution time. As the datasets for these applications constantly

grow, these overheads are expected to increase. Thus, improving the MMU performance

should be of paramount importance for the efficient execution of such applications in the

big-data era [27, 28]. Moreover, to quantify the correlation between the MMU perfor-

mance and the application performance, we conducted experiments with huge pages. The

results show that lower MMU overhead yields up to 13.9% application speedup. However,

even though huge pages reduce the MMU overhead, the hardware support for huge pages

is limited and may actually harm the performance. These findings point to the need to im-

prove the limited hardware support for huge pages. Furthermore, kernel code contributes

significantly to the total MMU overhead for most of the scale-out applications mainly due

to intense network and file-system activities. This behavior requires further investigation

from both operating system and architecture researchers. Finally, the interference between

application data and the poor MMU performance indicates the need for an holistic ap-

proach in order to boost the performance of the memory hierarchy.

3.5 Potential Improvements in the MMU

In this section we discuss potential solutions, and we present upper-bound analyses of

performance improvements in the MMU.

3.5.1 Virtual Caches

Virtual caches [26, 36, 37, 80, 100, 114, 116] have been proposed as an alternative to

reduce the performance and power dissipation overheads of the MMU. Virtual caches use

virtual addresses to access the cache hierarchy down to a certain level and only consult the

TLB on a cache miss beyond the supported level in the cache hierarchy. Although virtual

caches provide attractive properties, ensuring correct execution requires extra hardware

support and complexity (due to synonyms, homonyms, protection access rights, etc.).

We want to investigate the potential of virtual caches for scale-out applications re-

garding performance, assuming two virtual cache designs. The first design uses virtual

53



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

20.4 37.9 25.7 11.2 38.6 11.5 

0
1
2
3
4
5
6
7
8
9

10

data-
analytics

data-
caching

data-
serving

graph-
analytics

media-
streaming

software-
testing

web-
search

Ev
en

ts
 p

er
 1

0
0

0
 in

st
ru

ct
io

n
s 

L1 Misses LLC misses Page Walks

Figure 3.10: Comparison of TLB misses that trigger page walks and LLC misses per 1000 instructions
due to data accesses with 2 MB pages.

addresses only for accessing the L1 cache and looks up the MMU on L1 misses. The second

design uses virtual addresses for accessing the whole cache hierarchy (L1, L2, and last-level

cache), and looks up the MMU on LLC misses. To this end, we compare the MPKI of TLB

misses that trigger page walks (green bar) with the MPKI of L1 cache (blue bar) and LLC

(red bar) with 2 MB pages in Figure 3.10. We make the following observations.

First, the results show that all applications experience significantly higher L1 miss rate

compared to the page walks rate. In addition, four out of seven applications experience

similar or higher LLC miss rate compared to the page walks rate. The reason is that these

scale-out applications operate on large datasets suffering from LLC misses that are spread

over a big memory space that will likely miss in the TLB as well. Consequently, although

virtual caches would help in reducing the power dissipated in the TLB hierarchy, they would

provide similar behavior in terms of performance due to the exposed cost of address trans-

lation in cache misses. Second, we observe that data-caching, data-serving, and web-search

suffer more often from page walks than from LLC misses. Such behavior indicates that

there is useful data in the cache hierarchy that is not covered by the TLBs, thus exposing

the inadequate design of current MMUs.

Based on these findings, we conclude that employing virtual caches and removing the

MMU from the critical path would bring negligible performance improvement while it

would add significant complexity in the implementation of the system.

54



3.5.2 Perfect MMU Caches

The MMU cache helps in reducing the cost of page walks by caching memory references of

the upper levels of the page table. In this part of our analysis we evaluate the potential for

reducing the time spent in page walks by implementing a perfect MMU cache. This means

that the page walk requires only one memory reference that always hits in some level of

the cache hierarchy. Bhattacharjee [28] performed a similar analysis to show potential

improvements due to perfect MMU caches. We go one step further and quantify also the

impact of the hit-level in the cache hierarchy during the page walk for perfect MMU caches.

Using microbenchmarks [19], we found that the minimum cost for resolving a page

walk that completely hits in the MMU cache and requires only one page table reference

that hits in the L1, L2, and LLC cache is 12, 20, and 43 cycles on our platform, respectively.

Based on these values per page walk and the actually measured number of page walks with

performance counters, we estimate potential performance improvements of perfect MMU

caches. Note that we assume pessimistically that the TLB misses have no effect on the rest

of the execution pipeline, so that the baseline remains the same for all analyses.

Per f ec tM MULLC(%) =
T LB_Misses ∗ 43c ycles

Total_Execution_Time
(3.2)

Per f ec tM MUL2(%) =
T LB_Misses ∗ 20c ycles

Total_Execution_Time
(3.3)

Per f ec tM MUL1(%) =
T LB_Misses ∗ 12c ycles

Total_Execution_Time
(3.4)

In Figure 3.11 we plot the percentage of time spent in page walks due to data accesses

(i) for the real evaluated hardware (blue bar), (ii) enhanced with perfect MMU caches that

require a single memory reference that hits in the LLC (PerfectMMULLC – Equation 3.2 –

yellow bar), (iii) in the L2 cache (PerfectMMUL2 – Equation 3.3 – green bar), and (iv) in

the L1 cache (PerfectMMUL1 – Equation 3.4 – red bar).

We observe that for 4 KB pages, the actual measured performance overhead is close

to that of PerfectMMULLC or even lower. Since the MMU cache is not perfect for the real

measurements, we conclude that the page table references with 4 KB pages typically hit

earlier in the cache hierarchy, well before accessing the LLC. Regarding the configuration

with 2 MB pages, we observe that the measured performance overhead is lower than that

55



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

0

2

4

6

8

10

12

14

16

data-
analytics

data-
caching

data-
serving

graph-
analytics

media-
streaming

software-
testing

web-
search

Pe
rc

en
ta

ge
 o

f 
R

u
n

ti
m

e 
(%

) 

Measured page walk overhead

Perfect MMU cache – LLC hit 

Perfect MMU cache – L2 hit 

Perfect MMU cache – L1 hit 

Perfect third-level TLB

(a) 4 KB Pages

0

2

4

6

8

10

12

14

data-
analytics

data-
caching

data-
serving

graph-
analytics

media-
streaming

software-
testing

web-
search

Pe
rc

en
ta

ge
 o

f 
R

u
n

ti
m

e 
(%

) 

Measured page walk overhead

Perfect MMU cache – LLC hit 

Perfect MMU cache – L2 hit 

Perfect MMU cache – L1 hit 

Perfect third-level TLB

(b) 2 MB Pages

Figure 3.11: Upper-bound results for potential improvements in the MMU organization.

56



of PerfectMMULLC and close to that of the PerfectMMUL2. This implies that the page walks

with 2 MB pages typically hit in L2.

Regarding the potential improvements of the perfect MMU cache itself, that motivated

also a recent proposal for improving their performance [28], we notice that the perfect

MMU cache brings better performance improvement for the scale-out applications with

4 KB pages than with 2 MB pages. However, the performance benefits still depend heavily

on the level of the cache hierarchy where the page walk hits, indicating the need to keep

the page table references as close as possible to the processor.

3.5.3 Perfect Cache Interference

Overall, the perfect MMU cache provides limited performance benefits for the scale-out

applications unless it is incorporated with a mechanism that preserves or promotes the

page table references in the cache hierarchy closer to the processor (Figure 3.11). On the

other hand, we showed that interference exists between the application data and the page

table in the cache hierarchy, increasing the average cost of page walks and degrading the

application performance.

The interference between application data and page table references in the cache hi-

erarchy has been pointed by Wu et al. [117]. However, their study targeted compute-

intensive applications that exhibit high cache hit ratio and low TLB miss ratio. Thus, their

proposal treated the page table references as polluting cache entries by de-prioritizing them

through the cache replacement policy in favor of application data. We believe that an op-

posite approach should be considered in the context of scale-out applications that suffer

from poor data-cache locality, so that the page walks hit early in the cache hierarchy. Such

a research direction is similar in vein with [50] that advocated for preserving instruction

references in the cache hierarchy due to the high number of expensive instruction cache

misses that take place in scale-out applications.

3.5.4 Perfect TLBs

Here we discuss the possibility of employing a perfect third-level TLB that always hits (Per-

fectTLB – Equation 3.5 – black bar in Figure 3.11), i.e., the TLB has unlimited entries or

reach, having the same latency (7 cycles) as the actual L2 TLB [63]. The results show that

57



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

in this case, the page walk overhead is reduced to less than 2% for all scale-out applications

making the use of virtual memory almost free in terms of performance.

Per f ec tT LB(%) =
T LB_Misses ∗ 7c ycles

Total_Execution_Time
(3.5)

One direction for achieving such performance is through architecting a third-level TLB

with a high number of entries. However, such an implementation is likely unfeasible ac-

cording to CMOS technology predictions [7] due to leakage power and area overheads.

On the other hand, novel memory technologies (e.g. STT-RAMs, Memristors, NEMs) have

been proposed to overcome these CMOS’ limitations for other on-chip components such

as last-level caches [40, 118]. Leveraging their unique characteristics, i.e., non-volatility,

low static power, and high area density, and designing novel third-level TLBs should be

considered for future research in our opinion.

Another future direction for improving the MMU performance is to design a third-level

range TLB that can capture efficiently ranges of pages without constraints on the coverage

by a single TLB entry (in contrast to [96, 97, 111]). Direct Segments [27] actually follows

this approach, but they provide only a single range. Taking advantage of the fact that

a third-level range TLB would not be on the critical path of every memory operation but

would be accessed only when misses occur in the higher TLB levels, a more complex design

with higher latency and improved range capacity could be beneficial.

Finally, TLB misses could be effectively hidden through smart prefetching. Surprisingly

we notice limited proposals in the literature for TLB prefetching [30, 76, 104]. We believe

that the high overheads of the MMU for scale-out applications in combination with their

distinct characteristics—low locality and limited sharing among threads [50]—deserves an

effort in optimizing prefetching TLB entries, similarly as inter-core cooperative prefetch-

ing [89] leveraged the frequent sharing patterns of the multi-threaded applications to boost

TLB performance.

3.6 Related Work

The MMU performance has attracted the interest of both academia and industry for sev-

eral decades. Early evaluations of the MMU showed its importance in the overall processor

58



performance [17, 39, 42, 93, 103]. However, these studies were conducted under systems

with limited physical memory, less sophisticated MMU organizations, and different work-

loads, compared to today’s trends in the MMU architectural support and the big-memory

scale-out applications, respectively.

Jacob and Mudge [68] compared various MMU organizations and showed that the to-

tal MMU overhead is roughly twice to what was previously thought due to the interference

between application data and page table in the cache hierarchy. Kandiraju et al. [75] pre-

sented a detailed characterization of the data TLB behavior for the Spec2000 benchmark

suite. The authors suggested that multi-level TLBs are useful in cutting down access times

and evaluated different kinds of prefetching. McCurdy et al. [90] evaluated the MMU per-

formance under scientific applications, addressing the limited TLB support for 2 MB pages

and concluded that a wrong choice of page size can result in performance degradations of

up to nearly 50%, while Morari et al. [92] evaluated the TLB miss impact in future HPC

systems.

The most recent work in characterizing and analyzing the TLB performance was con-

ducted in the context of the Parsec multi-threaded applications [29]. The authors showed

that TLB misses are predictable due to sharing patterns among threads, and that inter-core

TLB cooperation and prefetching mechanisms can improve TLB performance.

Finally, Basu et al. [27] showed that big-memory applications stress the MMU perfor-

mance even with 1G pages. However, their study includes a subset of the applications

we use in this chapter. Similarly, Bhattacharjee [28] showed that a significant amount of

execution time is due to MMU overhead. However, their study did not focus on scale-out

applications.

In contrast to previous works, we comprehensively characterize the MMU performance

using representative scale-out applications from CloudSuite. We also provide deep insights

in the interactions between the MMU and other processor components, and we point out

to directions for improving the MMU performance in the context of emerging memory-

intensive scale-out applications.

59



3. QUANTIFYING ADDRESS TRANSLATION PERFORMANCE OVERHEADS

3.7 Summary

Understanding the characteristics of scale-out applications and identifying performance

inefficiencies has turned out to be a fundamental requirement to boost the efficiency of

datacenters and to further spread the deployment of the cloud-computing paradigm.

With this goal in mind, we comprehensively analyzed the performance execution of the

Memory Management Unit under the execution of scale-out applications. We showed that

the MMU overhead accounts for up to 16% of the total execution time and we quantified

the interference between application data and page walks. By reducing the MMU over-

heads through huge pages, we found that the application performance accelerates by up to

13.9% due to better exploitation of the available execution resources. However, the limited

hardware support for huge pages may harm performance.

Consequently, based on upper-bound analyses for perfect improvements in the MMU,

we suggested directions for improving the MMU performance. In the rest of this thesis, we

further pursuit the suggested concept of range TLB to improve the performance (Chapter 4)

and the energy-efficiency (Chapter 5) of virtual memory.

60



4
Fast Address Translation with Ranges

4.1 Introduction

Recent studies and this thesis show that modern workloads can experience high execution-

time overheads, up to 50%, due to page table walks [27, 28, 77]. The root cause is the

limited TLB reach; because TLB address translation is on the processors’ critical path, it

requires low access times which constrain TLB size and thus the number of pages that

experience this access time. This overhead is likely to grow, because physical memory sizes

are still growing. Furthermore, many modern applications have an insatiable desire for

memory—they increase their data set sizes to consume all available memory for each new

generation of hardware [27, 50].

Previous research has focused on increasing the TLB reach and improving the perfor-

mance of paging in the following three ways.

1. Multipage mappings use one TLB entry to map multiple pages (e.g., 8-16 pages per

entry) [96, 97, 111]. Mapping multiple pages per entry increases TLB reach by a

61



4. FAST ADDRESS TRANSLATION WITH RANGES
V

ir
tu

al
 

A
dd

re
ss

 
Sp

ac
e

Ph
ys

ic
al

 
A

d
d

re
ss

 
Sp

ac
e

BASE 1 LIMIT 1

OFFSET 1

BASE 2 LIMIT 2

OFFSET 2

Range 
Translation 1

Range 
Translation 2

Figure 4.1: RMM introduces the key concept of range translations: an efficient representation of
contiguous virtual pages mapped to contiguous physical pages, complementary to paging. Each
range translation uses BASE, LIMIT, and OFFSET values to perform translation of an arbitrary sized
range. The figure shows the virtual-to-physical mappings of an application with RMM; all the map-
pings use page-based translation, but some of them use also range-based translation redundantly
when enough contiguity is present.

small fixed amount, but has alignment restrictions, and still leaves TLB reach far

below modern gigabyte-to-terabyte physical memory sizes.

2. Huge pages map much larger fixed size regions of memory, on the orders of 2 MB

to 1 GB on x86-64 architectures. Use of huge pages (THP [5] and libhugetlbfs [8])
increase TLB reach substantially, but also suffer from size and alignment restrictions

and still have limited reach.

3. Direct segments provide a single arbitrarily large segment per process and standard

paging for the remaining virtual address space [27, 52]. For applications that can

allocate and use a single segment for the majority of their memory accesses, direct

segments eliminate most of the paging cost. However, direct segments only support

a single segment and require that application writers explicitly allocate a segment

during startup.

The goal of our work is to provide a robust virtual memory implementation with near

zero overheads that is transparent to applications, enables fast address translation with no

alignment restrictions, and retains all the benefits of paging across a variety of workloads.

62



We introduce Redundant Memory Mappings (RMM), a novel hardware/software co-designed

implementation of virtual memory. RMM adds a redundant mapping, in addition to page

tables, that provides a more efficient representation of translation information for a range

of pages that are both physically and virtually contiguous. RMM exploits the natural con-

tiguity in address space and keeps the complete page table as a fall-back mechanism.

RMM relies on the concept of range translation. Each range translation maps a con-

tiguous virtual address range to contiguous physical pages, and uses BASE, LIMIT, and

OFFSET values to perform translation of an arbitrary sized range. Range translations are

only base-page-aligned and redundant to paging; the page table still maps the entire virtual

address space. Figure 4.1 illustrates an application with two ranges mapped redundantly

with paging as well as range translations.

Analogous to paging, we add a software managed range table to map virtual ranges to

physical ranges and a hardware range TLB in parallel with the last-level page TLB, e.g., the

L2-page TLB, to accelerate their address translation. Because range tables are redundant

to page tables, RMM offers all the flexibility of paging and the operating system may use

or revert solely to paging when necessary.

To increase contiguity in range translations, we extend the OS’s default lazy demand

page allocation strategy to perform eager paging. Eager paging instantiates pages in phys-

ical memory at allocation request time, rather than at first-access time as with demand

paging. The resulting OS automatically maps most of process’s virtual address space with

orders of magnitude fewer ranges than paging with Transparent Huge Pages [5]. On a

wide variety of workloads consuming between 350 MB – 75 GB of memory, we find that

RMM has the potential to map more than 99% of memory for all workloads with 50 or

fewer range translations (see Table 4.2 in Section 4.3).

To evaluate this design, we implement RMM software support in Linux kernel v3.15.5.

We emulate the hardware using a combination of hardware performance counters from an

x86 execution and functional TLB simulation in BadgerTrap [51]—the same methodology

as in prior TLB studies [27, 28, 52]. We compare RMM to standard paging, Clustered TLBs,

huge (2 MB and 1 GB) pages, and direct segments (one range per program). RMM robustly

performs substantially better than the former three alternatives on various workloads, and

almost as fast as Direct segments when one range is applicable. However with RMM, more

applications enjoy reductions in translation overhead without programmer intervention.

Overall, RMM reduces the overhead of virtual memory to less than 1% on average.

63



4. FAST ADDRESS TRANSLATION WITH RANGES

In summary, the main contributions of this chapter are:

• We show that diverse workloads exhibit an abundance of contiguity in their virtual

address space.

• We propose Redundant Memory Mappings, a hardware/ software co-design, which

includes a fast and redundant translation mechanism for ranges of contiguous virtual

pages mapped to contiguous physical pages, including operating system support to

detect and manage ranges.

• We prototype RMM in Linux and evaluate it on a broad range of workloads. Our

results show that a modest number of ranges map most of memory. Consequently,

the range TLB achieves extremely high hit rates, eliminating the vast majority of

costly page walks compared to virtual memory systems that use paging alone.

The rest of the chapter is organized as follows: Section 4.2 provides background in-

formation on some important previous work; Section 4.3 provides an overview of RMM

showing the key opportunity that exploits; Sections 4.4 and 4.5 describe the architectural

support and the OS support respectively; Section 4.6 discusses various implementation

details; Section 4.7 describes the methodology used to evaluate our design; Section 4.8

presents the results; Section 4.9 discusses the related work, and Section 4.10 concludes

our study.

4.2 Background

This section and Table 4.1 overview the closely related approaches to reducing paging

overheads and compare them to RMM. Section 4.9 discusses related work more generally.

Multipage Mapping approaches, such as sub-blocked TLBs [111], CoLT [96] and Clus-

tered TLBs [97], pack multiple Page Table Entries (PTEs) into a single TLB entry. These

designs leverage default OS memory allocators that either (i) assign small blocks of con-

tiguous physical pages to contiguous virtual pages (Sub-blocked TLBs and CoLT), or (ii)

map a small set of contiguous virtual pages to clustered sets of physical pages (Clustered

TLB). However, they pack only a small multiple of translations (e.g., 8-16) per entry, which

limits their potential to reduce page walks for large working sets.

64



T
ra

ns
pa

re
nt

to
A

pp
lic

at
io

n

K
er

ne
l

su
pp

or
t

H
ar

dw
ar

e
su

pp
or

t

#
of

en
tr

ie
s

M
ax

im
um

re
ac

h
pe

r
en

tr
y

A
pp

lic
at

io
n

do
m

ai
n

N
o

si
ze

-a
lig

nm
en

t
re

st
ric

ti
on

s

Multipage Mappings [96, 97, 111] 3 7 3 512 32 KB to 16 MB any 7
Transparent Huge Pages [5, 94] 3 3 3 32 2 MB any 7
libhugetlbfs [8] 7 3 3 4 1 GB big memory 7
Direct segments [27] 7 3 3 1 unlimited big memory 3

Redundant Memory Mappings 3 3 3 N unlimited any 3

Table 4.1: Comparison of Redundant Memory Mappings with previous approaches for reducing
virtual memory overhead.

Huge Pages using Transparent Huge Pages (THP) [5] and libhugetlbfs [8] increase the

TLB reach by mapping very large regions with a single entry. The x86-64 architecture

supports mixing 4 KB with 2 MB and 1 GB pages, while other architectures support more

sizes [91, 101, 107]. The effectiveness of huge pages is limited by the size-alignment

requirement: huge pages must have size-aligned physical addresses, and thus the OS can

only allocate them when the available memory is size-aligned and contiguous [96, 97]. In

addition, many commodity processors provide limited numbers of huge page TLB entries,

which further limits their benefit [27, 52, 77].

Direct segments [27] are a hardware/software approach that map a single unlimited range

of contiguous virtual memory to contiguous physical memory using a single hardware seg-

ment, while the rest of the virtual address space uses standard paging. A virtual address is

mapped by a direct segment or paging, but never both. Direct segments introduce BASE,

LIMIT, and OFFSET registers to eliminate the page walks within the segment. However,

the mechanism requires that (i) applications explicitly allocate a direct segment during

startup, and (ii) the OS can reserve a single large contiguous range of physical memory for

a segment. Thus, direct segments are only suitable for big-memory workloads and require

application changes.

Table 4.1 summarizes the characteristics of these approaches and compares them to RMM.

RMM is completely transparent to applications and maps multiple ranges with no size-

alignment restrictions, where each range contains an unrestricted amount of memory.

65



4. FAST ADDRESS TRANSLATION WITH RANGES

Pages Ideal RMM ranges

Benchmark 4 KB + 2 MB total 99% coverage largest

astar 5129 + 158 55 7 76.2%
mcf 1737 + 839 55 1 99.0%
omnetpp 2041 + 77 54 12 60.2%
cactusADM 1365 + 333 112 49 2.4%
GemsFDTD 3117 + 414 73 6 71.7%
soplex 4221 + 411 61 5 41.9%
canneal 10016 + 359 77 4 90.9%
streamcluster 1679 + 55 78 14 83.8%
mummer 29571 + 172 17 4 57.5%
tigr 28299 + 235 16 3 97.9%
Graph500 8983 + 35725 86 3 50.4%
Memcached 4243 + 36356 82 2 98.6%
NPB:CG 2540 + 26058 84 5 28.8%
GUPS 2210 + 32803 92 1 99.7%

Table 4.2: Total translation entries mapping the application’s memory with: (i) Transparent Huge
Pages of 4 KB and 2 MB pages [5] and (ii) ideal RMM ranges of contiguous virtual pages to con-
tiguous physical pages. (iii) Number of ranges that map 99% of the application’s memory, and (iv)
percentage of application memory mapped by the single largest range.

4.3 Redundant Memory Mappings

We observe that many applications naturally exhibit an abundance of contiguity in their

virtual address space and the number of ranges needed to represent this contiguity is low.

Abundance of address contiguity. We quantify address contiguity by executing applica-

tions on x86-64 hardware (see Section 4.7 for workload and methodology details), and

periodically scan the page table, measuring the size of virtual address ranges where all

pages are mapped with the same permissions. Table 4.2 shows the minimum number of

ranges of contiguous virtual pages that the OS could map to contiguous physical pages.

The workloads require between 16 to 112 ranges to map their entire virtual address space.

However, the number of ranges to cover 99% of the application’s memory space falls to

less than 50. Although a single range maps 90% or more of the virtual memory for 5 of the

14 workloads, the rest require multiple ranges. These results suggest that a small number

of range translations have the potential to efficiently perform address translation for the

majority of virtual memory addresses.

66



Page Table 
(L1)

Page 
Directory (L2)

Page Directory 
Pointer (L3)

Page Map 
Level 4 (L4)

(BASE2, LIMIT2)   
(OFFSET2 + Protection)

Page Table

Physical 
Address

Space

Range Translation 2

(BASE1, LIMIT1)   
(OFFSET1 + Protection)

Range Tanslation 1

Virtual 
Address

Space

BASE 1 LIMIT 1 BASE 2 LIMIT 2

Range Table

OFFSET 1
OFFSET 2

Figure 4.2: Redundant Memory Mappings design. The application’s memory space is represented
redundantly by both pages and range translations. The page table holds all virtual-to-physical map-
pings at page granularity for a process. The range table of RMM (not shown) holds mappings for
most of the process’s address space redundantly with range translations. Each range translation
uses BASEi , LIMITi , and OFFSETi values to perform translation of an arbitrary sized range. The
BASE and LIMIT values denote the range in the virtual address space. The OFFSET value holds the
beginning of the range in the physical address space minus BASE, and the protection bits. RMM
performs translation from the virtual to physical address space for a virtual address that falls inside
a range translation (BASEi ≤ virtual address < LIMITi) by adding the OFFSET value to the virtual
address, i.e., physical address = virtual address + OFFSETi .

67



4. FAST ADDRESS TRANSLATION WITH RANGES

Page Translation (x86-64) + Range Translation

Architecture

TLB range TLB
page table range table
CR3 register CR-RT register
page table walker range table walker

OS page table management range table management
demand paging eager paging

Table 4.3: Overview of Redundant Memory Mappings.

4.3.1 Overview

The above measurements motivate the RMM approach. (i) The OS uses best-effort alloca-

tion to detect and map contiguous virtual pages to contiguous physical pages in a range

table in addition to mapping with the page table. (ii) The hardware range TLB caches mul-

tiple range translations providing an alternate translation mechanism, parallel to paging.

(iii) Most addresses fall in ranges and hit in the range TLB, but if needed, the system can

revert to the flexibility and reduced fragmentation benefits of paging.

Definition: A range translation is a mapping between contiguous virtual pages mapped to

contiguous physical pages with uniform protection bits (e.g., read/write). A range transla-

tion is of unlimited size and base-page-aligned. A range translation is identified by BASE

and LIMIT addresses, and performs address translation with the OFFSET value and the

protection access rights. The BASE and the LIMIT hold the beginning and the end of the

range translation in the virtual address space. The OFFSET value holds the beginning of

the range translation in the physical address space minus the BASE value. Thus, to trans-

late a virtual range address to physical address, the hardware adds the virtual address to

the OFFSET of the corresponding range, i.e., physical address = virtual address + OFFSET,

and uses the range’s protection access rights. Figure 4.2 shows how RMM maps parts of

the process’s address space with both range translations and pages.

Redundant Memory Mappings (RMM) use range translations to perform address translation

much more efficiently than paging for large regions of contiguous physical addresses. We

introduce three novel components to manage ranges: (i) range TLBs, (ii) range tables,

and (iii) eager paging allocation. Table 4.3 summarizes these new components and their

68



relationship to paging. The range TLB hardware stores range translations and is accessed in

parallel to the last-level page TLB (e.g., L2 TLB). The address translation hardware accesses

the range and page TLBs in parallel after a miss at the previous-level TLB (e.g., L1 TLB). If

the request hits in the range TLB or in the page TLB, the hardware installs a 4 KB TLB entry

in the previous-level TLB, and execution continues. In the uncommon case that a request

misses in both range TLB and page TLB, and the address maps to a range translation, the

hardware fetches the page table entry to resume execution and optionally fetches a range

table entry in the background.

RMM performance depends on the range TLB achieving a high hit ratio with few en-

tries. To maximize the size of each range, RMM extends the OS page allocator to improve

contiguity with an eager paging mechanism that instantiates a contiguous range of physical

pages at allocation time, rather than the on-demand default, which instantiates pages in

physical memory upon first access. The OS always updates both the page table and the

range table to consistently manage the entire memory at both the page and range granu-

larity.

4.4 Architectural Support

The RMM hardware primarily consists of the range TLB, which holds multiple range trans-

lations, each of which translates for an unlimited-size range. We describe RMM as an

extension to the x86-64 architecture, but the design applies to other architectures as well.

4.4.1 Range TLB

The range TLB is a hardware cache that holds multiple range translations. Each entry maps

an unlimited range of contiguous virtual pages to contiguous physical pages. The range

TLB is accessed in parallel with the last-level page TLB (e.g., the L2 TLB) and in case of

hit, it generates the corresponding 4 KB entry in the previous-level page TLB (e.g., the L1

TLB).

We design the range TLB as a fully associative structure, because each range can be

any size making standard indexing for set-associative structure hard. The right side of

Figure 4.3 illustrates the range TLB and its logic with N (e.g., 32) entries. Each range

TLB entry consists of a virtual range and translation. The virtual range stores the BASEi

69



4. FAST ADDRESS TRANSLATION WITH RANGES

[V47 V46 ……… V12] [V11 …….. V0]

L1 D-TLB  
Lookup

Hit ?
Y

[P47 P46 ……… P12] [P11 …….. P0]

N

L2 D-TLB  
Lookup

Y
Hit ?

Range TLB

Hit ?
Y

NN

Page+Range 
Table Walk

BASE 0 LIMIT 0
≤ >

BASE 1 LIMIT 1
≤ >

Entry 0

Entry 1

BASE N-1 LIMIT N-1
≤ >

Entry N-1

EncoderRange TLB miss

OFFSET 0 PB

OFFSET 1 PB

OFFSET N-1 PB

TLB Entry 
Generation

(address+OFFSET), PB

Range TLB hit

Optional MRU Pointer

Figure 4.3: RMM hardware support consists primarily of a range TLB that is accessed in parallel
with the last-level page TLB.

and LIMITi of the virtual address range map. The translation stores the OFFSETi that

holds the start of the range in physical memory minus BASEi, and the protection bits (PB).

Additionally, each range TLB entry includes two comparators for lookup operations. Note

that we use such OFFSET value (instead of simply using the beginning of the range in the

physical address space) because it performs virtual-to-physical address translation with a

simple add operation (instead of finding first the distance from the beginning of the range

in the virtual address space and then adding that value to the beginning value of the range

in the physical address space).

Figure 4.3 illustrates accessing the range TLB in parallel with the L2 TLB, after a miss

at the L1 TLB. The hardware compares the virtual page number that misses in the L1 TLB,

testing BASEi ≤ virtual page number< LIMITi for all ranges in parallel in the range TLB. On

a hit, the range TLB returns the OFFSETi and protection bits for the corresponding range

translation and calculates the corresponding page table entry for the L1 TLB, as explained

in Section 4.3.1. The hardware adds the requested virtual page number to the hit OFFSETi

value to produce the physical page number and copies the protection bits from the range

translation. On a miss, the hardware fetches the corresponding range translation—if it

exists—from the range table. We explain this operation in Section 4.4.3 after discussing

the range table in more detail.

The range TLB is accessed in parallel with the last-level page TLB and must return the

lookup result (hit/miss) within the TLB access latency, which for the L2 TLB on recent

70



Intel processors is ~7 cycles [63]. Unlike a page TLB, the range TLB is similar to N fully-

associative copies of direct segment’s base/limit/offset logic [27] or a simplified version of

the range cache [113]: it performs two comparisons per entry instead of a single equality

test. Our design can achieve this performance because the range TLB contains only a few

entries and it can use fast comparison circuits [81]. Our results in Section 4.8 show that a

32-entry fully-associative range TLB eliminates more than 99% of the page walks for most

of our applications, at lower power and area cost than simply increasing the size of the

corresponding L2 TLB.

Note that our approach of accessing the range TLB in parallel to the last-level page

TLB is because in this chapter we target eliminating the performance overhead of virtual

memory due to page walks, i.e., due to L2 TLB misses. Note that our approach of accessing

the range TLB in parallel to the last-level page TLB can be extended to the other translation

levels closer to the processor, e.g., in parallel to the L1 TLB. Actually, in Chapter 5, we

extend the RMM design with an L1-range TLB, accessed in parallel to the L1 TLB, and

other mechanisms to improve primarily the energy-efficiency of address translation and

eliminate secondarily the performance overhead of virtual memory due to L1 TLB misses.

Optimization. To reduce the dynamic energy cost of the fully associative lookups, we

introduce an optional MRU Pointer that stores the most-recently-used range translation

and thus reduces associative searches of the range TLB. The range TLB first checks the

MRU Pointer and in case of a hit, skips the other entries. Otherwise, the range TLB checks

all valid entries in parallel. Note that the MRU Pointer can serve translation requests faster

than the corresponding page TLB and may further boost performance.

4.4.2 Range table

The range table is an architecturally visible per-process data structure that stores the pro-

cess’s range translations in memory. The role of the range table is similar to that of the

page table. A hardware walker loads range translations from the range table on a range

TLB miss, and the OS manages range table entries based on the application’s memory

management operations.

We propose using a B-Tree data structure with (BASEi, LIMITi) as keys and OFFSETi

and protection bits as values to store the range table. B-trees are cache friendly and keep

71



4. FAST ADDRESS TRANSLATION WITH RANGES

RTEC RTED RTEF RTEG

RTEA RTEB RTEE RTEH RTEI

CR-RT

Range Translation or
Range Table Entry

BASE LIMIT

1247 1247

OFFSET    +  Protection

064

Figure 4.4: The range table stores the range translations for a process in memory. The OS manages
the range table entries based on the applications memory management operations.

the data sorted to perform search and update operations in logarithmic time. Since a single

B-Tree node may have multiple ranges and children, it is a dense representation of ranges.

The number of ranges per range table node defines the depth of the tree and the average

number of node lookups to perform a search/update operation. Figure 4.4 shows how the

range translations are stored in the range table and the design of each node. Each node

accommodates four range translations and points to five children, e.g., up to 124 range

translations in three levels. Since each range translation is represented at page-granularity

with the BASE (48 architectural bits −12 bits per page=36 bits), the LIMIT (36 bits), and

the OFFSET and protection bits together (64-bits conventional PTE size), thus each range

table node fits in two cache-lines. This design ensures the traversal of the range table

is cache-friendly, accesses only a few cache lines per operation, and maintains the dense

representation. Note that the range table is much smaller than a page table: a single 4 KB

page stores 128 range translations, which is more than enough for almost all our workloads

(Table 4.7). All the pointers to the children are physical addresses, which facilitate walking

the range table in hardware.

Analogous to the page table pointer register (CR3 in x86-64), RMM requires a CR-

RT register to point to the physical address of the range table root to perform address

translation, as we will explain next.

72



4.4.3 Handling misses in the range TLB

On a miss to the range TLB and corresponding page TLB, the hardware must fetch a trans-

lation from the memory. Two design issues arise with RMM at this point. First, should

address translation hardware use the page table to fetch only the missing PTE or the range

table to fetch the range translation? Second, how does the hardware determine if the miss-

ing translation is part of a range translation and avoid unnecessary lookups in the range

table? Because ranges are redundant, there are several options.

Miss-handling order. RMM first fetches the missing translation from the page table, as all

valid pages are guaranteed to be present, and installs it in the previous-level TLB so that

the processor can continue executing the pending operation. This choice avoids additional

latency from accessing the range table for pages that are not redundantly mapped. In the

background, the range table walker hardware resolves whether the address falls in a range

and if it does, updates the range table with the range table entry. Thus when both the

range table and page TLB miss, the miss incurs the cost of a page walk. Any updates to the

range TLB occur off the critical path.

Identifying valid range translations. To identify whether a miss in the range TLB can

be resolved to a range or not, RMM adds a range bit to the PTE, which indicates whether

a page is part of a range table entry. The page table walker fetches the PTE, and if the

range bit is set, accesses the range table in the background. Without this hint, available

from redundancy, the range table walker would have to check the range table on every TLB

miss. Alternatively, hardware could use prediction to decide whether to access the range

table, which requires no changes to page table entries, but we did not evaluate this option.

Walking the range table. Similar to the page table walker, RMM introduces the range

table walker that consists of two comparators and a hardware state machine. The range

table walker walks the range table in the background starting from the CR-RT register. The

walker compares the missing address with the range translations in each range table node

and follows the child pointers until it finds the corresponding range translation and installs

it in the range TLB. To simplify the hardware, an OS handler could perform the range table

lookup.

Shootdown. The OS uses the INVLPG instruction to invalidate stale virtual to physical

73



4. FAST ADDRESS TRANSLATION WITH RANGES

translations (including changes in the protection bits) during the TLB shootdown pro-

cess [34]. To ensure correct functionality, RMM modifies the INVLPG instruction to in-

validate all TLB entries and any range TLB entry that contains the corresponding virtual

page. The modified OS may thus use this instruction to keep all TLBs and the range TLB

coherent through the TLB shootdown process. The OS may also associate each range TLB

entry with an address space identifier, similar to TLB entries, to perform context switches

without flushing the range TLB.

4.5 Operating System Support

RMM requires modest operating system (OS) modifications. The OS must create and man-

age range table entries in software and coordinate them with the page table. We modify the

OS to increase the size of ranges with an eager paging allocation mechanism. We prototype

these changes in Linux, but the design is applicable to other OSes.

4.5.1 Managing range translations

Similar to paging, the process control block in RMM stores a range table pointer (RT

pointer) with the physical address of the root node of the range table. When the OS

creates a process, it allocates space for the range table and sets the RT pointer. On every

context switch, the OS copies the RT pointer to the CR-RT register and then the range table

walker uses it to walk the range table.

The OS updates the range table when the application allocates or frees memory or the

OS reclaims a page. The OS analyzes the contiguity of the affected page(s). Based on a

contiguity threshold (e.g., 8 pages), the OS adds, updates, or removes a range translation

from the range table. The OS avoids creating small range translations that could cause

thrashing in the range TLB. The OS can modify the contiguity threshold dynamically, based

on the current number and size of range translations, and the performance of the range

TLB (option not explored). The OS updates the range bit in all the corresponding PTEs for

the range to keep them consistent.

74



4.5.2 Contiguous memory allocation

Achieving a high hit ratio in the range TLB and thus low virtual memory overheads requires

a small number of very large range translations that satisfy most virtual address translation

requests. To this end, RMM modifies the OS memory allocation mechanism to use eager

paging, which strives to allocate the largest possible range of contiguous virtual pages to

contiguous physical pages. Eager paging requires modest changes to Linux’s default buddy

page allocator.

Default buddy allocator. The buddy allocator splits physical memory in blocks of orders

using powers-of-two pages, i.e., 2order pages, and manages the blocks using separate free-

lists per block size. A kernel compile-time parameter defines the maximum size of memory

blocks (2max_order) and hence the total number of the free-lists. The buddy allocator orga-

nizes each free-list in power-of-two blocks and satisfies requests from the free-list of the

smallest size. If a block of the desired 2i size is not available (i.e., free-list[i] is empty), the

OS finds the next larger 2i+k size free block, going from k = 1,2, ... until it finds the small-

est free block large enough to satisfy the request. The OS then iteratively splits a block in

two, until it creates a free block of the desired 2i size. It then assigns one free block to the

allocation and adds any other free blocks it creates to the appropriate free-lists. When the

application later frees a 2i block, the OS examines its corresponding buddy block (iden-

tified by its address). If this block is free, the OS coalesces the two blocks, resulting in a

2i+1 block. The buddy allocator thus easily splits and merges blocks during allocations and

deallocations respectively.

Despite contiguous pages in the buddy heap, in practice most allocations are of a sin-

gle page because of demand paging. Operating systems use demand paging to reduce

allocation latency by deferring page instantiation until the application actually references

the page. Therefore, the application’s allocation does not trigger OS allocation, but rather

when the application first writes or reads a page, the OS allocates a single page (from

free-list[0]). Demand allocation at access-time degrades contiguity, because (i) it allocates

single pages even when large regions of physical memory are available, and because (ii) the

OS may assign pages accessed out-of-order to non-contiguous physical pages even though

there are contiguous free pages.

Eager paging. Eager paging improves the generation of large range translations by allo-

75



4. FAST ADDRESS TRANSLATION WITH RANGES

cating consecutive physical pages to consecutive virtual pages eagerly at allocation, rather

than lazily on demand at access time. At allocation request time (e.g., when the application

performs an mmap, mremap or brk call), if the request is larger than the range threshold,

the OS establishes one or more range translations for the entire request and updates the

corresponding range and page table entries. We note that demand paging replaced eager

paging in early systems. However, one motivation for demand paging was to limit unnec-

essary swapping in multiprogrammed workloads, which modern large memories make less

common [27]. We find that the exponential growth in physical memories and the high cost

of TLB misses makes eager paging a better choice with RMM hardware in most cases.

Eager paging increases latency during allocation and may induce fragmentation, be-

cause the OS must instantiate all pages in memory, even those the application never uses.

However unused memory is not permanently wasted. The OS could monitor memory use

in range translations and reclaim ranges and pages with standard paging mechanisms, but

we leave this exploration for future work. Allocating memory at request-time generates

larger range translations compared to the access-time policy of demand paging and im-

proves the effectiveness of RMM hardware. Note that Section 4.8 quantifies the impact of

eager paging on execution time and memory compared to demand paging.

Algorithm. Figure 4.1 shows simplified pseudocode for eager paging. If the application

requests an allocation of size N×pages, eager paging allocates the 2i block, as described

above. This simple algorithm only provides contiguity up to the maximum managed block

size. If the application requests more memory than the maximum managed block, the

OS will allocate multiple maximum blocks. Two optimizations further improve contiguity.

First, eager paging could sort the blocks in the free-lists, to coalesce multiple blocks and

generate range translations larger than the maximum block. Second, to generate large

range translations from allocations that are smaller than the maximum block, eager paging

could request a block from a larger size free-list, assign the necessary pages, and return

the remaining blocks to the corresponding smaller sized free-lists. These enhancements

introduce additional trade-offs that warrant more investigation. Note that in our RMM

prototype, we did not implement these two enhancements. Nonetheless, the simple eager

paging algorithm generates large range translations for a variety of block sizes and exploits

the clustering behavior of the buddy allocator [96, 97].

Finally, eager paging is only effective when memory fragmentation remains low and

76



ALGORITHM 4.1: RMM memory allocator pseudocode for an allocation request of number of pages.
When memory fragmentation is low, RMM uses eager paging to allocate pages at request-time,
creating the largest possible range for the allocation request. Otherwise, RMM uses default demand
paging to allocates pages at access-time.

compute the memory fragmentation;
if memory fragmentation ≤ threshold then
// low memory fragmentation - use eager paging;
while number of pages > 0 do

for (i = MAX_ORDER-1; i ≥ 0; i–) do
if freelist[i]≥ 0 and 2i ≤ number of pages then

allocate block of 2i pages;
for all 2i pages of the allocated block do

construct and set the PTE;
end
add the block to the range table;
number of pages – = 2i;
break;

end
end

end
else
// high memory fragmentation - use demand paging;
for (i = 0; i < number of pages; i++) do

allocate the PTE;
set the PTE as invalid so that the first access will trigger a page fault and the page will get
allocated;

end
end

there is ample space to populate ranges at request time. If memory fragmentation or

pressure increases, the OS may fall back to its default paging allocation.

4.6 Discussion

This section discusses some of the hardware and operating systems issues that a production

implementation should consider, but leaves the implications for automatic and explicit

memory management and for applications as future work.

77



4. FAST ADDRESS TRANSLATION WITH RANGES

TLB friendly workloads. If an application has small memory footprint and experiences

a low page TLB miss rate, the range TLB may provide little performance benefit while in-

creasing the dynamic energy due to range TLB accesses. The OS can monitor the memory

footprint and then dynamically enable and disable the range TLB. The OS would still al-

locate ranges and populate the range table, but then it could selectively enable the range

TLB based on performance-counter measurements and workload memory allocation.

Accessed & Dirty bits. The TLB in x86 processors is responsible for setting the accessed bit

in the corresponding PTE in memory on the first access to a page and the dirty bit on the

first write. The range TLB does not store per-page accessed/dirty bits for the individual

pages that compose a range translation. Thus, on a range TLB hit, the range TLB cannot

determine whether it should set the accessed or dirty bit. The OS may address this issue

by setting the accessed and dirty bits for all the individual pages of a range translation

eagerly at allocation time, instead of at access or write time. If the OS needs to reclaim

or swap a page in an active range because of memory pressure, it may. Because the OS

manages physical memory at the page-granularity—not at the range granularity—it may

reclaim and swap individual pages by dissolving a range completely and then evicting and

swapping pages individually. Another option is for the OS to break a range in to multiple

smaller ranges and dissolve one of the resulting ranges.

Copy-on-write. Copy-on-write is a virtual memory optimization in which processes ini-

tially share pages and the OS only creates separate individual pages when one of the pro-

cesses modifies the page. This mechanism ensures that these changes are only visible to

the owning process and to no other process. To implement this functionality, copy-on-write

uses per-page protection bits that trigger a fault when the page is modified. On a fault,

the OS copies the page and updates the protection bits in the page table. With RMM, the

range translations hold the protection bits at range granularity, not on individual pages.

One simple approach is to use range translations for read-only shared ranges, but dissolve

a range into pages when a process writes to any of its pages. Alternatively, the OS could

copy the entire range translation on a fault. In this thesis we did not evaluate RMM under

copy-on-write scenarios, but we consider it as an excellent path for future research.

Fragmentation. Long-running server and desktop systems will execute multiple processes

at once and a variety of workload mixes. Frequent memory management requests from

78



complex and short-running workloads may cause physical memory fragmentation and limit

the performance of RMM. If the OS cannot find a sufficiently large range of free pages in

memory, it should default to paging-only and disable the range TLB. However, abundant

memory capacity coupled with fragmentation is not uncommon, since a few pages scattered

throughout memory can cause considerable fragmentation [43]. In this case, the OS could

perform full compaction [27, 96], or partial compaction with techniques adapted from

garbage collection [35, 43].

4.7 Methodology

To evaluate virtual memory system performance on large memory workloads, we imple-

ment our OS modifications in Linux, define RMM hardware with respect to a recent Intel

x86-64 Xeon core, and report overheads using a combination of hardware performance

counters from application executions and functional TLB simulation.

RMM operating system prototype. We prototype the RMM operating system changes

in Linux x86-64 with kernel v3.15.5. We implement the management of the range tables

by intercepting all kernel memory-management operations. We implement range creation

and eager paging by modifying the mmap, brk and mremap system calls. For our prototype

range table, we implement a simple linked list rather than a B-tree. Because our applica-

tions spend only a tiny fraction of their time in the OS and the range TLB refill is not on

the processor’s critical path, this simplification does not affect our results.

We use a contiguity threshold of 32 KB (8 pages) to define the minimum size of a range

translation. To increase the maximum size of a range, we increase the maximum allocation

size in the buddy allocator to 2 GB, up from 4 MB by modifying the max_order parameter

of the buddy allocator from 11 to 20. Because the default glibc memory management

implementation does not coalesce allocations into fixed-size virtual ranges, we instead use

the TCMalloc library [13]. In addition, we modify TCMalloc to increase the maximum

allocation size from 256 KB to 32 MB.

RMM hardware emulation. We evaluate the RMM hardware described in Section 4.4 with

Intel Sandy Bridge core shown in Table 4.4. We choose a 32-entry fully associative range

TLB accessed in parallel with the L2 page TLB, since we estimate that it can meet the L2’s

79



4. FAST ADDRESS TRANSLATION WITH RANGES

Description

Processor Dual-socket Intel Xeon E5-2430 (Sandy Bridge),
6 cores/socket, 2 threads/core, 2.2 GHz

Memory 96 GB DDR3 1066MHz

OS Linux kernel version 3.15.5

L1 DTLB
4 KB pages: 64-entry, 4-way associative
2 MB pages: 32-entry, 4-way associative
1 GB pages: 4-entry, fully associative

L1 ITLB 4 KB pages: 128-entry, 4-way associative
2 MB pages: 8-entry, fully associative

L2 TLB 4 KB pages: 512-entry, 4-way associative
2 MB pages: —

range TLB unrestricted sizes: 32-entry, fully associative

Table 4.4: System configurations and per-core TLB hierarchy.

timing constraints.

To measure the overheads of RMM, we combine performance counter measurements

from native executions with TLB performance emulation using a modified version of Bad-

gerTrap [51]. Compared to cycle-accurate simulation on these workloads, this approach

reduces weeks of simulation time by orders of magnitude. Previous virtual memory system

performance studies use the same approach [27, 28, 52].

BadgerTrap instruments x86-64 TLB misses. We add a functional range TLB simulator

in the kernel that BadgerTrap invokes. On each page L2 TLB miss, BadgerTrap performs

a range TLB lookup. Note that the actual implementation would perform the range TLB

lookup in parallel, rather than after the L2 TLB miss. This emulation may thus underesti-

mate the benefit of the range TLB, because the real hardware will install a missing page

table entry, even if the virtual address hits in the range TLB. The actual RMM implemen-

tation reduces traffic to the L2 page TLB on range TLB hits, freeing up page TLB entries

and potentially making it more effective. This simulation methodology may itself perturb

TLB behavior. To minimize this problem, we allocate a 2 MB page in the kernel for the

simulator itself, which reduces the differences with an unmodified kernel to less than 5%.

Note that in our evaluation of RMM in this chapter we use only 4 KB pages and range

translations for the running applications, i.e., we disable the 2 MB (Transparent Huge

Pages) and the 1 GB pages. The reason is that we focus here on the performance benefits

80



Performance Model

Ideal execution time Tideal = T2M − C2M
Average page walk cost AvgC4K/2M = C4K/2M/M4K/2M
Measured page walk overhead Over4K/2M = C4K/2M/Tideal
Simulated page walk overhead OverSI M = MSI M ∗ AvgC4K/Tideal

T: Total execution cycles M4K/2M : page walks with 4K/2M
C: Cycles spent in page walks MSI M : Simulated page walks

Table 4.5: Performance model based on hardware performance counters and BadgerTrap.

from range translations and range TLB, and thus want to avoid accounting for benefits

from huge pages. However, there is no inherent limitation in combining range translations

with huge pages in RMM (as we do in the evaluation of RMM in Chapter 5); simply some

parts of the range translations are mapped with huge pages, instead of 4 KB pages, in the

page table and the TLB support for huge pages is utilized as well.

Performance model. We estimate the impact of RMM on system performance with the

following methodology. First, we run the applications on the real system (Table 4.4) with

realistic input sets until completion and collect processor and TLB statistics using hardware

performance counters. We use the Linux perf utility [11] to read the performance counters.

We collect total execution cycles, misses for L2 TLB, and cycles spent in page walks. Based

on these measurements we calculate (i) the ideal execution time (no virtual memory over-

head), (ii) the measured overhead spent in page walks, and (iii) the estimated overhead

with the simulated hardware mechanisms based on the fraction of reduced page walks,

using a simple linear model [27, 52] given in Table 4.5.

Benchmarks. RMM is designed for a wide range of applications from desktop applica-

tions to big-memory workloads executing on scale-out servers. To evaluate the effective-

ness of RMM, we select workloads with poor TLB performance from SPEC 2006 [59],
BioBench [15], Parsec [32] and big-memory workloads [27] as summarized in Table 4.6.

We execute each application sequentially on a single test machine without rebooting be-

tween experiments.

81



4. FAST ADDRESS TRANSLATION WITH RANGES

Suite Description Input Memory

SPEC 2006

astar 350 MB
compute & memory cactusADM 690 MB
intensive single-threaded GemsFDTD 860 MB
workloads mcf 1.7 GB

omnetpp 165 MB
soplex 860 MB

PARSEC RMS multi-threaded canneal 780 MB
workloads streamcluster 120 MB

BioBench Bioinformatics single- mummer 470 MB
threaded workloads tigr 610 MB

Generation, compression Graph500 73 GBand search of graphs

In-memory key-value cache Memcached 75 GB

Big memory NASA’s high performance NPB:CG 54 GBparallel benchmark suite.

Random access benchmark GUPS 67 GB

Table 4.6: Workload description and memory footprint.

4.8 Results

This section evaluates the cost of address translation, the impact of eager paging, and

implications on energy of RMM, and shows substantial improvements in performance over

current and proposed systems.

We compare RMM performance to the following systems. (i) We measure the virtual

memory overheads of a commodity x86-64 processor (see Table 4.4) with 4 KB pages, 2 MB

pages with transparent huge pages, and 1 GB pages with libhugetlbfs using hardware per-

formance counters. (ii) We emulate multipage mappings in BadgerTrap, by implementing

the Clustered TLB approach [97] of Pham et al., configured with 512 fully-associative en-

tries. Each entry indexes up to an 8-page cluster, shown best by Clustered TLB [97]. We use

eager paging to increase the opportunities to form multipages, improving on the original

implementation. (iii) We emulate the performance of ideal direct segments. We assume all

fixed-size memory regions that live for more than 80% of a program’s execution time can

be coalesced in a single contiguous range, which can be used to estimate the reduction in

TLB misses with direct segment hardware [27].

82



 

 

4
2

%

3
9

%

0
.5

5
%

0
.6

6
%

0
.0

2
%

0
.0

3
%

4
0

%

0
.0

6
%

0
.2

6
%

0
.2

2
%

0
.0

0
%

0
.2

5
%

0
.0

2
%

0
.0

2
%

0
.2

6
%

0
.0

5
%

0
.4

0
%

0
.0

6
%

0%

5%

10%

15%

20%

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

astar mcf omnetpp cactusADM GemsGDTD soplex canneal streamcluster

Ex
ec

u
ti

o
n

 T
im

e 
O

ve
rh

ea
d

s
Native Modeled

0
.0

0
%

0
.1

4
%

0
.0

0
%

1
.7

3
%

0
.0

0
%

0
.0

1
%

0
.1

3
%

1
.0

6
%

0
.3

7
%

1
2

%

0%

100%

200%

300%

400%

500%

600%

700%

0%

10%

20%

30%

40%

4
K

B
C

TL
B

TH
P

1
G

B
D

S
R

M
M

4
K

B
C

TL
B

TH
P

1
G

B
D

S
R

M
M

4
K

B
C

TL
B

TH
P

1
G

B
D

S
R

M
M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

D
S

R
M

M

4
K

B
C

TL
B

TH
P

1
G

B
D

S
R

M
M

graph500 memcached NPB:CG mummer tigr GUPS

Ex
ec

u
ti

o
n

 T
im

e 
O

V
er

h
e

ad
s

Ex
ec

u
ti

o
n

 T
im

e 
O

vr
er

h
e

ad
s Native Modeled

Figure 4.5: Execution time overheads due to page walks for SPEC 2006 and PARSEC (top) big-memory and BioBench (bottom)
workloads. GUPS uses the right y-axis and thus shaded separately. 1GB pages are only applicable to big-memory workloads.

83



4. FAST ADDRESS TRANSLATION WITH RANGES

4.8.1 Performance analysis

Figure 4.5 shows the overhead spent in page walks for RMM compared to other techniques.

The 4 KB, 2 MB Transparent Huge Pages (THP) [5] and 1 GB [8] configurations show the

measured overhead for the three different page sizes available on x86-64 processors. All

other configurations are emulated. The CTLB bars show Clustered TLB [97] results. The

DS bars show direct segments [27] results and the RMM bars show the 32-entry range TLB

results.

RMM performs well on all configurations for all workloads, improving substantially

over all the other approaches, except direct segments. RMM eliminates the vast majority

of page walks, significantly outperforms the Clustered TLB (CTLB), huge pages (THP and

1GB) and achieves similar or better performance than direct segments, but has none of its

limitations. On average, RMM reduces the overhead of virtual memory to less than 1%.

For most workloads, the base page size (4 KB) incurs high overheads. For example, mcf,

cactusADM, and graph500 spend 42%, 39% and 29% of execution time in page walks due

to TLB misses. Even the applications with smaller working sets, such as astar, omnetpp,

and mummer, still suffer substantial paging overheads using 4 KB pages.

Clustered TLB (CTLB) only offers limited reductions in overhead and only for small-memory

workloads. CTLB performs better than 4 KB pages on small-memory workloads, such as

cactusADM, canneal, and omnetpp. However, CTLB provides little benefit on big-memory

workloads and performs worse than THP overall.

Huge pages (THP and 1 GB) reduce virtual memory overheads for all workloads but still

leave room for improvement. The limited hardware support for huge pages (e.g., few TLB

entries), poor application memory locality, and the mismatch of their sizes with the virtual

memory contiguity all contribute to the remaining overheads. Note that recent processors

provide more TLB entries for huge pages. However, this approach falls short: huge pages

increase TLB reach by fixed size mappings and memory sizes increase more aggressively

than TLB sizes. Hence, we believe that the virtual memory overheads that manifest in

today’s systems with 4 KB pages, will manifest similarly in tomorrow’s systems with huge

pages.

Direct segments achieve negligible overheads on big-memory workloads and some small-

memory workloads. But, direct segments poorly serve workloads that require multiple

ranges, such as omnetpp, canneal, or those that use memory-mapped files such as mummer.

84



In addition, direct segments requires application modifications and is not a transparent so-

lution. Compared to direct segments, RMM is a better choice because it achieves similar or

better performance on all workloads.

Redundant Memory Mappings achieve negligible overhead—essentially eliminating virtual

memory overheads for many workloads. Only one workload has greater than 2% overhead,

GUPS. As our sensitivity analysis in the next section shows, GUPS requires at least a 64-

entry range TLB to achieve less than 1% overhead. Overall, RMM performs consistently

better than the alternatives and in many cases eliminates the performance cost of address

translation.

4.8.2 Range TLB sensitivity analysis

To achieve high performance, the range TLB must be large enough to satisfy most L1 TLB

misses. Figure 4.6 shows the range TLB miss ratio as a function of the numbers of entries.

We observe that a handful of workloads, such as cactusADM, memcached, tigr, and GUPS,

suffer from high miss ratios with a 16-entry range TLB. Overall, a 32-entry range TLB

eliminates more than 99% of misses for most workloads (97.9% on average), delivering a

good trade-off of performance for the required area and power.

We also note that a single-entry range TLB is insufficient to eliminate virtual memory

overheads. Most applications require multiple range table entries, especially those with

large working sets, such as cactusADM, GemsFDTD and GUPS, and those with large num-

bers of ranges, such as memcached, mummer, and tigr. However, the single-entry results

illustrate that the optional MRU Pointer would be effective at saving dynamic energy and

latency in many cases. It reduces accesses to the range TLB by more than 50% for astar,

omnetpp, canneal, streamcluster, and graph500.

4.8.3 Impact of eager paging

Eager paging increases range size by instantiating physical pages when the application

allocates memory, rather than when the application first writes or reads a page. Table 4.7

shows the effect of eager paging on the number and size of ranges, and on time and

memory overheads, compared to default demand paging. Default demand paging includes

forming THPs, which we translate to ranges.

85



4. FAST ADDRESS TRANSLATION WITH RANGES

0%

20%

40%

60%

80%

100%

astar mcf omnetpp cactusADM GemsGDTD soplex canneal

R
an

ge
 T

LB
 m

is
s 

ra
ti

o
 

1-entry 2-entry 4-entry 8-entry 16-entry 32-entry 64-entry

0

0.2

0.4

0.6

0.8

1

streamcluster graph500 memcached NPB:CG mummer tigr GUPS

R
an

ge
 T

LB
 m

is
s 

ra
ti

o
 

1-entry 2-entry 4-entry 8-entry 16-entry 32-entry 64-entry

Figure 4.6: Sensitivity analysis of the range TLB miss ratio as a function of the number of range
TLB entries.

The first two sections of Table 4.7 (demand paging and eager paging) compare the

number of ranges, the percentage of the memory footprint covered by ranges with a con-

tiguity threshold of 8 pages, and the range sizes (median, average, maximum) in terms of

pages, created by demand and eager paging. Eager paging (i) lowers the median range size

for small-memory workloads because it allocates fewer medium-sized ranges (the median

for demand paging is usually 512, i.e., 2 MB regions, due to THP), (ii) increases the me-

dian range for big-memory workloads because it allocates fewer small and medium-sized

ranges, and (iii) increases the average and maximum range size for all workloads because

it allocates larger blocks from the buddy allocator. Overall eager paging generates orders

of magnitude fewer ranges that cover a larger percentage of memory for all applications

compared to demand paging. Thus eager paging assists in achieving high range TLB hit

ratio with few entries.

86



Demand Paging Eager Paging Demand vs. Eager

Benchmark # ranges % memory range size in 4 KB pages # ranges % memory range size in 4 KB pages % time % memory
median average max median average max overhead overhead

astar 170 94.52 512 478 1024 33 99.69 32 2810 8192 -1.15 8.14
mcf 449 99.72 512 957 4608 28 99.94 24 15637 262143 -4.10 1.58
omnetpp 91 96.30 512 438 512 27 99.03 20 1617 8192 -0.50 6.34
cactusADM 311 99.50 512 549 1024 70 99.84 8192 5537 8192 0.85 125.90
GemsFDTD 326 98.76 512 651 2048 61 99.75 256 3613 16384 11.65 2.74
soplex 333 98.32 512 633 4096 54 99.85 128 4502 81919 -1.78 13.45

canneal 410 95.96 202 453 1024 46 99.82 189 4248 32767 1.15 0.99
streamcluster 65 95.73 512 439 512 32 99.18 21 1122 16383 -1.61 21.41

mummer 837 85.51 32 120 512 61 99.68 512 1940 32768 -1.55 0.87
tigr 1149 95.16 16 123 1536 167 99.51 32 889 16384 -1.97 0.01

Graph500 18574 99.97 512 984 524288 32 99.99 2048 187236 524288 2.56 0.27
Memcached 1540 99.97 1024 29629 524288 86 99.99 2048 216857 524288 -3.95 0.17
NPB:CG 22746 99.98 512 586 1536 95 99.99 4096 146861 524288 0.87 4.56
GUPS 705 99.99 512 23823 524288 62 99.99 524288 271039 524288 -0.61 0.05

Table 4.7: Impact of eager paging on ranges, time, and memory compared to demand paging with Transparent Huge Pages.

87



4. FAST ADDRESS TRANSLATION WITH RANGES

Eager paging alters execution by changing when and how pages, even used pages,

are allocated to physical memory. We measure execution overhead due to eager paging

by running applications with the eager paging operating system support, but without the

hardware emulation. Table 4.7 shows that the execution time for most applications is rel-

atively unchanged. A few get faster: mcf and memcached improve by 4.1% and 3.9%.

However, GemsFDTD degrades by 11%. In this case, the changes in physical page allo-

cation affect cache indexing, increasing cache conflicts. Various orthogonal mechanisms

address this problem [45, 106].

Eager paging anticipates that the application will use the requested memory regions

and may thus increase the memory footprint. The last column of Table 4.7 reports the

memory footprint increase with eager paging. Eager paging increases memory by a small

amount for three of the big-memory workloads, and by less than 10% for 7 of the remaining

10 workloads. Eager paging increases memory substantially on cactusADM and NPB:CG

(the percentage is low, but totals 2.3 GB), mainly because of instantiating memory that

these applications request but never use, and because of modifying TCMalloc to increase

contiguity. Thus RMM trades increased memory for better performance, a common tradeoff

when memory is cheap and plentiful. Note that the OS can convert a range to pages or

abandon ranges altogether under memory pressure as discussed in Section 4.6.

4.8.4 Energy

The primary RMM effect on energy is executing the application faster, which improves

static energy of the system. According to our performance model, RMM improves perfor-

mance by 2-84% and thus reduces the static energy by a similar ratio.

Secondary effects include the static and dynamic energy of the additional RMM hard-

ware. The system accesses the range TLB in parallel with the L2 TLB, consuming dynamic

energy on a L1 TLB miss. The dynamic energy of a 32-entry range TLB is relatively small

with respect to the entire chip, and lower than of a fully-associative 128-entry L1 TLB (e.g.,

SPARC M7 [98]). Furthermore, replacing misses in the L2 TLB with hits in the range TLB

saves dynamic energy by avoiding a page walk that performs up to four memory opera-

tions. The OS can identify workloads for which the range TLB provides little benefit and

disable the range TLB (see Section 4.6), eliminating its dynamic energy.

To further explore power and energy impact of the range TLB on the address translation

88



path, we implemented a 32-entry range TLB and a 512-entry L2 page TLB with search

latency of six cycles in Bluespec. We then synthesized both designs with the Cadence

RTL Compiler using 45nm technology (tsmc45gs standard cell library) at 3.49GHz under

typical conditions. We specified that timing should be prioritized over area and power.*

This analysis shows that the range TLB adds power that is less than half (39.6%) of L2

TLB’s power. Moreover, the range TLB area is only 13% of the L2 TLB area. These results

and the high range TLB hit ratio indicate that simply increasing the number of entries in

the L2 TLB, which would also incur a cycle penalty on the critical path, at the same power

and area budget will not be as effective as the RMM design.

4.9 Related Work

Virtual memory remains an active area of research. Previous work shows that limited TLB

reach results in costly page walks that degrade application performance, often substan-

tially [27, 29, 31, 52, 66, 77]. Section 4.2 described the qualitative differences between

RMM and the most closely related work on multipage mappings (sub-blocked TLBs [111],
CoLT [96], Clustered TLBs [97]), huge pages [5, 8, 94], and direct segments [27, 52],
and Section 4.8 showed quantitatively that RMM substantially improves over them. Below

we discuss other mechanisms that help reduce the overhead of TLB misses, and how they

relate to RMM.

One common way to reduce the cost of a TLB miss is through accelerating the page

walks. Commodity processors cache Page Table Entries (PTEs) in data caches to accelerate

page walks [63]. Software-defined TLB structures, such as TSBs in SPARC [110] and

software-managed sections of TLB in Intel Itanium [1], pin entries in the TLB to improve

performance. MMU caches also reduce latency of page walks by caching intermediate levels

of the page table, skipping one or more memory references during the page walk [23,

28, 61]. RMM is orthogonal to these approaches since it eliminates some page walks

altogether. When page walks are required in RMM, these mechanisms can accelerate them.

Virtual memory overhead can also be reduced by lowering the number of TLB misses.

For instance, the hardware can prefetch PTEs into the TLB in advance of their use [29,

76, 104]. However, the effectiveness of prefetching is limited by the predictability of the

*Due to license limitations, we synthesized memory cells of both structures with D flip-flops instead of
SRAM cells.

89



4. FAST ADDRESS TRANSLATION WITH RANGES

memory access patterns. Alternatively, Barr et al. [24] proposed speculative translation

based on huge pages. Similar to prefetching, this mechanism depends on the TLB behavior

and favors sequential patterns. Last-level shared TLBs [31, 89] and cooperative TLBs [109]
increase the TLB reach and reduce the number of page walks. Similarly, Papadopoulou et

al. [95] proposed a prediction mechanism that allows all page sizes to share a single set-

associative TLB. In addition, Du et al. [48] proposed mechanisms to allow huge pages to

be formed even in the presence of retired physical pages. However, the total TLB reach

is still limited for memory intensive applications since each TLB entry maps a single page

unless ranges are used [77]. In contrast to these approaches, RMM generates and caches

translations for arbitrarily large ranges. Thus RMM is less susceptible to irregularities in

the application’s access patterns and improves address translation for large memories.

Commercial processors have also used segmentation to implement virtual memory. The

Burroughs B5000 [85] was an early adopter of pure segments. The 8086 [4] and iAPX

432 [60] processors also supported pure segmentation without paging. Later IA-32 pro-

cessors provided segments on top of paging [66], but without any translation benefits for

segments. In contrast to previous segmentation approaches, RMM combines the flexibility

and robustness of paging while enjoying the translation performance of segmentation.

Prior work also proposes virtual caches to reduce the performance and energy over-

heads of the TLB by only translating after a cache miss [26, 66, 116]. However for those

workloads that suffer many TLB misses due to poor locality, virtual caches just shift the

translation to a lower level of the cache hierarchy while increasing the complexity of the

system.

Finally, our proposed architecture resembles prior works in fine-grained memory pro-

tection [55, 113, 115], in the sense that both exploit range behavior. However, instead

of exploiting only the contiguity of fine-grained protection rights across memory regions,

RMM enhances and exploits the contiguity in memory allocation to accelerate address

translation.

4.10 Summary

In this chapter we proposed Redundant Memory Mappings, a hardware/software co-designed

implementation of virtual memory. RMM provides a novel and robust translation mecha-

90



nism, that improves performance by increasing TLB reach and reducing the cost of virtual

memory across all our workloads. RMM efficiently represents ranges of arbitrarily-many

pages that are virtually and physically contiguous and layers this representation and its

hardware redundantly to page tables and paging hardware. RMM requires only mod-

est changes to existing hardware and operating systems. The resulting system delivers a

virtual memory system that is high performance, flexible, and completely transparent to

applications.

91





5
Energy-Efficient Address Translation

5.1 Introduction

Since their invention in the 1960s [44], TLBs have been a small monolithic structure and

were able to deliver high performance. Commercial processors, however, keep on devoting

more resources to memory and address translation to meet the ever increasing memory

demands of memory intensive workloads. The common TLB organization found today

includes multi-level TLBs with support for huge pages [14, 56, 107].

TLBs have been reported to consume a significant fraction of processor energy [2, 3,

49, 71, 72, 73]. The recent growth in the complexity of TLBs has further increased their

energy consumption—a recent industrial report suggests that TLBs consume 3-13% of a

processor’s power [108].

The energy overheads associated with the TLBs come from two sources: (i) the static

energy of the chip due to TLB misses that lead to longer execution times [51, 78], and (ii)

the dynamic energy of TLB resources that are accessed to lookup the address translation

on every memory operation. However, reducing the energy of address translation is not

93



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

L1-4KB TLB

L2 TLB

L1-2MB TLB L1-1GB TLB

Figure 5.1: A common per-core two-level TLB organization that supports multiple page sizes (4 KB,
2 MB, and 1 GB) through separate L1 TLBs. All L1 TLBs are accessed on every memory operation,
increasing the dynamic energy spent in address translation.

straightforward. When the static energy of the chip decreases due to fewer TLB misses, the

dynamic energy of the TLBs increases due to the augmented complexity that ensures the

low TLB miss ratio.

Prior research focused on reducing the dynamic energy of TLBs through various tech-

niques, such as optimizing TLB circuits [71], partitioning TLBs [21, 38, 41, 82], filtering

accesses to TLBs [22, 38, 49], dynamically resizing monolithic TLBs [20], virtual caches

to access TLBs on L1 cache misses [26, 66, 116], and selectively avoiding TLB accesses

[72, 73, 74]. However, these energy optimization techniques do not take into account

hardware support for increasing the TLB reach (e.g., huge pages and range translations),

that primarily targets improving performance and reducing static energy overheads due to

TLB misses. Only the recent work on TLBPred [95] considers huge pages for improving the

dynamic energy efficiency in TLBs. The performance of TLBPred depends on huge pages

successfully reducing misses, but prior work shows that huge pages can still incur high

performance overheads due to TLB misses [27, 28, 77]. In response, researchers proposed

techniques that further increase the TLB reach [27, 51, 78, 96, 97, 111] to overcome the

limitations of huge pages.

The goal of this work is to improve the energy efficiency of address translation in the

presence of mechanisms that increase TLB reach.

Towards that goal, we perform energy characterization of the address translation path.

We use a common TLB organization, found in Intel x86-64 processors as our baseline, that

includes a per-core two-level TLB hierarchy, with a separate set associative L1 TLB for each

supported page size, e.g., for 4 KB, 2 MB, and 1 GB pages, as shown in Figure 5.1. Our

analysis shows that the L1 TLBs are the primary source of dynamic energy spent in address

translation. We also find that page walks consume significant amount of energy with 4 KB

94



pages. While huge pages and other techniques that increase TLB reach [27, 51, 78, 96, 97,

111] reduce the energy due to page walks, we observe that the “innocent” L1 TLB remains

the dominant source of dynamic address translation energy, because separate L1 TLBs are

accessed on every memory operation.

Our approach for providing energy-efficient address translation is driven by the following

key observation: simply accessing all L1 TLB resources might not improve performance, be-

cause not all L1 TLBs contribute the same to hits, especially when techniques that increase

the TLB reach are employed.

We propose Lite, an opportunistic mechanism that targets commodity processors with

TLB support for huge pages. Lite monitors the utility of ways in the L1 TLBs for each

page size based on the distance of TLB hits from the least-recently-used (LRU) position

in an interval fashion, similar to the accounting cache [47] and utility-based cache parti-

tioning [102]. At the end of each interval, Lite evaluates the utility of L1 TLBs. In case

the utility of some active ways is insignificant, Lite downsizes each L1 TLB individually by

disabling ways [16]. Lite thus accesses fewer ways in the L1 TLBs, saving energy at the

cost of introducing a few additional misses. The resulting TLBLi te organization requires

minimal modifications and opportunistically reduces L1 TLB energy with negligible impact

on performance.

We additionally propose RMMLi te to further augment the potential of Lite for reducing

the energy in L1 TLBs while at the same time reducing both the energy and performance

overheads due to L1 TLB misses. RMMLi te builds on Redundant Memory Mappings (RMM)

that was presented in Chapter 4. and considered only L2-range TLBs for increasing the

TLB reach and reducing the number of page walks. In this chapter, we introduce to RMM

an L1-range TLB and add the Lite resizing mechanism to the L1-page TLBs. The L1-range

TLB is accessed in parallel with the L1-page TLBs and is small (e.g., 4 entries) in order to

meet the tight timing requirements of L1 TLBs, yet the L1-range TLB is powerful. Each

range TLB entry can hold a mapping of unlimited size, that enables the L1-range TLB to

enjoy a high hit ratio. Therefore, Lite downsizes L1-page TLBs more aggressively without

affecting performance. Overall, RMMLi te improves both energy efficiency and performance

of address translation.

To evaluate the proposed TLBLi te and RMMLi te designs, we developed a TLB simulator

based on Pin [88], pagemap [10], and Cacti [83] and we ran various TLB intensive work-

95



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

loads from Spec2006 [59], BioBench [15], and Parsec [33]. Our findings show that TLBLi te

reduces the dynamic energy spent in address translation by 23% while slightly increas-

ing the cycles spent in TLB misses (from 16.6% to 17.2%) compared to huge pages [5].
RMMLi te reduces the dynamic energy spent in address translation by 71% on average com-

pared to huge pages. Above the near-zero L2 TLB misses from RMM, RMMLi te further

reduces the overhead from L1 TLB misses by 99%.

In summary, the main contributions of this chapter are:

• We characterize the dynamic energy spent in address translation, and identify the L1

TLBs and page walks as the most significant sources.

• We show that simply accessing all L1 TLBs might not improve performance in the

presence of huge pages.

• We propose Lite to reduce the energy spent in L1 TLBs by opportunistically disabling

resources with low impact on performance, and apply it to a standard TLB hierarchy

with support for huge pages (TLBLi te).

• We propose RMMLi te, that adds to RMM an L1-range TLB and Lite, to reduce fur-

ther the energy and performance overheads spent in L1 TLBs leveraging the efficient

representation of range translations.

The organization of the rest of the chapter is as follows: Section 5.2 provides back-

ground information on address translation, Section 5.3 analyzes the sources of dynamic

energy spent in address translation, Section 5.4 quantifies our key observation and presents

the proposed designs, Section 5.5 describes our evaluation methodology, Section 5.6 pro-

vides the results, Section 5.7 discusses related work, and Section 5.8 summarizes this chap-

ter.

5.2 Background

This section highlights some trends for improving TLB performance, and then outlines

some characteristics that are found in commodity processors. Note that although we focus

on the x86-64 architecture, the proposed solutions apply to other architectures that include

TLB support for huge pages.

96



5.2.1 Trends in TLBs

Two-level TLBs form a common organization for address translation in today’s proces-

sors [56, 107]. The L1 TLB is usually small (e.g., 64 entries) and features a very fast

search operation (1-2 cycles), while the L2 TLB is usually larger (e.g., 512 entries) and

holds more translations at the cost of increased access latency (∼7 cycles [63]).

Huge Pages [5, 8] increase the TLB reach and reduce the performance overhead of page

walks [27, 28, 77, 95] by mapping a large fixed size region of memory with a single TLB

entry [61, 91, 101, 107]. The hardware support for huge pages usually includes either a

separate set associative L1 TLB for each page size, as in Intel processors [56], or a single

fully associative L1 TLB that supports both 4 KB and huge pages, as in SPARC and AMD

processors [14, 107]. These two approaches dominate because supporting all page sizes

in a single set associative TLB is not straight-forward: the page size defines the index

bits to access the TLB, but the page size is unknown during the TLB lookup time [95,

112]. Separate set associative TLBs are generally more energy-efficient as compared to

fully associative TLB. As we focus on energy, our baseline in this work assumes the more

efficient separate set associative L1 TLBs.

5.2.2 Summary

Table 5.1 overviews the details of the per-core TLB hierarchy for the recent Sandy Bridge

and Haswell, and the forthcoming Broadwell x86-64 processors. We observe that all these

processors have a two-level TLB organization, with support for various pages sizes by sep-

arate individual L1 TLBs. This data suggests their recipe for improving TLB performance

consists of having separate L1 TLBs for various page sizes, and increasing the size of the

L2 TLB which is off the critical path.

To summarize, the TLB resources become larger and more complex to meet the increas-

ing TLB demands of memory intensive workloads. However the performance and static

energy improvements come at the cost of accessing multiple structures and increasing dy-

namic energy. Our approach reduces the dynamic energy spent in address translation by

leveraging mechanisms that increase TLB reach, such as huge pages and range translations,

making the case for energy-efficient address translation.

97



5.
E
N

E
R
G

Y
-E

FFIC
IE

N
T

A
D

D
R
E
SS

T
R
A

N
SLA

T
IO

N

L1 DTLBs L2 DTLBs

Sandy Bridge / Haswell / Broadwell Sandy Bridge Haswell Broadwell
Page-size Entries Assoc. Page-size Entries Assoc. Page-size Entries Assoc. Page-size Entries Assoc.

4 KB 64 4-way 4 KB 512 4-way 4 KB/2 MB 1024 8-way 4 KB/2 MB 1536 12-way2 MB 32 4-way 2 MB —
1 GB 4 fully 1 GB — 1 GB — 1 GB 16 4-way

Table 5.1: Details of the private, per-core, data TLB hierarchy for the three latest Intel processor architectures.

98



5.3 Energy Characterization

In this section we analyze the sources of dynamic energy spent in address translation. We

first provide an overview of our methodology, and then we analyze where the dynamic

energy is spent with 4 KB pages, huge pages, and RMM.

5.3.1 Methodology Overview

For the purposes of this study, we developed a detailed TLB simulator based on Pin [88],
pagemap [10], and Cacti [83]. We model a private, per-core, two-level TLB organization

backed by an MMU cache. The configuration and the parameters are based on those of an

x86-64 Intel Sandy Bridge processor and summarized in Table 5.1.

We assume the existence of a mechanism that statically disables accesses to TLB re-

sources that are not used. For instance, the L1-2MB TLB and L1-1GB TLB could be dis-

abled for a running process that uses only 4 KB pages and no 2 MB or 1 GB pages. Such a

mechanism could be easily implemented in hardware; a mask would enable lookups in the

L1-2MB TLB only after a 2 MB page table entry has been fetched by a page walk. In this

study we assume the existence of such mechanism, and thus unused TLB structures do not

account for the dynamic energy overhead.

We fast-forward execution for 50 billion instructions and then simulate for the next 50

billion instructions. More details about our methodology can be found in Section 5.5.

5.3.2 Where is the energy spent?

Figures 5.2a and 5.2b break down the dynamic energy spent in address translation and

the cycles spent in L1 and L2 TLB misses for various workloads with the following three

configurations: (i) 4KB supports 4 KB pages, (ii) THP supports both 4 KB and 2 MB pages

with transparent huge pages [5], and (iii) RMM supports 4 KB, 2 MB pages, and range

translations with a 32-entry fully associative L2-range TLB [78]. We assume optimistically

that all page walk references hit always in the L1 cache of the memory hierarchy with re-

spect to the dynamic energy, because additional cache misses in the memory hierarchy can

greatly hurt energy due to accessing more and larger caches. The results are normalized to

the dynamic energy spent with 4KB pages per workload.

99



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

0%

20%

40%

60%

80%

100%

120%

140%

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal geomean

D
yn

am
ic

 E
n

e
rg

y 
(%

) 

L1-4KB TLB L1-2MB TLB L2-4KB TLB L2-range TLB MMU cache Page walks

(a) Dynamic energy spent in address translation (%)

0%

20%

40%

60%

80%

100%

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

4
K

B
TH

P
R

M
M

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal geomean

C
yc

le
s 

sp
e

n
t 

in
 T

LB
 m

is
se

s 
(%

) 

L1 TLB misses L2 TLB misses

(b) Cycles spent in L1 and L2 TLB misses (%)

Figure 5.2: Dynamic energy spent in address translation (a) and cycles spent in TLB misses (b)
for the execution of 50 billion instructions with three configurations: (i) 4KB supports only 4 KB
pages, (ii) THP supports both 4 KB and 2 MB pages with transparent huge pages [5], and (iii)
RMM supports 4 KB, 2 MB pages, and range translations with an L2-range TLB [78]. The results
are normalized to those with 4 KB pages per workload. The two major sources of dynamic energy
overhead with 4 KB pages are the L1 TLBs and the page walks. THP and RMM reduce the energy
and cycles spent in page walks, but increase the total dynamic energy spent in address translation
because multiple L1 TLBs are accessed on every memory operation.

100



We identify two major sources of dynamic energy overhead with 4KB and THP config-

urations:

1. L1 TLBs energy consumption. To make address translation as fast as possible, the

processor accesses all L1 TLB structures, i.e., the L1-4KB TLB, the L1-2MB TLB, and

the L1-1GB TLB, in parallel on every memory operation. Consequently, the L1 TLBs

consume 60% and 91% of dynamic energy with 4KB and THP. We further identify

the L1-4KB TLB as the most dominant source of dynamic energy (50% of dynamic

energy with THP) due to its larger size compared to the other L1-page TLBs.

2. Page walk energy consumption. On a TLB miss at every TLB level, the page table

hardware walks the page table, which requires multiple memory accesses (e.g., 4,

3, and 2 memory accesses for 4 KB, 2 MB, and 1 GB pages) that incur performance

and energy penalties. This source of energy overhead becomes more prevalent (i)

for applications that suffer frequently from page walks, such as cactusADM and mcf,

and (ii) as the page walk references hit less in the L1 cache. Figure 5.3 quantifies the

impact of page walk locality in the dynamic energy as the L1 cache hit ratio for the

page walk references reduces from 100% (all references hit in L1 cache) to 0% (all

references miss in L1 cache, but hit in L2 cache). The dynamic energy may increase

by up to 91% for mcf, due to poor page walk locality in the cache hierarchy.

5.3.3 Do huge pages help?

We observe that THP reduces the cycles spent in TLB misses by 83% on average com-

pared to 4KB. However, THP affects the dynamic energy of address translation in a less

straightforward way compared to performance. With THP, the dynamic energy of address

translation decreases only for cactusADM and mcf, and increases for all other workloads.

This happens because THP reduces the number of page walks and their portion in dynamic

energy along with static energy by completing the workload faster, as explained next in

Section 5.3.6. However, this saving occurs at the cost of accessing one extra L1 TLB for

2MB pages on every memory operation, which in turn increases the dynamic energy spent

for address translation in the L1-page TLBs. Overall, THP increases the dynamic energy

spent in address translation by up to 43% for canneal and by 4% on average, compared to

4 KB pages.

101



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

0%

50%

100%

150%

200%

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal geomean

D
yn

am
ic

 E
n

er
gy

 (
%

) 

100% hit ratio in L1 cache 50% hit ratio in L1 cache 0% hit ratio in L1 cache

Figure 5.3: Sensitivity analysis of the dynamic energy spent in address translation, ranging the L1
cache hit ratio from 100% (all accesses hit in L1 cache) to 0% (all accesses miss in L1 cache but hit
in L2 cache) for the page walk references with 4 KB pages. The locality of page walks significantly
affects the dynamic energy.

5.3.4 Does RMM help?

The RMM configuration has the same TLB organization as THP, including a 32-entry L2-

range TLB. In addition, the RMM configuration assumes perfect eager paging, i.e., the oper-

ating system perfectly allocates all contiguous pages of virtual address space to contiguous

physical pages. We observe that RMM eliminates almost completely the page walks, and

reduces by 96% the cycles spent in TLB misses compared to 4KB. However, RMM incurs

high dynamic energy overhead (only 4% less on average compared to 4KB), as the access

pattern to the L1 TLBs is similar to THP.

5.3.5 Do larger TLB organizations help?

Our energy characterization here uses as baseline the TLB organization of an x86-64 Intel

Sandy Bridge processor. However, as we explained in Section 5.2, newer processors in-

crease TLB reach—by providing more L2 TLB entries that may hold either 4 KB or 2 MB

pages—but the L1 TLBs have remained stagnant (Table 5.1). Thus, the energy and perfor-

mance results for such larger TLB organizations would look similar to those for huge pages:

(i) lower dynamic energy and performance overheads due to page walks (because of the

increased L2 TLB reach), but (ii) still high dynamic energy overhead due to the lookups in

the separate L1 TLBs.

102



5.3.6 Discussion

The total energy consumption is the sum of static and dynamic energy. Since huge pages

and range translations (and other techniques that increase TLB reach [27, 51, 96, 97,

111]) enable most applications to execute faster, they also decrease the static energy of the

system. However, optimizing for energy efficiency requires addressing both dynamic and

static sources of energy. Thus, in addition to reducing the execution cycles and the static

energy, in this thesis we focus on reducing the dynamic energy spent in address translation.

5.4 Efficient Address Translation

An ideal solution for energy-efficient address translation would reduce the energy spent

in L1 TLB accesses and page walks with negligible impact on performance. To provide

energy-efficient address translation, we propose:

• Lite, a mechanism that monitors the utility of ways in all L1-page TLBs and adap-

tively changes their size with way-disabling [16]. The resulting TLBLi te organization

opportunistically reduces L1 TLB energy with negligible impact on performance, and

requires minimal modifications to commodity processors.

• RMMLi te, a novel TLB organization that leverages the powerful representation of

range translations in RMM [78]. RMMLi te adds an L1-range TLB and the Lite mech-

anism to RMM. The high hit ratio in the L1-range TLB allows Lite to further reduce

the energy spent in L1-page TLBs and reduce significantly the total energy and per-

formance overheads of L1 TLB misses.

5.4.1 Opportunity

Our approach is based on the question: “Do we need to access all L1 TLB resources on every

memory operation?” For example, if the hits in L1 TLBs are dominated by those entries for

2 MB pages, then the L1-4KB TLB could be dynamically downsized to reduce the dynamic

energy spent in L1 TLBs without affecting performance, and vice versa.

To quantify our hypothesis, we profile the performance of L1 TLBs with transparent

huge pages enabled [5], when a smaller L1-4KB TLB with fixed size is employed during

103



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

10
-3

10
-2

10
-1

10
0

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

32

32 / 64

Base 64 32 16

(a) astar

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

16 / 32 / 64

Base 64 32 16

(b) cactusADM

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

16 / 32 / 64

Base 64 32 16

(c) GemsFDTD

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

L
1

 T
L

B
 M

P
K

I

Execution time

16

32 / 64

Base 64 32 16

(d) mcf

Figure 5.4: L1 TLB misses per thousand instructions (MPKI) (aggregated for all L1 TLBs) during the
execution of 50 billion instructions for astar, cactusADM, GemsFDTD, and mcf, with the following
four configurations: (i) Base supports only 4 KB pages (same as 4KB in Section 5.3), (ii) 64 supports
both 4KB and 2 MB pages (same as THP in Section 5.3), (iii) 32 has the same configuration as 64 but
with 32-entry 2-way L1-4KB TLB, and (iv) 16 has the same configuration as 64 but with 16-entry
direct-mapped L1-4KB TLB. We observe that most workloads exhibit similar performance even with
smaller L1-4KB TLBs in the presence of huge pages, but there is no single TLB configuration that is
optimal for all workloads and during all execution time.

104



10
-1

10
0

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

Base 64 32 16

64

(a) omnetpp

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

Base 64 32 16

16 / 32 / 64

(b) zeusmp

10
-2

10
-1

10
0

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

Base 64 32 16

32 / 64

(c) mummer

10
0

10
1

10
2

L
1

 T
L

B
 M

P
K

I

Execution time

Base 64 32 16

64

(d) canneal

Figure 5.5: L1 TLB misses per thousand instructions (MPKI) (aggregated for all L1 TLBs) during the
execution of 50 billion instructions for omnetpp, zeusmp, mummer, and canneal, with the following
four configurations: (i) Base supports only 4 KB pages (same as 4KB in Section 5.3), (ii) 64 supports
both 4KB and 2 MB pages (same as THP in Section 5.3), (iii) 32 has the same configuration as 64 but
with 32-entry 2-way L1-4KB TLB, and (iv) 16 has the same configuration as 64 but with 16-entry
direct-mapped L1-4KB TLB. We observe that most workloads exhibit similar performance even with
smaller L1-4KB TLBs in the presence of huge pages, but there is no single TLB configuration that is
optimal for all workloads and during all execution time.

105



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

Interval nth

End of interval
The Decision Algorithm

resizes the L1 TLBs

Interval n-1th Interval n+1th

During interval
(i) Count misses in L1 TLBs

(ii) Track recency information
for hits in the L1 TLBs

Figure 5.6: Lite divides the execution time of an application into intervals. During each interval,
Lite tracks the performance of L1 TLBs. At the end of each interval, Lite decides whether to resize
the L1 TLBs.

the execution. We assume that the L1-4KB TLB becomes smaller by reducing ways in

powers-of-two while the number of sets remains constant. Figures 5.4 and 5.5 show the

misses in the L1 TLBs per thousand instructions (MPKI) during the execution of 50 billion

instructions. Configurations 64, 32, and 16 employ a 64-entry 4-way, a 32-entry 2-way, and

a 16-entry direct-mapped L1-4KB TLB, respectively. The L1-2MB TLB is 32-entry 4-way for

all configurations.

We find that most workloads exhibit similar performance even with smaller L1-4KB

TLBs in the presence of huge pages. However, there is no single TLB configuration that

is optimal for all workloads. For example, astar and mcf require configuration 16, while

cactusADM, GemsFDTD, and mummer require configuration 32, to provide similar perfor-

mance as with configuration 64 that runs with all L1 TLB resources enabled. In addition,

a single TLB configuration is often not the optimal during the workload’s total execution

due to phased behavior. For example, astar, GemsFDTD, and mcf require different config-

urations to preserve similar performance. Thus, a mechanism that dynamically resizes the

L1 TLBs is required to adapt to the workload.

5.4.2 The Lite Mechanism

Lite dynamically adapts the size of L1 TLBs to reduce their dynamic energy. Lite consists

of three components: (i) the monitoring mechanism that tracks the actual performance of

L1 TLBs and estimates the utility of all L1 TLBs, (ii) the decision algorithm that decides

whether to change the size of the L1 TLBs, and (iii) the reconfiguration mechanism that

configures the size of L1 TLBs.

106



Monitoring TLBs

Lite tracks the performance of the L1 TLBs in the actual-misses-counter for an interval. The

counter is increased on every translation lookup that misses in L1 TLBs of that core and

that triggers an access to the L2 TLB.

Lite estimates the cost of way-disabling by tracking the utility of all active ways for

each L1 TLB in powers-of-two. Lite leverages the LRU replacement policy and relies on the

distance of TLB hits from the LRU position in each set to estimate the utility of ways, similar

to the accounting cache [47] and utility-based cache partitioning [102]. Lite introduces

lru-distance-counters per L1 TLB. Since Lite disables ways in powers-of-two, we only need

[log2(n)+1] lru-distance-counters for each n-way set-associative L1 TLB. Figure 5.7 shows

Lite for an 8-way L1 TLB. The corresponding lru-distance-counter is increased on every L1

TLB hit: a hit with distance 7, 6, 4-5, or 0-3 from the LRU position increases the lru-

distance-counters [0], [1], [2], or [3], correspondingly. In this way, each lru-distance-

counter holds the number of TLB misses that would have occurred, if those ways were

disabled. Note that when less ways are active, the corresponding lru-distance-counters are

not used, because there are no tags to keep track of activity.

Finally, Lite keeps the actual number of L1 TLB misses of the previous interval in the

previous-misses-counter to respond to TLB performance degradation, as explained next.

The Decision algorithm

Algorithm 5.1 shows the simplified pseudocode for the decision algorithm of Lite. Lite

resizes all L1-page TLBs (4KB, 2MB, and 1GB) of each core’s TLB organization separately.

The algorithm uses the number of L1 TLB misses per thousand instructions (MPKI) to

estimate the performance of the L1 TLBs and the utility of the active ways in each L1 TLB.

Disabling ways. At the end of each interval, Lite estimates for each L1-page TLB (4KB,

2MB, and 1GB) the potential MPKI if way disabling had been applied to the currently active

ways. To achieve this, Lite uses the actual-misses-counter and the lru-distance-counters. In

case the potential MPKI for fewer ways does not significantly increase compared to the

actual MPKI, based on a threshold ε, then Lite disables those ways for that L1 TLB. During

next interval, the resized L1 TLBs will save dynamic energy on every memory access.

Activating ways. Lite profiles only the active ways and therefore can reason only for them.

107



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

L1 TLB
8-way

Hit

Y

N

0 1 2 3

LRU-distance-counters

If
 m

is
s 

in
 a

ll 
L1

 T
LB

s
a
cc

e
ss

 t
h

e
 L

2
 T

LB
s

7   6   5   4   3   2   1   0 

translation request
MRU LRU

0 1 2 3
#misses with
4-ways active

#misses with
2-ways active

#misses with 1-way active

#misses with 0-ways active

hit distance

Figure 5.7: Lite introduces lru-distance-counters per L1 TLB to track the utility of ways [47, 102].
The corresponding counter is increased on each L1 TLB hit depending on the distance from the LRU
position. At the interval end, each counter holds the number of L1 TLB misses that would have
occurred, if those ways were disabled.

However, Lite is unaware whether more than the active ways would be really useful. For

example, consider an 8-way L1 TLB that currently runs with 4 active ways; Lite sees that

the potential MPKI does not significantly change whether using 4 or 2 active ways, and

decides to use 2 ways. However, if all 8 ways were active, the potential MPKI could be

significantly lower and Lite would have not decided to apply way-disabling. The problem

becomes even more prevalent when the 1-way configuration is used, as no alternatives are

evaluated. To respond in such cases, Lite randomly activates all the ways in all L1 TLBs

based on a probability. The randomly introduced variability allows also Lite to avoid pa-

thological cases in which the decisions synchronize with non-representative phases of the

application, that may lead to poor decisions.

Finally, Lite activates all ways in the L1 TLBs when their performance degrades, e.g.,

when the application experiences phased TLB behavior, or the operating system breaks

huge pages to 4 KB pages to respond to memory pressure. Lite records the actual MPKI of

the previous interval, and compares it to the actual MPKI of the current interval. In case

the MPKI surpasses the defined threshold ε, Lite activates all ways in the L1 TLBs.

Threshold. The threshold ε can either be a relative percentage increase or an absolute

value increase of MPKI with respect to the reference value, i.e., the MPKI with all ways ac-

tivated in L1 TLBs. The choice depends on the reference value itself. A relative percentage

is preferable for high reference values (e.g., more than 1 MPKI) to control Lite’s impact.

108



ALGORITHM 5.1: Pseudocode of Lite’s decision algorithm.

// at the end of each interval;
compute the actual_mpki based on actual_misses_counter;
if (random probability is triggered) then

activate all ways in L1 TLBs;
else if (actual_mpki - previous_mpki ≥ ε) then

activate all ways in L1 TLBs;
else

potential_misses = actual_misses;
for each L1 TLB of that core do

for (i = log2(active_ways); i ≥ 1; i–) do
potential_misses += lru_distance_counter[i];
compute the potential_mpki based on potential_misses;
if (potential_mpki - actual_mpki < ε) then

disable half of the active ways;
else

potential_misses -= lru_distance_counter[i];
break;

end
end

end
end
if (previous_mpki > actual_mpki) then

previous_mpki = actual_mpki;
end

An absolute value is preferable for lower reference values, because even though the MPKI

increases with respect to the reference value, the MPKI remains still negligible and, thus,

Lite correctly decides to disable ways.

Reconfiguring TLBs

Lite reconfigures the L1 TLBs through way-disabling [16]. Way-disabling requires that

the memory structure be partitioned into subarrays. We assume that such partitions are

either already present in L1-TLBs for both timing and energy reasons, or can be easily

implemented with minor circuit modifications. With way-disabling, only the active ways

are searched in each TLB lookup, and thus the dynamic energy spent in address translation

reduces.

109



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

Consistency. TLBs are read-only structures and do not hold dirty data. Thus, when Lite

deactivates ways in a TLB, no write-back operations are necessary. Lite only invalidates

translations in the disabled ways, so that when these ways are re-activated, they will not

hold any stale translations.

5.4.3 RMMLi te for Energy-Efficient TLBs

We also propose to add Lite and an L1-range TLB to Redundant Memory Mappings (RMM)

[78] to further reduce the energy and performance overheads of L1 TLBs. As described

in Chapter 4, RMM uses range translations, an efficient, alternative representation of ar-

bitrarily large ranges of pages that are contiguously allocated in both virtual and physical

address space. RMM targets reducing the number of page walks and employs an L2-range

TLB that is accessed in parallel with the L2-page TLB.

RMMLi te augments the RMM with a small L1-range TLB and adds the Lite mechanism

to the L1-page TLBs. The L1-range TLB is accessed on every memory operation in parallel

with the L1-page TLBs. The L1-range TLB is fully associative and very small, e.g., 4 entries

like the small L1-1GB TLB, so that it meets the tight timing requirements of L1 TLBs.

The functionality and organization of L1-range TLB is the same as the originally proposed

L2-range TLB, i.e., it caches a small number of range translations. Figure 5.8 shows the

proposed TLB hierarchy for energy-efficient address translation. On an L1-range TLB hit,

the address translation is obtained fast. On an L2-range TLB hit (after a miss in L1 TLBs),

the hit range translation entry is copied to the L1-range TLB, in addition to copying the

corresponding page table entry in the L1-page TLBs as in RMM. Note that the L1 TLBs for

huge pages could either be simply disabled by the naive mechanism that was discussed in

Section 5.3.1, or completely replaced by the (possibly larger) L1-range TLB.

The L1-range TLB itself increases the dynamic energy spent in L1 TLB accesses, because

one more TLB is accessed on every memory operation. In addition, the L1-range TLB

performs range checks instead of equality checks as in translation for fixed size memory

regions. Thus, an L1-range TLB access costs more than an L1-page TLB access in terms of

energy. However, each L1-range TLB entry maps an arbitrarily large range of contiguously

allocated pages. The L1-range TLB can achieve higher hit ratio compared to page TLBs.

This increased hit ratio in the L1-range TLB reduces further the utility of the L1-page

TLBs. In response, Lite disables ways more aggressively in the L1-page TLBs compared to

110



[V47 V46 ......  ... V12] [V11 ... V0]

L2-Range-TLBL2-4KB-TLB

Page+Range
Table Walk

Hit
Y N

[P47 P46 ......  ... P12] [P11 ... P0]

Hit
YN

L1-Range-TLBL1-4KB-TLB

Hit
Y N

Hit
YN

Figure 5.8: RMMLi te introduces an L1-range TLB and Lite (not shown) to the L1-page TLBs, in
addition to the architectural support of RMM.

when only huge pages are supported, and reduces the total dynamic energy due to L1 TLB

accesses.

Thus, RMMLi te makes the case for energy-efficient address translation, reducing further

the energy overheads at all levels while improving also performance.

5.4.4 Discussion

Fully associative TLBs. We described Lite in the context of TLB organizations that support

huge pages with separate set associative L1 TLBs [56], where each L1 TLB holds mappings

of a single size. A different approach for huge page support is having a single fully associa-

tive L1 TLB that holds mappings of all page sizes [14, 107]. The same Lite mechanism for

111



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

reducing dynamic energy applies to such TLB organizations. Although there is no notion of

ways in a fully associative TLB, Lite clusters the distance of TLB hits from the LRU position

as if there were ways, and reduces the TLB size in powers-of-two.

Lite’s Cost. We did not analyze additional circuitry overheads for Lite, because the cost of

computing the LRU distance and incrementing the corresponding counter (on a TLB hit)

should be much lower than looking up the address (independently of a hit or miss) [47].
In addition, when the TLB operates with the minimum configuration (e.g., with only 1-way

active), the additional circuits of Lite are not used and do not affect dynamic energy; this

case is responsible for 63.7% of L1 TLB lookups with RMMLi te (Table 5.5).

5.5 Methodology

This section describes our simulation infrastructure and benchmarks.

Simulation infrastructure. We developed a Memory Management Unit (MMU) simulator

based on Pin [88], instrument all memory operations, and simulate various TLB configura-

tions. Because TLB studies require longer instruction counts than other processor compo-

nents for applications to realistically stress the TLBs, slow cycle-accurate simulators make

for infeasibly long simulation times. Thus, we developed our own simulation infrastructure

that focuses on the address translation path based on Pin, pagemap, and Cacti. Note that

we avoid using BadgerTrap [51] here because we need to instrument all memory opera-

tions and simulate L1 TLB accesses, while BadgerTrap allows instrumenting only the L2

TLB misses of the host machine, as explained in Section 4.7.

For a simulated L2 TLB miss, we access the real page table of the running process

through pagemap [10] to determine whether it is a 4 KB page, a 2 MB page, or a range

translation entry and its boundaries. Our simulation infrastructure and the simulated appli-

cations run on a host with Linux kernel v3.15.5. To deduce the number of required memory

references per page walk, we simulate a per-core MMU cache based on Intel’s Paging Struc-

ture Caches [61]. The MMU cache consists of three individual structures, each of which

holds different levels of the page table (PDE, PDPTE, and PML4 levels). These structures

are all accessed in parallel after an L2 TLB miss. The configuration details of the MMU

cache is based on [28] and summarized in Table 5.2.

112



Component Size Assoc. Read Write Leakage
(entr.) (pJ) (pJ) (mW)

L1-4KB TLB

64 4-way 5.865 6.858 0.3632
32 2-way 1.881 2.377 0.1491
16 1-way 0.697 0.945 0.0636

L1-2MB TLB

32 4-way 4.801 5.562 0.1715
16 2-way 1.536 1.924 0.0703
8 1-way 0.568 0.764 0.0295

L1-range TLB 4 fully 1.806 1.172 0.1395

L2-4KB TLB 512 4-way 8.078 12.379 1.6663

L2-range TLB 32 fully 3.306 1.568 0.2401

MMU-cachePDE 32 2-way 1.824 2.281 0.1402
MMU-cachePDPT E 4 fully 0.766 0.279 0.0500
MMU-cachePM L4 2 fully 0.473 0.158 0.0296

L1-Cache 32KB 8-way 174.171 186.723 13.3364

Table 5.2: Dynamic energy per read operation and write operation, and leakage power with 32 nm
process technology for the memory structures that participate in address translation, based on
Cacti [83].

We use Cacti [83] with 32 nm process technology to estimate the dynamic energy of

the memory structures that participate in address translation. To estimate the dynamic

energy of an N-entry range TLB, we use Cacti with the configuration of a regular fully

associative page TLB, but with 2× more tag bits in order to account for the effect of the

double comparison that takes place in the range TLB. To estimate the dynamic energy of a

page TLB with some ways disabled (e.g., 64-entry 4-way, with 2 ways disabled), we use the

dynamic energy results from Cacti for the resulting smaller structure (e.g., 32-entry 2-way

TLB). Table 5.2 summarizes the results from Cacti for all simulated structures.

We couple the results from our MMU simulator with those from Cacti. This simulation

infrastructure computes misses and hits per memory structure, and estimates the dynamic

energy and the cycles spent in L1 and L2 TLB misses.

Configurations. We simulate the following configurations: (i) 4KB supports only 4 KB

pages. (ii) THP supports 4 KB and 2 MB pages through transparent huge pages [5], and is

the state of the practice for reducing the performance overhead of L1 and L2 TLB misses.

(iii) TLBLi te uses the same TLB organization with THP, but also includes the Lite mechanism

in the L1-4KB TLB and L1-2MB TLB. (iv) RMM supports 4 KB, 2 MB pages, and an L2-range

113



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

L1-4KB TLB
64 entries

4-way assoc.

L2-4KB TLB
512 entries

4-way assoc.

(a) 4KB

L1-4KB TLB
64 entries

4-way assoc.

L2-4KB TLB
512 entries

4-way assoc.

L1-2MB TLB
32 entries

4-way assoc.

(b) THP & TLBLi te

L1-4KB/2MB TLB
64 entries

4-way assoc.

L2-4KB/2MB TLB
512 entries

4-way assoc.

(c) TLBPP

L1-4KB TLB
64 entries

4-way assoc.

L2-4KB TLB
512 entries

4-way assoc.

L1-2MB TLB
32 entries

4-way assoc.

L2-Range TLB
32 entries
fully assoc.

(d) RMM

L1-4KB TLB
64 entries

4-way assoc.

L2-4KB TLB
512 entries

4-way assoc.

L1-Range TLB
4 entries

fully assoc.

L2-Range TLB
32 entries
fully assoc.

(e) RMMLi te

Figure 5.9: TLB configurations.

TLB. (v) TLBPP is a perfect implementation of TLBPred [95]. TLBPred is a state of the art

scheme that seeks to improve the energy efficiency of TLBs by supporting different page

sizes in a single set associative TLB. TLBPred uses prediction to decide whether a reference

goes to a huge page or not, in order to choose the appropriate TLB index bits and access

the TLB. Our perfect implementation of TLBPred , named TLBPP , assumes a perfect predictor

with no energy overhead that always chooses the correct page size per lookup operation.

In addition, TLBPP mixes 4 KB and 2 MB pages in both L1 and L2 TLBs. (vi) RMMLi te

supports 4 KB pages and range translations in both L1 and L2 TLBs, and includes the Lite

mechanism in the L1-4KB TLB.

We set the threshold ε of Lite to 12.5% (1/8th) relative increase in MPKI for TLBLi te and

as a 0.1 absolute increase for RMMLi te, i.e., Lite disables ways if the predicted MPKI remains

less than 12.5% or by 0.1 compared to the MPKI with fully enabled resources for TLBLi te

and RMMLi te. Lite reduces the L1 TLBs down to 1-way active but never turns off completely

an L1 TLB in our experiments. Finally, RMM and RMMLi te use perfect eager paging, i.e.,

114



Energy Model

TLBs / MMUcache ET LB/M MUcache = A∗ Eread +M ∗ Ewrite

Page walks Epage_walks = Mem ∗ EreadL1_cache

Total energy Etotal =
n
∑

i=1
(ET LBi/M MUcachei) + Epage_walks

Performance Model

L1 TLB hits C yclesL1T LBmisses = 0
(all L1 TLBs are accessed in parallel with L1 dcache)

L1 TLB misses C yclesL2T LBmisses = ML1T LBs ∗ 7
(all L2 TLBs are accessed in parallel)

L2 TLB misses C yclesL2T LBmisses = ML2T LBs ∗ 50

Total cycles C yclesT LBmisses = C yclesL1T LBmisses + C yclesL1T LBmisses

A: Accesses M: Misses
Mem: Memory references to fetch PTEs (up to 4)

Table 5.3: Dynamic energy and performance models.

the operating system perfectly allocates all contiguous pages of virtual address space to

contiguous physical pages. Our actual eager paging implementation generates few and

large range translations that map most of a process’s address space for applications that

run natively in Linux, as described and shown in Chapter 4. However, this is not always

the case for our actual eager paging implementation with applications that run on top of

Pin because: (i) we had to slightly modify eager paging so that Pin-based applications run

properly at the cost of allocating less memory requests eagerly, (ii) we could not use the

TCMalloc library that further increases the contiguity in range translations because some

Pin-based applications were crashing, and (iii) because Pin introduces an extra level of

indirection between the application and the operating system, including internal memory

management operations, that further affect the quality of ranges. Since in this chapter

we focus on micro-architectural techniques that improve the energy-efficiency of address

translation, we hence abstract away the allocation support for range translations. However,

we provide an analysis of the impact of eager paging on energy and performance at the end

of Section 5.6. Figure 5.9 summarizes the simulated configurations and the corresponding

parameters.

115



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

Suite Description Application Memory

SPEC 2006

astar 350 MB
compute & memory cactusADM 690 MB
intensive single-threaded GemsFDTD 860 MB
workloads mcf 1.7 GB

omnetpp 165 MB
zeusmp 530 MB

PARSEC RMS multi-threaded canneal 780 MBworkloads

BioBench Bioinformatics single- mummer 470 MBthreaded workloads

Table 5.4: Workload description and memory footprint.

Dynamic energy model. We report the amount of dynamic energy spent in the address

translation path. Table 5.3 summarizes the equations of our energy model. The dynamic

energy per translation structure is the sum of the dynamic energy spent due to lookup op-

erations and the dynamic energy spent due to write operations after misses. Our model

for the dynamic energy spent in page walks optimistically assumes that all page walk ref-

erences always hit in the L1 cache of the memory hierarchy.

Performance model. We report misses per thousand instructions in the L1 and L2 TLBs,

and cycles spent in L1 and L2 TLB misses. Our estimations are based on the following

assumptions: (i) L1 TLBs are accessed in parallel with the data cache, so L1 TLB hits add

no cycles, (ii) L1 TLB misses trigger lookup accesses in L2 TLBs that take 7 cycles [63], and

(iii) L2 TLB misses trigger page walks that take 50 cycles [77] for all applications. Thus,

the cycles spent in TLB misses are the sum of the cycles spent in L1 TLB misses and in

L2 TLB misses. Table 5.3 summarizes the equations of our performance model. Note that

short L1 TLB misses, like those that hit in the L2 TLB, can be overlapped with execution in

some cases, and may not decrease performance by that much. For RMM and RMMLi te, the

range table walks occur in the background and do not add to the execution time, but they

incur dynamic energy overhead.

Benchmarks. We focus on various workloads that exhibit poor TLB performance from

Spec2006 [59], BioBench [15], and Parsec [33], summarized in Table 5.4. We define as

TLB intensive workloads those that experience more than 5 L1 TLB misses per thousand

116



instructions with 4 KB pages. We also report results for all remaining Spec2006 and Parsec

workloads in the sensitivity analysis subsection. We fast-forward the execution for 50

billion instructions, and then simulate for the next 50 billion instructions.

5.6 Results

This section evaluates the two proposed TLB organizations: TLBLi te that adds the Lite

mechanism on top of TLB support for huge pages, and RMMLi te that adds the Lite mech-

anism and the 4-entry L1-range TLB on top of RMM. We first evaluate how these TLB

organizations reduce the dynamic energy in address translation and the cycles spent in L1

and L2 TLB misses for a set of TLB intensive workloads. Then we present results for more

workloads, and finally we perform a sensitivity analysis based on the interval size and the

random probability of Lite.

5.6.1 Dynamic Energy & Performance

Figure 5.10 shows the reduction of the dynamic energy in address translation and the cycles

spent in L1 and L2 TLB misses for all the simulated configurations explained in Section 5.5.

The results are normalized to the 4KB configuration.

Overview. The results show that (i) TLBLi te reduces the dynamic energy with respect

to THP (Figure 5.10 top) without significantly affecting the performance (Figure 5.10 bot-

tom), and (ii) RMMLi te further reduces the dynamic energy of TLB lookups and eliminates

almost completely the performance and the associated energy overheads of L1 TLB misses.

4KB exhibits two sources of dynamic energy overhead: the L1 TLB lookups and the page

walks. Depending on the workload’s locality in the TLB hierarchy, one of the two sources

dominates. Figure 5.11 shows the MPKI for the L1 and L2 TLBs. The L1 TLB lookups are

responsible for the majority of overhead in these workloads, except for cactusADM and mcf

that suffer more frequently from page walks. In addition, previous studies have shown that

4 KB pages lead to significant performance overhead [27, 28, 77] that increases in turn the

total static energy.

117



5.
E
N

E
R
G

Y
-E

FFIC
IE

N
T

A
D

D
R
E
SS

T
R
A

N
SLA

T
IO

N

0%

20%

40%

60%

80%

100%

120%

140%

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal geomean

D
yn

am
ic

 E
n

er
gy

 (
%

) 

L1-4KB TLB L1-2MB TLB L1-range TLB L2-4KB TLB L2-range TLB MMU cache Page walks

0%

20%

40%

60%

80%

100%

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal geomean

C
yc

le
s 

Sp
en

t 
in

 T
LB

 m
is

se
s 

(%
) 

L1 TLB misses L2 TLB misses

0
.0

0
2

2
 

0
.0

0
4

0
 

0
.0

0
0

1
 

0
.0

1
6

6
 

2
.0

E-
0

6
 

0
.0

4
5

3
 

2
.0

E-
0

6
 

0
.2

3
0

2
 

1
.3

5
2

3
 

Figure 5.10: Dynamic energy spent in address translation and cycles spent in TLB misses for TLB intensive workloads.

118



THP reduces significantly the portion of dynamic energy and the performance overhead

of page walks, due to fewer L1 and L2 TLB misses. However, THP increases the amount of

dynamic energy spent in the L1 TLBs because the L1-2MB TLB is accessed on every memory

operation, in addition to the L1-4KB TLB. These accesses increase the total dynamic energy

consumption compared to 4KB for most workloads—up to 43% for canneal. On average,

THP increases the dynamic energy by 4%, while reducing the cycles spent in TLB misses

by 83%, compared to 4KB pages.

TLBLi te reduces the dynamic energy by 23% on average and by 40% and 37% for cac-

tusADM and GemsFDTD, compared to THP. TLBLi te opportunistically reduces the dynamic

energy spent in address translation when the utility of having all ways active becomes low.

Table 5.5 shows the percentage of active ways during the execution time. On average, all

4-ways are active for 51% and 81% of the time in the L1-4KB TLB and L1-2MB TLB. In

addition, TLBLi te barely affects performance for most workloads except for canneal. Com-

pared to the THP configuration, TLBLi te increases the L1 and L2 TLB misses by 4% and

3% on average, and the cycles spent in TLB misses from 16.6% to 17.2%. Note that cy-

cles spent in short TLB misses may be overlapped with execution; thus the impact on total

execution time is likely to be lower.

RMM eliminates the dynamic energy and performance overheads of page walks due to

the L2-range TLB. However, the dynamic energy spent in the L1 TLBs remains high, similar

to that with THP, because of accessing both L1 TLBs for 4KB and 2MB pages. On average,

RMM reduces the dynamic energy by only 8% and the cycles spent in TLB misses by 80%,

compared to THP.

TLBPP is a perfect implementation of TLBPred [95], as explained in Section 5.5. We

observe that TLBPP reduces the dynamic energy and performance overheads of page walks

because it enjoys larger reach compared to THP. In addition, the TLBPP reduces the dynamic

energy in L1 TLBs since only a single structure for both 4 KB and 2 MB pages is accessed

on every memory operation, but these results under report its true costs. On average,

TLBPP would reduce the dynamic energy by 43% and the cycles spent in TLB misses by

67% compared to THP, but is unrealizable in practice.

RMMLi te reduces the dynamic energy in address translation the most compared to the

other approaches. RMMLi te reduces dynamic energy by more than 80% for mcf and cac-

tusADM, and by 71% on average while eliminating more than 99% of cycles spent in TLB

misses compared to THP. This occurs because the high hit ratio of the L1-range TLB allows

119



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

TLBLi te RMMLi te

Benchmark L1-4KB TLB L1-2MB TLB L1-4KB TLB
4-ways 2-ways 1-way 4-ways 2-ways 1-way 4-ways 2-ways 1-way

astar 39.6 57.2 3.2 96.7 3.3 0.0 0.0 0.1 99.9
cactusADM 22.8 24.0 53.2 14.6 11.9 73.5 0.1 0.1 99.9
GemsFDTD 42.9 44.9 12.2 54.4 41.7 4.0 2.3 0.4 97.4
mcf 25.8 26.7 47.5 97.8 1.7 0.5 0.0 0.0 100.0
omnetpp 100.0 0.0 0.0 100.0 0.0 0.0 99.3 0.7 0.0
zeusmp 45.5 43.5 11.1 86.6 13.3 0.1 0.0 0.0 100.0
mummer 32.8 67.2 0.0 98.4 0.5 1.0 7.8 79.4 12.9
canneal 100.0 0.0 0.0 100.0 0.0 0.0 97.5 2.5 0.0

average 51.2% 32.9% 15.9% 81.1% 9.0% 9.9% 25.9% 10.4% 63.7%

Table 5.5: Percentage of lookups with 4, 2 and 1 active ways in the L1-page TLBs for TLBLi te and
RMMLi te. RMMLi te disables more ways than TLBLi te thanks to the high hit ratio of the L1-range
TLB.

TLBLi te RMMLi te

Benchmark L1-4KB L1-2MB L1-4KB L1-2MB

astar 75.7 24.3 32.4 67.6
cactusADM 90.8 9.2 0.0 100.0
GemsFDTD 30.1 69.9 0.1 99.9
mcf 38.9 61.1 12.0 88.0
omnetpp 55.2 44.8 51.0 49.0
zeusmp 37.6 62.4 0.0 100.0
mummer 95.7 4.3 5.8 94.2
canneal 91.0 9.0 25.9 74.1

average 64.4% 35.6% 15.9% 84.1%

Table 5.6: Percentage of hits in the L1 TLBs for TLBLi te and RMMLi te.

120



0
.0

8
3

 

0

5

10

15

20

25

30

35

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal average

L1
 T

LB
 M

P
K

I 

4KB THP TLB-Lite RMM TLB-PP RMM-Lite

105 

(a) L1 TLB MPKI

0
.0

0
0

3
 

0

5

10

15

20

25

30

35

astar cactusADM GemsFDTD mcf omnetpp zeusmp mummer canneal average

L2
 T

LB
 M

P
K

I 

4KB THP TLB-Lite RMM TLB-PP RMM-Lite

67 

0
.0

0
1

7

(b) L2 TLB MPKI

Figure 5.11: L1 and L2 TLB misses per thousand instructions.

Lite to disable ways more aggressively in the L1-4KB TLB. Table 5.6 shows the percentage

of L1 TLB hits that come from the L1-4KB TLB and the L1-range TLB. The L1-range TLB

contributes by 84.1% to the L1 TLB hits, and thus, RMMLi te depends less on the perfor-

mance of the L1-4KB TLB and runs 63.7% of the time with only 1-way active in the L1-4KB

TLB (Table 5.5).

Compared to TLBPP , RMMLi te brings less dynamic energy improvements only for om-

netpp and canneal because the L1-4KB TLB has high utilization for those workloads (Ta-

ble 5.5). Still, RMMLi te reduces the dynamic energy overhead by 49% on average, com-

pared to TLBPP . Note that RMMLi te and TLBPP are orthogonal; a combined approach could

use the L1-range TLB for range translations, the TLBPP for pages, and the Lite mechanism

to disable ways opportunistically, as with regular page TLBs.

In addition to the dynamic energy savings, RMMLi te significantly reduces L1 and L2 TLB

121



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

misses, further improving the performance and reducing static energy overheads. Com-

pared to RMM, RMMLi te improves performance more because it eliminates most L1 TLB

misses, in addition to eliminating most L2 TLB misses as RMM does. Overall RMMLi te

makes a good case for energy-efficient address translation.

5.6.2 Sensitivity Analysis

Other workloads. Our evaluation in the previous section focused on a set of TLB intensive

workloads. For completeness, we ran experiments with other workloads that stress the TLB

hierarchy less and observed similar results. Figure 5.12 shows the reduction in dynamic

energy for the rest of Spec2006 (top and middle) and Parsec (bottom) workloads. On

average, TLBLi te reduces the dynamic energy spent in address translation by 26% and 20%

for those Spec2006 and Parsec workloads, while RMMLi te reduces the dynamic energy by

72% and 66%. Regarding performance, the results are similar to those for the TLB intensive

workloads.

Interval size and random probability. Lite depends on the size of the interval and the

random probability for activating all ways in the L1 TLBs. To quantify the impact of these

parameters, we performed a sensitivity analysis varying the interval size from 1 million to

10 million instructions and the random probability from 1/8 to 1/128. We find that Lite

performs slightly better in terms of both performance and dynamic energy, with shorter

interval and with lower probability. The short interval allows Lite to respond faster to

performance changes, while the low probability avoids frequently enabling all ways to

check the potential for performance improvement.

Impact of Eager Paging. Our results for RMM and RMMLi te in the previous sections of this

chapter are based on perfect eager paging, i.e., the operating system perfectly allocates all

contiguous pages of virtual address space to contiguous physical pages. The reasons for

using perfect eager paging are summarized in Section 5.5.

In this section we want to quantify the impact of eager paging on energy and per-

formance for RMMLi te. Figure 5.13 shows the dynamic energy spent in address translation

and the cycles spent in L1 and L2 TLB for RMMLi te with perfect eager paging (RMMLi te−PP),

and with our actual implementation of eager paging (RMMLi te−EP), that was presented in

Chapter 4 but with the limitations that are described in Section 5.5. For these experiments

122



0%

50%

100%

150%

200%

4K
B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e

R
M

M

TL
B

-P
P

R
M

M
-L

it
e

perlbench bzip2 gcc gobmk hmmer sjeng libquantum h264ref xalancbmk

D
yn

am
ic

 E
n

er
gy

 (
%

) 

L1-4KB TLB L1-2MB TLB L1-range TLB L2-4KB TLB L2-range TLB MMU cache Page walks

0%

50%

100%

150%

200%

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

bwaves milc leslie3d namd soplex povray calculix lbm geomean

D
yn

am
ic

 E
n

er
gy

 (
%

) 

0%

50%

100%

150%

200%

4
K

B
TH

P
TL

B
-L

it
e

R
M

M
TL

B
-P

P
R

M
M

-L
it

e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

4K
B

TH
P

TL
B

-L
it

e
R

M
M

TL
B

-P
P

R
M

M
-L

it
e

dedup ferret fluidanimate raytrace streamcluster x264 blackscholes bodytrack facesim swaptions vips geomean

D
yn

am
ic

 E
n

er
gy

  (
%

) 

Figure 5.12: Dynamic energy reduction for the rest of Spec2006 (top and middle) and Parsec (bottom) workloads.

123



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

we fast forward for 50 billion instructions and then simulate for the next 1 billion instruc-

tions. The results are normalized to the 4KB configuration.

We observe that RMMLi te−EP performs close to RMMLi te−PP for most workloads (e.g.,

mcf, omnetpp, soplex, mummer, canneal), reducing by similar ratio the dynamic energy

spent in address translation and the cycles spent in L1 and L2 TLB misses. However, the

savings differ between RMMLi te−EP and RMMLi te−PP for astar, cactusADM, and GemsFDTD.

The reason is that our current implementation of eager paging generates less contiguity in

range translations for Pin-based applications than perfect eager paging does for the reasons

explained in Section 5.5. This reduced contiguity affects correspondingly the energy and

performance savings.

Overall, these results show that even a less sophisticated implementation of eager pag-

ing can help in reducing the energy and performance overheads of address translation with

RMMLi te. However, these results indicate also the need for enhancements in the implemen-

tation of eager paging, and more generally in allocating memory for range translations, to

render the benefits of range translations more applicable to more workloads. Such en-

hancements could be the subject of future work.

Reducing static energy. Although we focused on reducing the dynamic energy of address

translation, the proposed techniques can also reduce the static (leakage) energy of TLBs

when combined with schemes that power-gate the disabled ways [57, 99].

Threshold. The benefits of Lite depend also on the threshold ε for increased MPKI due

to way-disabling. The threshold choice introduces a trade-off between dynamic and static

energy. Studying the impact of different thresholds on total energy and performance could

be the subject of future work.

5.7 Related Work

This section reviews the related work (except for TLBPred [95] discussed in Section 5.6),

categorized into techniques that optimize TLBs for energy efficiency, dynamically resizing

TLBs, selective TLB lookups, and virtual caches.

Optimizing TLBs for energy efficiency. Several techniques have been proposed to im-

prove the energy efficiency of TLBs. Juan et al. [71] proposed circuit optimizations that

124



0%

20%

40%

60%

80%

100%

120%

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

astar cactusADM GemsFDTD mcf omnetpp soplex mummer canneal geomean

D
yn

am
ic

 E
n

er
gy

 (
%

) 

L1-4KB TLB L1-2MB TLB L1-range TLB L2-4KB TLB L2-range TLB MMU cache Page walks

0%

20%

40%

60%

80%

100%

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

4
K

B

R
M

M
-L

it
e-

P
P

R
M

M
-L

it
e-

EP

astar cactusADM GemsFDTD mcf omnetpp soplex mummer canneal geomean

C
yc

le
s 

sp
en

t 
in

 T
LB

 m
is

se
s 

(%
) 

L1 TLB misses L2 TLB misses

2
.3

3
 

0
.0

0
7

 

Figure 5.13: Dynamic energy spent in address translation and cycles spent in TLB misses for
RMMLi te with perfect eager paging (RMMLi te−PP) and with our actual eager paging implemen-
tation (RMMLi te−EP).

reduce the lookup energy in TLBs. Banked TLBs [38, 41, 82] and TLB filtering [22, 38, 49]
can also help in reducing dynamic energy by accessing only one bank or just a filter on

each memory operation. Similarly, Lee et al. [82] proposed a partitioned L1 TLB, with

each part serving translations for a semantic region (stack, heap, global data). That TLB

organization was further improved leveraging the low entropy of information in the stack

and global data memory addresses [21]. To reduce the TLB energy for multi-issue super-

scalar processors, Ballapuram et al. [22] proposed a compaction mechanism for issuing

only a single TLB lookup, when multiple memory references access the same page at the

same cycle. Xue et al. [119] proposed to speculatively perform address translation, based

on the base-displacement address, by accessing a small L0 TLB early in the pipeline, so that

the translation latency is not increased. Finally, Seyedi et al. [105] proposed combining

125



5. ENERGY-EFFICIENT ADDRESS TRANSLATION

nano electro mechanical switches with CMOS technology for fully associative L1 TLBs.

While these techniques reduce the dynamic energy spent in TLBs, they do not consider

mechanisms that increase TLB reach [27, 51, 78, 96, 97, 111] to improve energy effi-

ciency. Our proposed designs leverage the benefits of such mechanisms to reduce the total

energy spent in address translations. Thus, TLBLi te and RMMLi te are orthogonal to those

approaches, and could further improve their benefits.

Dynamically resizing TLBs. Balasubramonian et al. [20] proposed an interval-based

scheme to dynamically resize the TLB, trading off dynamic energy for performance. The

objective of that approach is similar to Lite. However, their design and algorithm targets

a monolithic, fully associative TLB and tracks only whether a TLB entry was referenced

or not to decide for resizing. Thus, the energy savings opportunity becomes lower in case

that the TLB entries are referenced only few times but not heavily utilized. In contrast,

Lite tracks the utility of TLB entries in the miss ratio, considers the presence of separate L1

TLBs, and provides better opportunity for resizing TLB resources.

Selective lookups in TLBs. Kadayif et al. [72] combined hardware and compiler tech-

niques to avoid lookups in instruction TLBs. A register holds the most recently used iTLB

entry, and the compiler generates instructions that access only a register instead of the

iTLB. That approach was extended later for the data TLB [73, 74]. However, the TLBs are

still used in such system. Thus, TLBLi te and RMMLi te are again orthogonal and can further

reduce the total energy cost of address translation in these systems.

Virtual caches. Prior work proposed virtual caches [26, 66, 116] to reduce the energy and

performance overheads of address translation. With virtual caches, the cache hierarchy

is accessed without TLB lookups, unless a cache miss occurs. While saving almost all

TLB energy, they introduce many more changes to the architecture and require additional

support to handle synonyms and enforce protection.

5.8 Summary

The goal of this chapter was to improve the energy efficiency in address translation. We

proposed Lite, a mechanism that monitors the performance and utility of L1 TLBs and adap-

tively changes their sizes with way-disabling, and applied Lite to a standard TLB hierarchy

126



with support for huge pages, named TLBLi te. In addition, we proposed RMMLi te, based on

Redundant Memory Mappings (RMM). RMMLi te augments RMM with an L1-range TLB and

the Lite mechanism. The high hit ratio of the L1-range TLB allows Lite to disable ways in

L1-page TLBs more aggressively. Our results show that TLBLi te reduces the dynamic energy

spent in address translation by 23% with minimal impact on TLB miss cycles. RMMLi te

further reduces the energy spent in address translation by 71% and the overhead from L1

TLB misses by 99%, on top of the near-zero L2 TLB misses of RMM.

127





6
Conclusions

This thesis analyzes the performance and energy overheads of virtual memory in address

translation and proposes techniques to reduce them significantly.

We introduced the key concept of range translations. A range translation is a mapping

between contiguous virtual pages mapped to contiguous physical pages with uniform pro-

tection. Range translations enable an efficient alternative representation of virtual to phys-

ical mappings to perform address translation, complementary to paging. We showed how

range translations can improve the performance and energy efficiency of address transla-

tion while retaining the benefits of paging. We believe that range translations is the next

logical step in the evolution of virtual memory.

6.1 Broader Impact

The limited TLB reach is a well-known problem to both acedemia and industry. Vendors

have been enhancing the TLB resources in every processor generation, mainly through in-

creasing hardware support for huge pages, to reduce the overhead of page walks. However,

129



6. CONCLUSIONS

we believe that this approach falls short: as memory sizes increase more aggressively than

TLB sizes, the virtual memory overheads that manifest in today’s systems with 4 KB pages,

will manifest similarly in tomorrow’s systems with huge pages. Our experiments in this

thesis show that such cases already exist, and our proposed solutions increase TLB reach

to match the sizes of ever-growing memories.

In addition, energy efficiency has become an important parameter in all computing

domains. To optimize a system for energy-efficiency, all involved components need to be

addressed, including TLBs. Furthermore, TLBs are a well known source of power and

energy in processors. Our proposed solutions improve the energy-efficiency of the address

translation process and put another piece in solving the energy puzzle.

Finally, during the last years the interest and demand for fast and energy-efficient in-

memory computing have increased extremely. In-memory computing leverages the ever-

increasing amount of available physical memory to provide adequate support for low la-

tency and real time applications that operate on huge data sets. However, if all data reside

in memory, then the address translation plays an even more important role for accessing

memory. The contributions of this thesis enable fast and energy-efficient address transla-

tion and pave the way for efficient in-memory computing.

6.2 Future Research Directions

Some of the contributions described in this thesis may be further extended. In this section

we provide suggestions for future research directions.

Analyzing Address Translation Overheads. Our work on quantifying the performance

overhead of address translation for memory intensive workloads opens new directions for

further research. An interesting direction would be to investigate the performance cost of

address translation on newer processors that provide better TLB support with more entries,

and measure how the costs change across the generations. In addition, newer processors

offer on-chip energy counters that allow measuring directly the energy burnt by the proces-

sor. The use of such counters would allow to further understand the energy implications

of address translation on a real system under complex long-running workloads. Finally,

characterizing and analyzing the cost of emerging memory-intensive workloads under vir-

tualized execution is another interesting direction for extending our work.

130



Towards Range-based Virtual Memory. Our work on range translations opens new op-

portunities and research challenges. We discussed some hardware and operating systems

issues that a production implementation with range translations should consider. Further

research is needed on memory management policies, that switch between eager and de-

mand paging, decide when to form or break range translations, and integrate smoothly

range translations with page-based mechanisms, such as memory compaction and defrag-

mentation daemons. In addition, our work points towards the need of a contiguity aware

memory allocator to replace the age-old buddy allocator used to manage physical memory.

Virtualizing range translations. Virtualizing range translations is also an interesting chal-

lenge with great potential for performance benefits. The high performance overhead of

paging in virtualized environments is a well-established problem. As with virtualizing reg-

ular pages introduces various design options, such as nested paging and shadow paging,

and requires adequate hardware support, virtualizing range translations requires a rigor-

ous design space exploration of both software and hardware components to analyze the

available choices, benefits, and costs. Taking into account the paramount importance of

virtualization in cloud computing, we believe that range translations could play an impor-

tant role in reducing virtualization overheads.

6.3 Further Acknowledgements

We want to credit the contributions of other students to this thesis. Jayneel Gandhi, from

University of Wisconsin-Madison, contributed to the RMM design and evaluation in Chap-

ter 4. Furkan Ayar, from Dumlupinar University and now at Yildiz Technical University,

helped with the implementation of eager paging. Oriol Arcas and Ivan Ratkovic, from

Barcelona Supercomputing Center, provided the Bluespec implementation and the synthe-

sis results of the range TLB in Chapter 4.

This thesis has been supported by the cooperation agreement between the Barcelona

Supercomputing Center and Microsoft Research, by the Ministry of Science and Technology

of Spain under the FPU National Plan (FPU12/04110), by the European Union (FEDER

funds) under contracts TIN2007-60625, TIN2008-02055-E, TIN2012-34557, and TIN2015-

65316-P, and by the European Union’s Seventh Framework Programme (FP7/2007- 2013)

under the ParaDIME project (GA no. 318693).

131





7
Publications

The contents of this thesis led to the following publications:

Vasileios Karakostas, Osman S. Unsal, Mario Nemirovsky, Adrián Cristal, and Michael

M. Swift, Performance Analysis of the Memory Management Unit under Scale-

out Workloads, In Proceedings of the 2014 IEEE International Symposium on Work-

load Characterization (IISWC 2014).

Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill,

Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman Unsal, Redun-

dant Memory Mappings for Fast Access to Large Memories, In Proceedings of the

42nd International Symposium on Computer Architecture (ISCA 2015) — Selected

for IEEE Micro’s “Top Picks from 2015 Computer Architecture Conferences”.

Vasileios Karakostas, Jayneel Gandhi, Adrián Cristal, Mark D. Hill, Kathryn S. McKin-

ley, Mario Nemirovsky, Michael M. Swift, and Osman S. Unsal, Energy-Efficient Ad-

dress Translation, In Proceedings of the 22nd IEEE International Symposium on

High Performance Computer Architecture (HPCA 2016).

133



7. PUBLICATIONS

Jayneel Gandhi, Vasileios Karakostas, Furkan Ayar, Adrián Cristal, Mark D. Hill,

Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman S. Unsal,

Range Translations for Fast Virtual Memory, In IEEE Micro Special Issue: Top

Picks from 2015 Computer Architecture Conferences (IEEE Micro Top Picks 2016)

The following papers were also published while on graduate studies but are not included

in or directly related to this thesis:

Gokcen Kestor, Vasileios Karakostas, Osman S. Unsal, Adrián Cristal, Ibrahim Hur,

and Mateo Valero, RMS-TM: A Comprehensive Benchmark Suite for Transactional

Memory Systems, In Proceedings of the 2nd ACM/SPEC International Conference

on Performance Engineering (ICPE 2011 - Best Paper Award).

Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion, Alex Ramirez,

Avi Mendelson, Nacho Navarro, Adrián Cristal, and Osman S. Unsal, DiDi: Mitigat-

ing The Performance Impact of TLB Shootdowns Using A Shared TLB Directory,

In Proceedings of the 20th International Conference on Parallel Architectures and

Compilation Techniques (PACT 2011).

Vasileios Karakostas, Saša Tomić, Osman S. Unsal, Mario Nemirovsky, and Adrián

Cristal, Improving the Energy Efficiency of Hardware-Assisted Watchpoint Sys-

tems, In Proceedings of the 50th Design Automation Conference (DAC 2013).

Srdan Stipic, Vasileios Karakostas, Vesna Nowack, Adrián Cristal, Osman S. Un-

sal, and Mateo Valero, Dynamic Transaction Coalesing, In Proceedings of the 11th

conference on ACM Computing Frontiers (Computing Frontiers 2014).

Azam Seyedi, Vasileios Karakostas, Stefan Cosemans, Adrián Cristal, Mario Ne-

mirovsky, and Osman S. Unsal, NEMsCAM: A Novel CAM Cell based on Nano-

Electro-Mechanical Switch and CMOS for Energy Efficient TLBs, In Proceedings of

the 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH

2015).

134



References

[1] Intel R© Itanium R© Architecture Developer’s Manual, Vol. 2. Cited on page: 89

[2] Sh-3 RISC Processor family. Cited on page: 2, 4, 21, 93

[3] Intel Strongarm Processor. Cited on page: 2, 4, 21, 93

[4] Intel 8086 - Wikipedia. http://en.wikipedia.org/wiki/Intel_8086, Cited

on page: 28, 90

[5] Transparent Huge Pages in 2.6.38. http://lwn.net/Articles/423584/, Cited

on page: 6, 9, 23, 35, 40, 62, 63, 65, 66, 84, 89, 96, 97, 99, 100, 103, 113

[6] Cloudsuite Overview. http://parsa.epfl.ch/cloudsuite/overview.html,

Cited on page: 33, 35

[7] International Technology Roadmap for Semiconductors: 2012. http://www.
itrs.net/Links/2012ITRS/Home2012.htm, Cited on page: 58

[8] Huge Pages Part 1 (Introduction). http://lwn.net/Articles/374424/, Cited

on page: 6, 23, 35, 62, 65, 84, 89, 97

[9] The /proc filesystem. www.kernel.org/doc/Documentation/filesystems/
proc.txt, Cited on page: 37

[10] Pagemap, from the userspace perspective. https://www.kernel.org/doc/
Documentation/vm/pagemap.txt, Cited on page: 95, 99, 112

[11] perf: Linux profiling with performance counters . https://perf.wiki.kernel.
org/index.php/Main_Page, Cited on page: 35, 81

135

http://en.wikipedia.org/wiki/Intel_8086
http://lwn.net/Articles/423584/
http://parsa.epfl.ch/cloudsuite/overview.html
http://www.itrs.net/Links/2012ITRS/Home2012.htm
http://www.itrs.net/Links/2012ITRS/Home2012.htm
http://lwn.net/Articles/374424/
www.kernel.org/doc/Documentation/filesystems/ proc.txt
www.kernel.org/doc/Documentation/filesystems/ proc.txt
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://www.kernel.org/doc/Documentation/vm/pagemap.txt
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page


REFERENCES

[12] SPEC CPUTM 2006. https://www.spec.org/cpu2006/, Cited on page: 46

[13] TCMalloc. http://goog-perftools.sourceforge.net/doc/tcmalloc.
html, Cited on page: 79

[14] Advance Micro Devices. Software Optimization Guide for AMD Family 15h Processors.

Number 47414, Cited on page: 24, 93, 97, 111

[15] Kursad Albayraktaroglu, Aamer Jaleel, Xue Wu, Manoj Franklin, Bruce L. Jacob,

Chau-Wen Tseng, and Donald Yeung. BioBench: A Benchmark Suite of Bioinformat-

ics Applications. In Proceedings of the IEEE International Symposium on Performance

Analysis of Systems and Software, ISPASS ’05, pages 2–9, 2005. DOI: 10.1109/IS-

PASS.2005.1430554. Cited on page: 46, 81, 96, 116

[16] David H. Albonesi. Selective cache ways: On-demand cache resource allocation.

In Proceedings of the 32Nd Annual ACM/IEEE International Symposium on Microar-

chitecture, MICRO-32, pages 248–259, 1999. DOI: 10.1109/MICRO.1999.809463.

Cited on page: 8, 95, 103, 109

[17] Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D. La-

zowska. The interaction of architecture and operating system design. In Proceed-

ings of the Fourth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS IV, pages 108–120, 1991. DOI:

10.1145/106972.106985. Cited on page: 59

[18] Raja Appuswamy, Christos Gkantsidis, Dushyanth Narayanan, Orion Hodson, and

Antony Rowstron. Scale-up vs scale-out for hadoop: Time to rethink? In Proceedings

of the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages 20:1–20:13,

2013. DOI: 10.1145/2523616.2523629. Cited on page: 33

[19] Vlastimil Babka and Petr Tůma. Investigating cache parameters of x86 family proces-

sors. In Proceedings of the 2009 SPEC Benchmark Workshop on Computer Performance

Evaluation and Benchmarking, pages 77–96, 2009. DOI: 10.1007/978-3-540-93799-

9_5. Cited on page: 55

[20] Rajeev Balasubramonian, David Albonesi, Alper Buyuktosunoglu, and Sandhya

Dwarkadas. Memory hierarchy reconfiguration for energy and performance

136

https://www.spec.org/cpu2006/
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://dx.doi.org/10.1109/ISPASS.2005.1430554
http://dx.doi.org/10.1109/ISPASS.2005.1430554
http://dx.doi.org/10.1109/MICRO.1999.809463
http://dx.doi.org/10.1145/106972.106985
http://dx.doi.org/10.1145/106972.106985
http://dx.doi.org/10.1145/2523616.2523629
http://dx.doi.org/10.1007/978-3-540-93799-9_5
http://dx.doi.org/10.1007/978-3-540-93799-9_5


REFERENCES

in general-purpose processor architectures. In Proceedings of the 33rd Annual

ACM/IEEE International Symposium on Microarchitecture, MICRO-33, pages 245–

257, 2000. DOI: 10.1145/360128.360153. Cited on page: 8, 94, 126

[21] Chinnakrishnan Ballapuram, Kiran Puttaswamy, Gabriel H. Loh, and Hsien-Hsin S.

Lee. Entropy-based low power data tlb design. In Proceedings of the 2006 Inter-

national Conference on Compilers, Architecture and Synthesis for Embedded Systems,

CASES ’06, pages 304–311, 2006. DOI: 10.1145/1176760.1176797. Cited on page:

8, 94, 125

[22] Chinnakrishnan S. Ballapuram, Hsien-Hsin S. Lee, and Milos Prvulovic. Synony-

mous Address Compaction for Energy Reduction in Data TLB. In Proceedings of

the 2005 International Symposium on Low Power Electronics and Design, ISLPED ’05,

pages 357–362, 2005. DOI: 10.1145/1077603.1077689. Cited on page: 94, 125

[23] Thomas W. Barr, Alan L. Cox, and Scott Rixner. Translation Caching: Skip,

Don’t Walk (the Page Table). In Proceedings of the 37th Annual International

Symposium on Computer Architecture, ISCA ’10, pages 48–59, 2010. DOI:

10.1145/1815961.1815970. Cited on page: 21, 45, 89

[24] Thomas W. Barr, Alan L. Cox, and Scott Rixner. SpecTLB: A Mechanism for

Speculative Address Translation. In Proceedings of the 38th Annual International

Symposium on Computer Architecture, ISCA ’11, pages 307–318, 2011. DOI:

10.1145/2000064.2000101. Cited on page: 90

[25] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The Datacenter as a Computer:

An Introduction to the Design of Warehouse-Scale Machines, Second Edition. Synthesis

Lectures on Computer Architecture, Cited on page: 33

[26] Arkaprava Basu, Mark D. Hill, and Michael M. Swift. Reducing Memory Reference

Energy with Opportunistic Virtual Caching. In Proceedings of the 39th Annual In-

ternational Symposium on Computer Architecture, ISCA ’12, pages 297–308, 2012.

Cited on page: 27, 53, 90, 94, 126

[27] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.

Swift. Efficient Virtual Memory for Big Memory Servers. In Proceedings of the 40th

137

http://dx.doi.org/10.1145/360128.360153
http://dx.doi.org/10.1145/1176760.1176797
http://dx.doi.org/10.1145/1077603.1077689
http://dx.doi.org/10.1145/1815961.1815970
http://dx.doi.org/10.1145/1815961.1815970
http://dx.doi.org/10.1145/2000064.2000101
http://dx.doi.org/10.1145/2000064.2000101


REFERENCES

Annual International Symposium on Computer Architecture, ISCA ’13, pages 237–

248, 2013. DOI: 10.1145/2485922.2485943. Cited on page: 2, 4, 6, 8, 21, 32, 42,

53, 58, 59, 61, 62, 63, 65, 71, 76, 79, 80, 81, 82, 84, 89, 94, 95, 97, 103, 117, 126

[28] Abhishek Bhattacharjee. Large-reach Memory Management Unit Caches. In Pro-

ceedings of the 46th Annual IEEE/ACM International Symposium on Microarchitec-

ture, MICRO 46, pages 383–394, 2013. DOI: 10.1145/2540708.2540741. Cited on

page: 2, 4, 6, 21, 32, 53, 55, 57, 59, 61, 63, 80, 89, 94, 97, 112, 117

[29] Abhishek Bhattacharjee and Margaret Martonosi. Characterizing the TLB Behavior

of Emerging Parallel Workloads on Chip Multiprocessors. In Proceedings of the 2009

18th International Conference on Parallel Architectures and Compilation Techniques,

PACT ’09, pages 29–40, 2009. DOI: 10.1109/PACT.2009.26. Cited on page: 38, 52,

59, 89

[30] Abhishek Bhattacharjee and Margaret Martonosi. Inter-core Cooperative

TLB for Chip Multiprocessors. In ASPLOS, pages 359–370, DOI:

10.1145/1736020.1736060. Cited on page: 58

[31] Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi. Shared Last-level

TLBs for Chip Multiprocessors. In Proceedings of the 2011 IEEE 17th International

Symposium on High Performance Computer Architecture, HPCA ’11, pages 62–63,

2011. Cited on page: 89, 90

[32] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, 2011.

AAI3445564. Cited on page: 46, 81

[33] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC

Benchmark Suite: Characterization and Architectural Implications. In Proceedings

of the 17th International Conference on Parallel Architectures and Compilation Tech-

niques, PACT ’08, pages 72–81, 2008. DOI: 10.1145/1454115.1454128. Cited on

page: 96, 116

[34] David L. Black, Richard F. Rashid, David B. Golub, and Charles R. Hill. Translation

Lookaside Buffer Consistency: A Software Approach. In Proceedings of the Third

International Conference on Architectural Support for Programming Languages and

138

http://dx.doi.org/10.1145/2485922.2485943
http://dx.doi.org/10.1145/2540708.2540741
http://dx.doi.org/10.1109/PACT.2009.26
http://dx.doi.org/10.1145/1736020.1736060
http://dx.doi.org/10.1145/1736020.1736060
http://dx.doi.org/10.1145/1454115.1454128


REFERENCES

Operating Systems, ASPLOS III, pages 113–122, 1989. DOI: 10.1145/70082.68193.

Cited on page: 25, 74

[35] Stephen M. Blackburn and Kathryn S. McKinley. Immix: A Mark-region Garbage

Collector with Space Efficiency, Fast Collection, and Mutator Performance. In Pro-

ceedings of the 2008 ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’08, pages 22–32, 2008. DOI: 10.1145/1375581.1375586.

Cited on page: 79

[36] Michel Cekleov and Michel Dubois. Virtual-address caches part 1: Problems and

solutions in uniprocessors. IEEE Micro, 17(5):64–71, DOI: 10.1109/40.621215.

Cited on page: 27, 53

[37] Michel Cekleov and Michel Dubois. Virtual-address caches, part 2: Multiprocessor

issues. IEEE Micro, 17(6):69–74, DOI: 10.1109/40.641599. Cited on page: 27, 53

[38] Yen-Jen Chang and Mao-Feng Lan. Two New Techniques Integrated for Energy-

efficient TLB Design. IEEE Trans. Very Large Scale Integr. Syst., 15(1):13–23, DOI:

10.1109/TVLSI.2006.887813. Cited on page: 8, 94, 125

[39] J. Bradley Chen, Anita Borg, and Norman P. Jouppi. A Simulation Based

Study of TLB Performance. In Proceedings of the 19th Annual International

Symposium on Computer Architecture, ISCA ’92, pages 114–123, 1992. DOI:

10.1145/139669.139708. Cited on page: 59

[40] Yu-Ting Chen, Jason Cong, Hui Huang, Bin Liu, Chunyue Liu, Miodrag Potkonjak,

and Glenn Reinman. Dynamically Reconfigurable Hybrid Cache: An Energy-efficient

Last-level Cache Design. In Proceedings of the Conference on Design, Automation and

Test in Europe, DATE ’12, pages 45–50, 2012. DOI: 10.1109/DATE.2012.6176431.

Cited on page: 58

[41] Jin-Hyuck Choi, Jung-Hoon Lee, Seh-Woong Jeong, Shin-Dug Kim, and Charles C.

Weems. A Low Power TLB Structure for Embedded Systems. Computer Architecture

Letters, 1, DOI: 10.1109/L-CA.2002.1. Cited on page: 8, 94, 125

139

http://dx.doi.org/10.1145/70082.68193
http://dx.doi.org/10.1145/1375581.1375586
http://dx.doi.org/10.1109/40.621215
http://dx.doi.org/10.1109/40.641599
http://dx.doi.org/10.1109/TVLSI.2006.887813
http://dx.doi.org/10.1109/TVLSI.2006.887813
http://dx.doi.org/10.1145/139669.139708
http://dx.doi.org/10.1145/139669.139708
http://dx.doi.org/10.1109/DATE.2012.6176431
http://dx.doi.org/10.1109/L-CA.2002.1


REFERENCES

[42] Douglas W. Clark and Joel S. Emer. Performance of the VAX-11/780 Translation

Buffer: Simulation and Measurement. ACM Trans. Comput. Syst., 3(1):31–62, DOI:

10.1145/214451.214455. Cited on page: 59

[43] Nachshon Cohen and Erez Petrank. Limitations of partial compaction: Towards

practical bounds. SIGPLAN Not., 48(6):309–320, DOI: 10.1145/2499370.2491973.

Cited on page: 79

[44] John F. Couleur and Edward L. Glaser. Shared-access data processing system, US

Patent 3,412,382. Cited on page: 2, 93

[45] Chen Ding and Ken Kennedy. Inter-array data regrouping. In Proceedings of the 12th

International Workshop on Languages and Compilers for Parallel Computing, LCPC

’99, pages 149–163, 2000. DOI: 10.1007/3-540-44905-1_10. Cited on page: 88

[46] Cort Dougan, Paul Mackerras, and Victor Yodaiken. Optimizing the Idle Task and

Other MMU Tricks. In Proceedings of the Third Symposium on Operating Systems

Design and Implementation, OSDI ’99, pages 229–237, 1999. Cited on page: 40

[47] Steve Dropsho, Alper Buyuktosunoglu, Rajeev Balasubramonian, David H. Albonesi,

Sandhya Dwarkadas, Greg Semeraro, Grigorios Magklis, and Michael L. Scott. In-

tegrating Adaptive On-Chip Storage Structures for Reduced Dynamic Power. In

Proceedings of the 2002 International Conference on Parallel Architectures and Compi-

lation Techniques, PACT ’02, pages 141–, 2002. DOI: 10.1109/PACT.2002.1106013.

Cited on page: 8, 95, 107, 108, 112

[48] Yu Du, Miao Zhou, B.R. Childers, D. Mosse, and R. Melhem. Supporting superpages

in non-contiguous physical memory. In Proceedings of the 21st IEEE International

Symposium on High Performance Computer Architecture, HPCA ’15, pages 223–234,

DOI: 10.1109/HPCA.2015.7056035. Cited on page: 90

[49] Dongrui Fan, Zhimin Tang, Hailin Huang, and Guang R. Gao. An Energy Effi-

cient TLB Design Methodology. In Proceedings of the 2005 International Sympo-

sium on Low Power Electronics and Design, ISLPED ’05, pages 351–356, 2005. DOI:

10.1145/1077603.1077688. Cited on page: 2, 4, 8, 21, 93, 94, 125

140

http://dx.doi.org/10.1145/214451.214455
http://dx.doi.org/10.1145/214451.214455
http://dx.doi.org/10.1145/2499370.2491973
http://dx.doi.org/10.1007/3-540-44905-1_10
http://dx.doi.org/10.1109/PACT.2002.1106013
http://dx.doi.org/10.1109/HPCA.2015.7056035
http://dx.doi.org/10.1145/1077603.1077688
http://dx.doi.org/10.1145/1077603.1077688


REFERENCES

[50] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Al-

isafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki,

and Babak Falsafi. Clearing the Clouds: A Study of Emerging Scale-out Workloads

on Modern Hardware. In Proceedings of the Seventeenth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS

XVII, pages 37–48, 2012. DOI: 10.1145/2150976.2150982. Cited on page: 6, 31,

32, 33, 39, 47, 52, 57, 58, 61

[51] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift. BadgerTrap:

A Tool to Instrument x86-64 TLB Misses. SIGARCH Comput. Archit. News, 42(2):

20–23, DOI: 10.1145/2669594.2669599. Cited on page: 8, 63, 80, 93, 94, 95,

103, 112, 126

[52] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift. Efficient mem-

ory virtualization: Reducing dimensionality of nested page walks. In Proceedings of

the 47th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-

47, pages 178–189, 2014. DOI: 10.1109/MICRO.2014.37. Cited on page: 6, 62,

63, 65, 80, 81, 89

[53] Jayneel Gandhi, Vasileios Karakostas, Furkan Ayar, Adrián Cristal, Mark D. Hill,

Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman S. Unsal.

Range Translations for Fast Virtual Memory. IEEE Micro, Cited on page: 9

[54] James R. Goodman. Coherency for multiprocessor virtual address caches. In

Proceedings of the Second International Conference on Architectual Support for Pro-

gramming Languages and Operating Systems, ASPLOS II, pages 72–81, 1987. DOI:

10.1145/36206.36186. Cited on page: 27

[55] Joseph L. Greathouse, Hongyi Xin, Yixin Luo, and Todd Austin. A Case for Un-

limited Watchpoints. In Proceedings of the Seventeenth International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS

XVII, pages 159–172, 2012. DOI: 10.1145/2150976.2150994. Cited on page: 90

[56] Per Hammarlund. 4th generation Intel Core processor, codenamed Haswell. In

Proceedings of Hot Chips Symposium, Cited on page: 24, 93, 97, 111

141

http://dx.doi.org/10.1145/2150976.2150982
http://dx.doi.org/10.1145/2669594.2669599
http://dx.doi.org/10.1109/MICRO.2014.37
http://dx.doi.org/10.1145/36206.36186
http://dx.doi.org/10.1145/36206.36186
http://dx.doi.org/10.1145/2150976.2150994


REFERENCES

[57] Heather Hanson, M. S. Hrishikesh, Vikas Agarwal, Stephen W. Keckler, and Doug

Burger. Static energy reduction techniques for microprocessor caches. IEEE Trans.

VLSI Syst., 11(3):303–313, DOI: 10.1109/TVLSI.2003.812370. Cited on page: 124

[58] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers Inc., 3rd edition, Cited on page: 26

[59] John L. Henning. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput. Ar-

chit. News, 34(4):1–17, DOI: 10.1145/1186736.1186737. Cited on page: 81, 96,

116

[60] Intel Corporation. Introduction to the iAPX 432 Architecture, Cited on page: 28, 90

[61] Intel Corporation. TLBs, Paging-Structure Caches and their Invalidation, Cited on

page: 89, 97, 112

[62] Intel Corporation. Intel R© Processor Identification and the CPUID Instruction. Number

241618-039 in Application Note 485, Cited on page: 34

[63] Intel Corporation. Intel R© 64 and IA-32 Architectures Optimization Reference Manual.

Number 248966-026, Cited on page: 36, 49, 50, 57, 71, 89, 97, 116

[64] Intel Corporation. Intel R© 64 and IA-32 Architectures Software Developer’s Manual.

Number 253669-046US, Cited on page: 17

[65] B. Jacob and T. Mudge. Software-Managed Address Translation. In Proceedings

of the 3rd IEEE Symposium on High-Performance Computer Architecture, HPCA ’97,

pages 156–, 1997. DOI: 10.1109/HPCA.1997.569652. Cited on page: 27

[66] Bruce Jacob and Trevor Mudge. Virtual Memory in Contemporary Microprocessors.

IEEE Micro, 18(4):60–75, DOI: 10.1109/40.710872. Cited on page: 11, 15, 16, 20,

28, 89, 90, 94, 126

[67] Bruce Jacob and Trevor Mudge. Virtual memory: Issues of implementation. Com-

puter, 31(6):33–43, DOI: 10.1109/2.683005. Cited on page: 11, 15, 16, 20, 28

142

http://dx.doi.org/10.1109/TVLSI.2003.812370
http://dx.doi.org/10.1145/1186736.1186737
http://dx.doi.org/10.1109/HPCA.1997.569652
http://dx.doi.org/10.1109/40.710872
http://dx.doi.org/10.1109/2.683005


REFERENCES

[68] Bruce L. Jacob and Trevor N. Mudge. A Look at Several Memory Manage-

ment Units, TLB-refill Mechanisms, and Page Table Organizations. In Proceed-

ings of the Eighth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS VIII, pages 295–306, 1998. DOI:

10.1145/291069.291065. Cited on page: 2, 4, 21, 59

[69] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. Die-stacked dram caches for

servers: Hit ratio, latency, or bandwidth? have it all with footprint cache. In Pro-

ceedings of the 40th Annual International Symposium on Computer Architecture, ISCA

’13, pages 404–415, 2013. DOI: 10.1145/2485922.2485957. Cited on page: 6, 32

[70] Zhen Jia, Lei Wang, Jianfeng Zhan, Lixin Zhang, and Chunjie Luo. Characteriz-

ing Data Analysis Workloads in Data Centers. In Proceedings of the IEEE Interna-

tional Symposium on Workload Characterization, IISWC 2013, pages 66–76, DOI:

10.1109/IISWC.2013.6704671. Cited on page: 34

[71] Toni Juan, Tomas Lang, and Juan J. Navarro. Reducing TLB Power Requirements.

In Proceedings of the 1997 International Symposium on Low Power Electronics and

Design, ISLPED ’97, pages 196–201, 1997. DOI: 10.1145/263272.263332. Cited on

page: 2, 4, 8, 21, 93, 94, 124

[72] I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju, and G. Chen. Generat-

ing Physical Addresses Directly for Saving Instruction TLB Energy. In Proceedings of

the 35th Annual ACM/IEEE International Symposium on Microarchitecture, MICRO-

35, pages 185–196, 2002. DOI: 10.1109/MICRO.2002.1176249. Cited on page: 2,

4, 21, 93, 94, 126

[73] Ismail Kadayif, Partho Nath, Mahmut T. Kandemir, and Anand Sivasubramaniam.

Compiler-directed physical address generation for reducing dTLB power. In ISPASS,

pages 161–168, 2004. DOI: 10.1109/ISPASS.2004.1291368. Cited on page: 2, 4,

21, 93, 94, 126

[74] Mahmut Kandemir, Ismail Kadayif, and Guilin Chen. Compiler-directed code re-

structuring for reducing data tlb energy. In Proceedings of the 2nd IEEE/ACM/I-
FIP International Conference on Hardware/Software Codesign and System Synthesis,

143

http://dx.doi.org/10.1145/291069.291065
http://dx.doi.org/10.1145/291069.291065
http://dx.doi.org/10.1145/2485922.2485957
http://dx.doi.org/10.1109/IISWC.2013.6704671
http://dx.doi.org/10.1109/IISWC.2013.6704671
http://dx.doi.org/10.1145/263272.263332
http://dx.doi.org/10.1109/MICRO.2002.1176249
http://dx.doi.org/10.1109/ISPASS.2004.1291368


REFERENCES

CODES+ISSS ’04, pages 98–103, 2004. DOI: 10.1145/1016720.1016747. Cited on

page: 94, 126

[75] Gokul B. Kandiraju and Anand Sivasubramaniam. Characterizing the d-tlb behavior

of spec cpu2000 benchmarks. In Proceedings of the 2002 ACM SIGMETRICS Interna-

tional Conference on Measurement and Modeling of Computer Systems, SIGMETRICS

’02, pages 129–139, 2002. DOI: 10.1145/511334.511351. Cited on page: 38, 59

[76] Gokul B. Kandiraju and Anand Sivasubramaniam. Going the Distance for TLB

Prefetching: An Application-driven Study. In Proceedings of the 29th Annual In-

ternational Symposium on Computer Architecture, ISCA ’02, pages 195–206, 2002.

Cited on page: 58, 89

[77] Vasileios Karakostas, Osman S. Unsal, Mario Nemirovsky, Adrian Cristal, and

Michael Swift. Performance Analysis of the Memory Management Unit un-

der Scale-out Workloads. In Proceedings of the 2014 IEEE International Sympo-

sium on Workload Characterization, IISWC 2014, pages 1–12, DOI: 10.1109/I-
ISWC.2014.6983034. Cited on page: 2, 4, 9, 21, 61, 65, 89, 90, 94, 97, 116,

117

[78] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, Adrián Cristal, Mark D. Hill,

Kathryn S. McKinley, Mario Nemirovsky, Michael M. Swift, and Osman Ünsal. Re-

dundant memory mappings for fast access to large memories. In Proceedings of the

42nd Annual International Symposium on Computer Architecture, ISCA ’15, pages

66–78, 2015. DOI: 10.1145/2749469.2749471. Cited on page: 8, 9, 93, 94, 95,

99, 100, 103, 110, 126

[79] Vasileios Karakostas, Jayneel Gandhi, , Adrián Cristal, Mark D. Hill, Kathryn S.

McKinley, Mario Nemirovsky, Michael M. Swift, and Osman S. Unsal. Energy-

Efficient Address Translation. In Proceedings of the 22nd IEEE International Sym-

posium on High Performance Computer Architecture, Cited on page: 9

[80] Stefanos Kaxiras and Alberto Ros. A new perspective for efficient virtual-cache co-

herence. In Proceedings of the 40th Annual International Symposium on Computer

Architecture, ISCA ’13, pages 535–546, 2013. DOI: 10.1145/2485922.2485968.

Cited on page: 27, 53

144

http://dx.doi.org/10.1145/1016720.1016747
http://dx.doi.org/10.1145/511334.511351
http://dx.doi.org/10.1109/IISWC.2014.6983034
http://dx.doi.org/10.1109/IISWC.2014.6983034
http://dx.doi.org/10.1145/2749469.2749471
http://dx.doi.org/10.1145/2485922.2485968


REFERENCES

[81] Joo-Young Kim and Hoi-Jun Yoo. Bitwise Competition Logic for Compact Digi-

tal Comparator. In Proceedings of the 2007 IEEE Asian Solid-State Circuits Confer-

ence, ASSCC, pages 59–62, DOI: http://dx.doi.org/10.1109/ASSCC.2007.4425682.

Cited on page: 71

[82] Hsien-Hsin S. Lee and Chinnakrishnan S. Ballapuram. Energy Efficient D-TLB and

Data Cache Using Semantic-aware Multilateral Partitioning. In Proceedings of the

2003 International Symposium on Low Power Electronics and Design, ISLPED ’03,

pages 306–311, 2003. DOI: 10.1145/871506.871583. Cited on page: 8, 94, 125

[83] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P. Jouppi. Cacti-

p: Architecture-level modeling for sram-based structures with advanced leakage

reduction techniques. In Proceedings of the International Conference on Computer-

Aided Design, ICCAD ’11, pages 694–701, 2011. Cited on page: 95, 99, 113

[84] Kevin Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F.

Wenisch. Thin servers with smart pipes: designing SoC accelerators for memcached.

In ISCA, pages 36–47, DOI: 10.1145/2485922.2485926. Cited on page: 39

[85] William Lonehgan and Paul King. Design of the b 5000 system. Datamation, 7(5),

Cited on page: 28, 90

[86] Pejman Lotfi-Kamran, Boris Grot, and Babak Falsafi. Noc-out: Microarchitecting

a scale-out processor. In Proceedings of the 2012 45th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, MICRO-45, pages 177–187, 2012. DOI:

10.1109/MICRO.2012.25. Cited on page: 6, 32

[87] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos, Onur Kocber-

ber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin Idgunji, Emre Ozer, and

Babak Falsafi. Scale-out Processors. In Proceedings of the 39th Annual Interna-

tional Symposium on Computer Architecture, ISCA ’12, pages 500–511, 2012. DOI:

10.1145/2366231.2337217. Cited on page: 6, 32

[88] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff

Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building

Customized Program Analysis Tools with Dynamic Instrumentation. In Proceedings

145

http://dx.doi.org/http://dx.doi.org/10.1109/ASSCC.2007.4425682
http://dx.doi.org/10.1145/871506.871583
http://dx.doi.org/10.1145/2485922.2485926
http://dx.doi.org/10.1109/MICRO.2012.25
http://dx.doi.org/10.1109/MICRO.2012.25
http://dx.doi.org/10.1145/2366231.2337217
http://dx.doi.org/10.1145/2366231.2337217


REFERENCES

of the 2005 ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI ’05, pages 190–200, 2005. DOI: 10.1145/1065010.1065034. Cited

on page: 95, 99, 112

[89] Daniel Lustig, Abhishek Bhattacharjee, and Margaret Martonosi. TLB Improve-

ments for Chip Multiprocessors: Inter-Core Cooperative Prefetchers and Shared

Last-Level TLBs. ACM Trans. Archit. Code Optim., 10(1):2:1–2:38, DOI:

10.1145/2445572.2445574. Cited on page: 45, 58, 90

[90] Collin McCurdy, Alan L. Coxa, and Jeffrey Vetter. Investigating the tlb behavior of

high-end scientific applications on commodity microprocessors. In Proceedings of the

ISPASS 2008 - IEEE International Symposium on Performance Analysis of Systems and

Software, ISPASS ’08, pages 95–104, 2008. DOI: 10.1109/ISPASS.2008.4510742.

Cited on page: 2, 4, 21, 59

[91] MIPS Technologies, Incorporated. MIPS32 Architecture for Programmers Volume

iii: The MIPS Privileged Resource Architecture, Cited on page: 23, 65, 97

[92] Alessandro Morari, Roberto Gioiosa, Robert W. Wisniewski, Bryan Rosenburg,

Todd Inglett, and Mateo Valero. Evaluating the impact of TLB misses on fu-

ture HPC systems. In The 26th IEEE International Parallel and Distributed Process-

ing Symposium (IPDPS 2012), IPDPS 2012, pages 1010–1021, May 2012. DOI:

http://dx.doi.org/10.1109/IPDPS.2012.94. Cited on page: 59

[93] David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechrest, Trevor Mudge, and

Richard Brown. Design tradeoffs for software-managed tlbs. In Proceedings of the

20th Annual International Symposium on Computer Architecture, ISCA ’93, pages

27–38, 1993. DOI: 10.1145/165123.165127. Cited on page: 59

[94] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan Cox. Practical, Transparent

Operating System Support for Superpages. In Proceedings of the 5th Symposium on

Operating Systems Design and implementation, OSDI ’02, pages 89–104, 2002. DOI:

10.1145/1060289.1060299. Cited on page: 65, 89

[95] Misel-Myrto Papadopoulou, Xin Tong, Andre Seznec, and Andreas Moshovos.

Prediction-based superpage-friendly TLB designs. In Proceedings of the 21st IEEE

146

http://dx.doi.org/10.1145/1065010.1065034
http://dx.doi.org/10.1145/2445572.2445574
http://dx.doi.org/10.1145/2445572.2445574
http://dx.doi.org/10.1109/ISPASS.2008.4510742
http://dx.doi.org/http://dx.doi.org/10.1109/IPDPS.2012.94
http://dx.doi.org/http://dx.doi.org/10.1109/IPDPS.2012.94
http://dx.doi.org/10.1145/165123.165127
http://dx.doi.org/10.1145/1060289.1060299
http://dx.doi.org/10.1145/1060289.1060299


REFERENCES

International Symposium on High Performance Computer Architecture, pages 210–

222, DOI: http://dx.doi.org/10.1109/HPCA.2015.7056034. Cited on page: 24, 90,

94, 97, 114, 119, 124

[96] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattachar-

jee. CoLT: Coalesced Large-Reach TLBs. In Proceedings of the 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO-45, pages 258–

269, 2012. DOI: 10.1109/MICRO.2012.32. Cited on page: 6, 8, 58, 61, 64, 65, 76,

79, 89, 94, 95, 103, 126

[97] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H. Loh. Increasing

TLB reach by exploiting clustering in page translations. In Proceedings of the 20th

IEEE International Symposium on High Performance Computer Architecture, pages

558–567, 2014. DOI: http://dx.doi.org/10.1109/HPCA.2014.6835964. Cited on

page: 6, 8, 58, 61, 64, 65, 76, 82, 84, 89, 94, 95, 103, 126

[98] Stephen Phillips. M7: Next Generation SPARC. In Hot Chips: A Symposium on High

Performance Chips, Cited on page: 88

[99] Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T. N. Vijaykumar.

Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep-submicron Cache Mem-

ories. In Proceedings of the 2000 International Symposium on Low Power Electronics

and Design, ISLPED ’00, pages 90–95, 2000. DOI: 10.1145/344166.344526. Cited

on page: 124

[100] Xiaogang Qiu and Michel Dubois. Towards Virtually-Addressed Mem-

ory Hierarchies. In Proceedings of the 7th IEEE International Sympo-

sium on High Performance Computer Architecture, pages 51–62, DOI:

http://dx.doi.org/10.1109/HPCA.2001.903251. Cited on page: 27, 53

[101] Dino Quintero, Sebastien Chabrolles, Chi Hui Chen, Murali Dhandapani, Talor Hol-

loway, Chandrakant Jadhav, Sae Kee Kim, Sijo Kurian, Bharath Raj, Ronan Resende,

Bjorn Roden, Niranjan Srinivasan, Richard Wale, William Zanatta, and Zhi Zhang.

IBM Power Systems Performance Guide Implementing and Optimizing, Cited on

page: 23, 65, 97

147

http://dx.doi.org/http://dx.doi.org/10.1109/HPCA.2015.7056034
http://dx.doi.org/10.1109/MICRO.2012.32
http://dx.doi.org/http://dx.doi.org/10.1109/HPCA.2014.6835964
http://dx.doi.org/10.1145/344166.344526
http://dx.doi.org/http://dx.doi.org/10.1109/HPCA.2001.903251
http://dx.doi.org/http://dx.doi.org/10.1109/HPCA.2001.903251


REFERENCES

[102] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared caches. In

Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchi-

tecture, MICRO-39, pages 423–432, 2006. DOI: 10.1109/MICRO.2006.49. Cited on

page: 8, 95, 107, 108

[103] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta. The impact of

architectural trends on operating system performance. In Proceedings of the Fifteenth

ACM Symposium on Operating Systems Principles, SOSP ’95, pages 285–298, 1995.

DOI: 10.1145/224056.224078. Cited on page: 59

[104] Ashley Saulsbury, Fredrik Dahlgren, and Per Stenström. Recency-based TLB Preload-

ing. In Proceedings of the 27th Annual International Symposium on Computer Archi-

tecture, ISCA ’00, pages 117–127, 2000. DOI: 10.1145/339647.339666. Cited on

page: 58, 89

[105] Azam Seyedi, Vasileios Karakostas, Stefan Cosemans, Adrián Cristal, Mario Ne-

mirovsky, and Osman S. Unsal. NEMsCAM: A novel CAM cell based on nano-electro-

mechanical switch and CMOS for energy efficient TLBs. In Proceedings of the 2015

IEEE/ACM International Symposium on Nanoscale Architectures, pages 51–56, DOI:

http://dx.doi.org/10.1109/NANOARCH.2015.7180586. Cited on page: 125

[106] André Seznec. A Case for Two-way Skewed-associative Caches. In Proceedings of

the 20th Annual International Symposium on Computer Architecture, ISCA ’93, pages

169–178, 1993. DOI: 10.1145/165123.165152. Cited on page: 88

[107] Manish Shah, Robert Golla, Gregory Grohoski, Paul Jordan, Jama Barreh, Jeffrey

Brooks, Mark Greenberg, Gideon Levinsky, Mark Luttrell, Christopher Olson, Zeid

Samoail, Matt Smittle, and Thomas Ziaja. Sparc T4: A Dynamically Threaded

Server-on-a-Chip. IEEE Micro, 32(2):8–19, DOI: 10.1109/MM.2012.1. Cited on

page: 23, 24, 65, 93, 97, 111

[108] Avinash Sodani. Race to Exascale: Opportunities and Challenges. In MICRO Keynote,

Cited on page: 4, 93

[109] Shekhar Srikantaiah and Mahmut Kandemir. Synergistic TLBs for High Performance

Address Translation in Chip Multiprocessors. In Proceedings of the 43rd Annual

148

http://dx.doi.org/10.1109/MICRO.2006.49
http://dx.doi.org/10.1145/224056.224078
http://dx.doi.org/10.1145/339647.339666
http://dx.doi.org/http://dx.doi.org/10.1109/NANOARCH.2015.7180586
http://dx.doi.org/http://dx.doi.org/10.1109/NANOARCH.2015.7180586
http://dx.doi.org/10.1145/165123.165152
http://dx.doi.org/10.1109/MM.2012.1


REFERENCES

IEEE/ACM International Symposium on Microarchitecture, MICRO ’43, pages 313–

324, 2010. DOI: 10.1109/MICRO.2010.26. Cited on page: 90

[110] Sun Microsystems. UltraSPARC T2 Supplement to the UltraSPARC Architecture

2007. Cited on page: 89

[111] Madhusudhan Talluri and Mark D. Hill. Surpassing the TLB Performance of Super-

pages with Less Operating System Support. In Proceedings of the Sixth International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, ASPLOS VI, pages 171–182, 1994. DOI: 10.1145/195473.195531. Cited on

page: 6, 8, 58, 61, 64, 65, 89, 94, 95, 103, 126

[112] Madhusudhan Talluri, Shing Kong, Mark D. Hill, and David A. Patterson. Trade-

offs in supporting two page sizes. In Proceedings of the 19th Annual Interna-

tional Symposium on Computer Architecture, ISCA ’92, pages 415–424, 1992. DOI:

10.1145/139669.140406. Cited on page: 24, 97

[113] Mohit Tiwari, Banit Agrawal, Shashidhar Mysore, Jonathan Valamehr, and Timo-

thy Sherwood. A Small Cache of Large Ranges: Hardware Methods for Efficiently

Searching, Storing, and Updating Big Dataflow Tags. In Proceedings of the 41st

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 41, pages

94–105, 2008. DOI: 10.1109/MICRO.2008.4771782. Cited on page: 71, 90

[114] Wen-Hann Wang, Jean-Loup Baer, and Henry M. Levy. Organization and perfor-

mance of a two-level virtual-real cache hierarchy. In Proceedings of the 16th Annual

International Symposium on Computer Architecture, ISCA ’89, pages 140–148, 1989.

DOI: 10.1145/74925.74942. Cited on page: 53

[115] Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian Memory Protection.

In Proceedings of the 10th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS X, pages 304–316, 2002. DOI:

10.1145/605397.605429. Cited on page: 90

[116] David A. Wood, Susan J. Eggers, Garth Gibson, Mark D. Hill, and Joan M. Pendle-

ton. An in-cache address translation mechanism. In Proceedings of the 13th Annual

International Symposium on Computer Architecture, ISCA ’86, pages 358–365, 1986.

DOI: 10.1145/17356.17398. Cited on page: 27, 53, 90, 94, 126

149

http://dx.doi.org/10.1109/MICRO.2010.26
http://dx.doi.org/10.1145/195473.195531
http://dx.doi.org/10.1145/139669.140406
http://dx.doi.org/10.1145/139669.140406
http://dx.doi.org/10.1109/MICRO.2008.4771782
http://dx.doi.org/10.1145/74925.74942
http://dx.doi.org/10.1145/605397.605429
http://dx.doi.org/10.1145/605397.605429
http://dx.doi.org/10.1145/17356.17398


REFERENCES

[117] Carole-Jean Wu and Margaret Martonosi. Characterization and dynamic mitigation

of intra-application cache interference. In Proceedings of the IEEE International Sym-

posium on Performance Analysis of Systems and Software, ISPASS ’11, pages 2–11,

2011. DOI: 10.1109/ISPASS.2011.5762710. Cited on page: 57

[118] Wei Xu, Hongbin Sun, Xiaobin Wang, Yiran Chen, and Tong Zhang. De-

sign of Last-level On-chip Cache Using Spin-torque Transfer RAM (STT

RAM). IEEE Trans. Very Large Scale Integr. Syst., 19(3):483–493, DOI:

http://dx.doi.org/10.1109/TVLSI.2009.2035509. Cited on page: 58

[119] Jiachen Xue and Mithuna Thottethodi. PreTrans: Reducing TLB CAM-search via

Page Number Prediction and Speculative Pre-translation. In Proceedings of the 2013

International Symposium on Low Power Electronics and Design, ISLPED ’13, pages

341–346, 2013. DOI: http://dx.doi.org/10.1109/ISLPED.2013.6629320. Cited on

page: 125

[120] Hongil Yoon and Gurindar S. Sohi. Revisiting Virtual L1 Caches: A Practical Design

Using Dynamic Synonym Remapping. In Proceedings of the 22nd IEEE International

Symposium on High Performance Computer Architecture, Cited on page: 27

150

http://dx.doi.org/10.1109/ISPASS.2011.5762710
http://dx.doi.org/http://dx.doi.org/10.1109/TVLSI.2009.2035509
http://dx.doi.org/http://dx.doi.org/10.1109/TVLSI.2009.2035509
http://dx.doi.org/http://dx.doi.org/10.1109/ISLPED.2013.6629320

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Virtual Memory
	1.1.1 Architectural Support
	1.1.2 Evolution of Address Translation Hardware Support

	1.2 Motivation
	1.3 Problem Statement
	1.4 Thesis Approach
	1.5 Thesis Contributions
	1.5.1 Quantifying Address Translation Overheads
	1.5.2 Reducing Address Translation Performance Overheads
	1.5.3 Improving Address Translation Energy-Efficiency

	1.6 Thesis Organization

	2 Background on Virtual Memory
	2.1 Virtual Memory
	2.2 Basic Concepts
	2.3 Architectural Support
	2.3.1 Page Table
	2.3.2 Translation Lookaside Buffer
	2.3.3 MMU cache
	2.3.4 Huge Pages

	2.4 Address Translation in the Multicore Era
	2.5 Accessing memory with virtual memory
	2.6 Segmented Virtual Memory

	3 Quantifying Address Translation Performance Overheads
	3.1 Introduction
	3.2 Background
	3.2.1 Scale-out Applications

	3.3 Methodology
	3.3.1 System Setup
	3.3.2 Huge Pages

	3.4 MMU Performance Analysis
	3.4.1 How much time is spent in TLB misses?
	3.4.2 Do Huge Pages help?
	3.4.3 Do TLB misses affect performance?
	3.4.4 How often do TLB misses occur?
	3.4.5 What is the cost of a TLB miss?
	3.4.6 Comparison with other benchmark suites
	3.4.7 Interference in the cache hierarchy
	3.4.8 Interaction with Hardware Prefetchers
	3.4.9 Instruction TLB misses
	3.4.10 Summary & Implications

	3.5 Potential Improvements in the MMU
	3.5.1 Virtual Caches
	3.5.2 Perfect MMU Caches
	3.5.3 Perfect Cache Interference
	3.5.4 Perfect TLBs

	3.6 Related Work
	3.7 Summary

	4 Fast Address Translation with Ranges
	4.1 Introduction
	4.2 Background
	4.3 Redundant Memory Mappings
	4.3.1 Overview

	4.4 Architectural Support
	4.4.1 Range TLB
	4.4.2 Range table
	4.4.3 Handling misses in the range TLB

	4.5 Operating System Support
	4.5.1 Managing range translations
	4.5.2 Contiguous memory allocation

	4.6 Discussion
	4.7 Methodology
	4.8 Results
	4.8.1 Performance analysis
	4.8.2 Range TLB sensitivity analysis
	4.8.3 Impact of eager paging
	4.8.4 Energy

	4.9 Related Work
	4.10 Summary

	5 Energy-Efficient Address Translation
	5.1 Introduction
	5.2 Background
	5.2.1 Trends in TLBs
	5.2.2 Summary

	5.3 Energy Characterization
	5.3.1 Methodology Overview
	5.3.2 Where is the energy spent?
	5.3.3 Do huge pages help?
	5.3.4 Does RMM help?
	5.3.5 Do larger TLB organizations help?
	5.3.6 Discussion

	5.4 Efficient Address Translation
	5.4.1 Opportunity
	5.4.2 The Lite Mechanism
	5.4.3 RMMLite for Energy-Efficient TLBs
	5.4.4 Discussion

	5.5 Methodology
	5.6 Results
	5.6.1 Dynamic Energy & Performance
	5.6.2 Sensitivity Analysis

	5.7 Related Work
	5.8 Summary

	6 Conclusions
	6.1 Broader Impact
	6.2 Future Research Directions
	6.3 Further Acknowledgements

	7 Publications
	References

