
BypassD: Enabling fast userspace access to shared SSDs
Sujay Yadalam

University of Wisconsin-Madison
Madison, Wisconsin, USA
sujayyadalam@cs.wisc.edu

Chloe Alverti
National Technical University of

Athens
Athens, Greece

xalverti@cslab.ece.ntua.gr

Vasileios Karakostas
University of Athens

Athens, Greece
vkarakos@di.uoa.gr

Jayneel Gandhi
Meta

Menlo Park, California, USA
jayneel@meta.com

Michael Swift
University of Wisconsin-Madison

Madison, Wisconsin, USA
swift@cs.wisc.edu

Abstract
Modern storage devices, such as Optane NVMe SSDs, offer
ultra-low latency of a few microseconds and high bandwidth
of multiple gigabytes per second. At these speeds, the ker-
nel software I/O stack is a substantial source of overhead.
Userspace approaches avoid kernel software overheads but
face challenges in supporting shared storage without major
changes to file systems, the OS or the hardware.
We propose a new I/O architecture, BypassD, for fast,

userspace access to shared storage devices. BypassD takes
inspiration from virtual memory: it uses virtual addresses
to access a device and relies on hardware for translation
and protection. Like memory-mapping a file, the OS ker-
nel constructs a mapping for file contents in the page ta-
ble. Userspace I/O requests then use virtual addresses from
these mappings to specify which file and file offset to ac-
cess. BypassD extends the IOMMU hardware to translate
file offsets into device Logical Block Addresses. Existing
applications require no modifications to use BypassD. Our
evaluation shows that BypassD reduces latency for 4KB ac-
cesses by 42% compared to standard Linux kernel and per-
forms close to userspace techniques like SPDK that do not
support device sharing. By eliminating software overheads,
BypassD improves performance of real workloads, such as
the WiredTiger storage engine, by ∼20%.

CCS Concepts: • Hardware→ External storage; • Soft-
ware and its engineering → File systems management;
• Information systems→ Storage virtualization.

Keywords: I/O performance, low latency, direct access, shar-
ing, userspace, SSD, storage systems

This work is licensed under a Creative Commons Attribution International
4.0 License.
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0372-0/24/04.
https://doi.org/10.1145/3617232.3624854

ACM Reference Format:
Sujay Yadalam, Chloe Alverti, Vasileios Karakostas, Jayneel Gandhi,
and Michael Swift. 2024. BypassD: Enabling fast userspace access to
shared SSDs. In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
1 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New
York, NY, USA, 17 pages. https://doi.org/10.1145/3617232.3624854

1 Introduction
Operating system storage stacks were developed in the era
of spinning disk drives with latencies in the range of millisec-
onds, but modern SSDs, such as Intel Optane, provide access
latencies as low as 4𝜇s and bandwidth close to 7 GB/s [28].
Software overheads that were acceptable for slow devices
are instead becoming the dominant cost in file access. For
example, an Optane SSD can return a 4KB block in 4𝜇s, while
reading the block through standard Linux kernel takes al-
most 8𝜇s. Prior efforts to reduce these software overheads fall
into two main categories: i) optimizations to kernel storage
stacks, and ii) userspace file/storage access.
In the OS kernel, researchers have optimized I/O sched-

uling [10, 26, 66], overlapped asynchronous operations [37],
and used polling instead of interrupts [10, 64]. While these
approaches greatly reduce overheads, they still require con-
text switches to enter and leave the kernel, and security miti-
gations make these switches more costly [25, 57]. Dedicating
a kernel thread to poll for requests from user mode [54]
removes these switches but at the cost of an extra core.

SPDK and others [34, 49, 65] reduce latency by directly ac-
cessing an SSD from userspace. This reduces access latency
but has limitations. First, it burdens application developers
with replacing the kernel block layer and file system, and
managing atomicity and crash consistency. Second, sharing
a device securely between applications/users is challenging:
devices are unaware of file layout or permissions, and con-
sequently, userspace code gets access to all blocks on the
device. Hence, a malicious process can read or corrupt the
entire disk.
The need for device sharing is increasing. Within data

centers, operators run multiple applications on the same
system to increase utilization [14, 23, 50], meaning there are

35

https://doi.org/10.1145/3617232.3624854
https://doi.org/10.1145/3617232.3624854
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3617232.3624854&domain=pdf&date_stamp=2024-04-17

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yadalam et al.

often many workloads simultaneously seeking low-latency
access to storage. Virtual machines (VMs) and containers
share not only CPUs and memory but also storage devices
such as NVMe SSDs. Some workloads may share access to
same files [15, 20, 45, 52].
Thus, systems must provide low-latency access while al-

lowing applications to share a device. Unfortunately, most
existing userspace storage solutions [10, 34, 65] do not sat-
isfy both requirements. Those systems that do [11, 33, 51],
come with the cost of significant changes to devices, access
protocol, and file systems. They rely onmoving the entire file
system [33] or parts [11, 51] to the device. This burdens de-
vices that have limited compute power and memory, limiting
their performance.

In this paper, we propose BypassD, a new I/O architecture
that provides protected access to files directly from userspace.
BypassD offloads permission checks to the hardware, ensur-
ing a process can only access data with appropriate permis-
sions. Our design builds on the key insight that the IOMMU
hardware, currently used for translating virtual memory ad-
dresses to physical addresses, can be repurposed to translate
file offsets to logical block offsets in the SSD. Much like NVM
file systems rely on memory mapping for low-latency access
to data in NVM [6, 32], BypassD constructs page tables in
application address spaces that map virtual addresses to file
data locations, and the SSD uses the IOMMU to check access
and retrieve these mappings without kernel involvement.

File access in BypassD follows two paths. Metadata opera-
tions such as open and append are processed by in-kernel file
systems. File reads and writes are sent directly to the device
from a userspace library. During file open, the kernel maps
the file contents into the application address space. Userspace
read/write requests contain virtual addresses corresponding
to file data. BypassD makes only minimal changes to existing
file system code to map block addresses into address spaces;
the IOMMU to support a new translation type; and SSDs
to request translations of block addresses from the IOMMU.
The entire mechanism is transparent to applications.

We implement BypassD in the Linux kernel with the ext4
file system. We evaluate the performance of BypassD using a
set of microbenchmarks and storage-intensive applications,
and observe that BypassD exposes the true latency of a device
to applications with <0.8𝜇s overhead. BypassD performs
almost as fast as SPDK which lacks support for sharing,
and 25% better on average than a standard Linux kernel.
Compared to a recent work that embeds application code
into the kernel for lower latency [70], BypassD improves the
throughput of storage-intensive workloads by 9.6%.

In summary, the main contributions of this paper are:
• An end-to-end storage architecture that enables fast
userspace access to shared devices called BypassD. By-
passD performsmetadata operations in kernel and data
operations in userspace allowing for a clean design
that avoids any application modifications.

Time (ns) % of total time

Kernel user mode switch 160 2%
VFS + ext4 2,810 36%
Block I/O layer 540 7%
NVMe driver 220 3%
Device time 4,020 51%
User kernel mode switch 100 1%

Total 7,850

Table 1. Latency breakdown of 4KB read() on Optane SSD.

• Modest modifications to the IOMMU hardware to en-
sure fast access and permission checks without kernel
mediation.

• An implementation of BypassD which includes a user
library, extensions to the Linux ext4 file system, and a
model of the hardware modifications.

• Evaluation of BypassD across a variety of micro-bench-
marks, real-world applications, and comparison to
state-of-the-art approaches.

2 Background and Motivation
New media technologies such as 3D XPoint [28] and low-
latency NAND flash [13] have led to devices that offer sub-
ten microseconds access latency and up to 1.6 million IOPS[4,
13, 27]. They leverage high-speed I/O mechanisms to remove
hardware overheads in data access.
NVMe. The NVMe protocol was designed for low-latency
storage requests [3]. It uses in-memory queue pairs for com-
munication between host CPUs and devices. A queue pair
comprises a Submission Queue (SQ) on which requests are
sent to the device and a Completion Queue (CQ) from which
completions are processed. NVMe supports up to 64K queue
pairs per device, each with up to 64K queued requests. Queue
pairs can be mapped into user-mode memory, allowing di-
rect submission and completion of requests from application
code without kernel involvement.
IOMMU and DMA protection. Storage devices perform
DMA to read/write data from/to main memory. Using phys-
ical address for DMA make systems vulnerable to rogue
devices and buggy drivers which could wrongly perform
DMAs to arbitrary memory locations. To avoid this, proces-
sors use an IO Memory Management Unit (IOMMU) that
supports DMAs with IO virtual addresses (IOVA) instead of
physical addresses. Devices issue DMA using IOVA which
the IOMMU translates to a physical address before accessing
memory. IOMMUs use special page tables set up by the OS to
translate IOVAs. With Shared Virtual Addressing (SVA) [41],
a feature of modern processors, IOMMUs can access process
page tables along with the IOMMU-specific page tables.
Software is the new I/O bottleneck. Modern SSDs, such as
Intel Optane SSD [27], Samsung Z-SSD [13], and Toshiba’s
XL-Flash [4], provide access latencies under 10𝜇s. With such
fast devices, the time spent in the kernel I/O software stack
is no longer negligible compared to the device access time.

36

BypassD: Enabling fast userspace access to shared SSDs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Application

Kernel FS

SSD

Metadata ops

Read/write

Application

User lib/FS

SSD

Metadata ops

Read/Write Kernel FS

Application

User lib/FS

SSD

Read/Write

Metadata ops

Kernel FS

a) Kernel access b) User-level FS c) Hybrid FS

(Coordinate sharing)

(protection)

Figure 1. Different approaches for accessing an SSD.

Figure 1a gives a high-level view of a traditional kernel file
system used to manage and access the data on the device.
Typically, accessing the device through the kernel involves
multiple storage layers as shown in Table 1. The table shows
the time spent in each of these layers during 4KB reads to
Optane P5800X SSD [27]: device processing is ∼50% of access
time and the remainder is software overhead. As devices get
faster, the relative overhead will only worsen. It is there-
fore important to develop new techniques to reduce these
software overheads and expose devices’ full performance to
applications [9].
Userspace access is challenging. Direct userspace access
to storage as shown in Figure 1b is promising as it offers re-
duced overheads. However, the main challenge to userspace
device access is permission checks for sharing. When access-
ing a file through the kernel, the kernel relies on process
credentials, file permission metadata and/or access-control
lists (ACLs) to check whether a process has permission to
access a file. With userspace solutions such as SPDK [65] that
bypass the kernel, there is no trusted entity that can enforce
such permission checks. Applications can therefore access
and modify from userspace all blocks on the device. There-
fore, a device cannot be shared securely between multiple
applications with approaches such as SPDK.
Protection in hardware. One way to overcome the chal-
lenge of userspace access is to offload the permission checks
to the hardware as shown in Figure 1c. Prior designs em-
power the device to perform permission checks by copying
permission data to the device [11, 33, 51] or by splitting the
device into partitions with unsafe user-level sharing [49].
Drawbacks of protection in device. Enforcing permission
checks on the device has several challenges. Prior designs [11,
33, 51] make significant changes to the device and access
protocol to store permission information, yet suffer from
several drawbacks (1) high reliance on the device’s computa-
tional power to perform both I/O processing and permission
book-keeping, (2) burden on the device’s memory to store
permission data especially when the device is busy, and (3)
high costs of updating permission information which could
lead to starvation in some cases [11].

The above drawbacks may also lead to unpredictable per-
formance including sudden drops in throughput and high
tail latencies. For instance, in MonetaD, while the device is
updating permission data, it has to stop serving requests or

Application

File system

Driver

Userspace Kernel space

data operations

(read/write)

DMA

buffers

UserLib

Device Management

(create queues)

Queues

Metadata

ops (open,

append)
File info

SSD
IOMMU

DRAMHardware

IOMMU

IOTLB

DRAM

File Tables

DMA

buffers

DMA

SSD

DMA

+ATS

Hardware

Existing path

New path

1

2

3
4

5

Figure 2. BypassD components (shown in green).

temporarily suspend permission checking [11]. If the device
exhausts memory and is unable to cache all permission data,
MonetaD relies on an expensive miss handling procedure
that involves both the userspace library and the kernel to
access the missing permission data. This can increase the
I/O latency by 8x [11].

3 BypassD Overview
BypassD is an I/O architecture that provides low-latency
access to shared devices. BypassD’s main goals are to:

1. Eliminate the software stack overheads and provide
low latency access to devices.

2. Securely share devices between multiple applications.
3. Support unmodified POSIX-compatible applications.

These sharing and POSIX-compatibility goals ensure By-
passD is widely usable. In achieving these goals, we follow
four guiding principles:

1. Kernel bypass: For low latency, bypass the kernel and
provide direct access to the device from userspace.

2. Leverage existing file systems and drivers: Make use
of existing mature and well-tested kernel file systems
and device drivers with only minimal changes.

3. Offload permission checks to hardware: Enforce file sys-
tem access rules by offloading checks to hardware.

4. Co-exist with kernel: Ensure file access is available
through both BypassD and the kernel to handle corner-
cases and avoid performance regressions.

3.1 Design overview
Above principles push towards a design that leverages exist-
ing OS and hardware mechanisms by only offloading latency-
critical file data accesses to userspace. BypassD adopts a split
architecture, wherein latency-critical data operations such
as read() and write() are handled directly in userspace, and
file operations that modify the file metadata such as open()
and appends are processed by the kernel. We call the direct
path from userspace to device the BypassD interface, and the
default path through the kernel, the kernel interface.
While accessing data through the BypassD interface, the

permission checks are performed in the hardware. The ker-
nel file system is responsible for policy decisions that the
hardware enforces during device accesses. Unlike prior de-
signs [11, 33, 51], BypassD performs permission checks on

37

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yadalam et al.

…Logical Block Address R/WFTDevID

…Page Frame Number R/WRsvd.Ignoreda) Regular PTE

b) Proposed

 File Table Entry

Figure 3. Format of File Table Entry.

the host (CPU) hardware, thereby avoiding the drawbacks of
enforcing protection on the device (discussed in Section 2).
BypassD seeks inspiration from virtual memory and ad-

dress translation. With virtual memory, processes access
memory using virtual addresses that are translated to phys-
ical addresses by the Memory Management Unit (MMU).
Along with the translation, MMU ensures that processes
have the correct permissions to access memory. Similarly,
in BypassD, processes access data on a device using virtual
addresses, termed Virtual Block Addresses (VBA) that are
mapped to Logical Block Addresses (LBA) using page tables.
Enhanced IOMMU hardware translates Virtual Block Ad-
dresses in requests to Logical Block Addresses and ensures
the process has permissions to access the blocks.

3.2 BypassD components
Figure 2 shows the key components in BypassD. We briefly
describe these components and then discuss how they inter-
act to achieve the goals of BypassD.
Kernel file system and device driver. BypassD reuses the
kernel file system and device driver to manage the device.
1 All file operations that modify the file system metadata
are handled by the kernel. Unlike prior designs [11, 33, 51],
the file system metadata is present only inside the kernel
and not shared with either userspace libraries or the device.
This avoids complexities involved in maintaining metadata
consistently across multiple layers.
In addition to the regular responsibilities, the kernel file

system in BypassD is responsible for virtualizing block ad-
dresses. In this regard, BypassD supports a new fmap() sys-
tem call that creates VBA to LBA mappings for the process.
fmap() is akin to mmap(): kernel maps the file to the process
address space and returns a virtual address (Virtual Block
Address). 2 Additionally, the kernel creates file tables (see
Section 3.4): file table entries that map a single file. File Table
Entries (FTEs) are special page table entries that hold LBAs
in place of Page Frame Numbers. The kernel attaches these
file table entries to process’ address space during fmap().
Userspace library. BypassD’s UserLib is a shim library that
intercepts system calls. UserLib handles data operations in
userspace and forwards metadata operations to the kernel.
It is transparent to applications so requires no effort to use
BypassD. The library addsminimal software overhead during
data operations thereby achieving low latency access.
UserLib maintains queues and DMA buffers required for

interacting with the device. 3 When the library intercepts
data operations such as read()/write(), it uses the queues to
submit requests to the device and polls them for completion.

UserLib also tracks information about open files such as
flags, offset, size and the starting VBA. It also tracks a list of
ongoing partial-writes (more in Section 4.5)
Hardware. The kernel offloads permission checks to the
hardware. BypassD builds on existing IOMMU translation
and protection mechanisms for IO Virtual Addresses (IOVA).
BypassD proposes minor enhancements to the IOMMU hard-
ware: as shown in Figure 2, in addition to translating IO
Virtual Address (IOVA) of DMA buffers, the IOMMU in By-
passD translates VBAs to LBAs and performs read/write
permission checks. To do so, the IOMMU walks the page
tables of the requesting process to access the attached file
table entries (FTEs).

4 - 5 SSDs communicate with the IOMMU to translate
VBA in incoming requests and perform permission checks.
After receiving translated LBAs, SSDs complete the I/O re-
quests just like they do in systems today.

BypassD is the first system to enforce permission checks
on the host hardware. BypassD avoids significant hardware
changes and tries to reuse existing translation and protection
mechanisms. As shown in Section 6, VBA translation can
take as less as 550ns. With such minimal overheads and mi-
nor hardware enhancements, BypassD achieves low latency
direct access from userspace and device sharing.

3.3 BypassD interface
BypassD provides a new interface enabling processes to ac-
cess devices directly from userspace. Setting up the interface
consists of three steps: i) setting up queue pairs to the device,
ii) allocating DMA buffers, and iii) setting up file tables.
UserLib requests the kernel driver to create new queues

and map it into the userspace. Upon receiving such a request,
the kernel driver creates new queues and registers them with
the device. Crucially, while registering with the device, we
propose that the driver links the Process Address Space ID
(PASID) with each queue. This PASID (like ASIDs in TLBs) is
later used by the IOMMU to identify the proper page table to
walk when translating VBAs to LBAs during data requests.

UserLib also allocates pinned DMA pages for passing data
to and from the device. This is similar to SPDK [65] which
likewise allocates huge pages during initialization for DMA.

When UserLib intercepts a file open(), it not only forwards
it to the kernel but also issues fmap() requesting the kernel
to setup the VBA to LBA mappings and attach the file table
entries to process page tables. After a file is successfully
fmap()-ed, the BypassD interface is initialized and UserLib
can then issue I/O requests directly from userspace.

3.4 File tables
Special page table entries in the process page table tree map
VBAs to the target file’s Logical Block Addresses (LBAs). We
name these file table entries. The kernel attaches file table
entries to a process’ page table during fmap(). Figure 3 shows
their structure. A file table entry stores LBA (instead of PFN),

38

BypassD: Enabling fast userspace access to shared SSDs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

the device ID (DevID), and a special bit (File Table–FT) to
differentiate it from a regular page table entry. DevID is used
to identify the device containing the file. This ensures that
a malicious process does not use the VBA to access files on
another device. Prior work [36] has used similar entries for
hardware paging.

3.5 Translation and protection in the hardware
When the device receives a request with VBA, directly from
userspace, it issues a translation request to the IOMMU.
Along with the VBA, the translation request includes op-
eration (read/write), I/O size and PASID linked to the queue
on which the request arrived. With SVA [41], the IOMMU
uses PASID to walk the page tables of the process and trans-
lates VBA to LBA using the attached file table entries. During
the translation process, IOMMU ensures that the permissions
are met. Upon successful translation, IOMMU returns the
LBAs to the device which proceeds to serve the request.

3.6 Revoking BypassD interface
At any point, the kernel can revoke a process’ ability to
access a file through the BypassD interface. The kernel does
this under scenarios discussed in Section 4.5 using the below
mechanism:

1. Kernel detaches FTEs corresponding to the file(s) that
it wants to revoke access to.

2. Requests issued directly from userspace to such a file
fail because the IOMMU cannot translate the VBA
without the file table entries.

3. When an I/O fails, UserLib issues an fmap() again re-
questing the kernel to re-attach the file tables.

4. Kernel rejects the request returning a VBA of 0. An
empty VBA indicates to UserLib that the file can no
longer be accessed directly from userspace.

5. Thereafter the process falls back to the kernel interface
for all subsequent I/O.

As we shall see, this is a powerful mechanism that removes
the need to handle complex but rare sharing cases in userspace;
instead BypassD falls-back to the kernel.
Race between access revocation and I/O access. When the
kernel revokes direct access for a process, there could be
on-going I/O for this file. A problem arises when the kernel
deallocates blocks of a file and reallocates them to another.
There is a race when the SSD has already translated addresses
but not yet performed flash accesses, as invalidations will not
cancel the requests. This race is very small, and is handled
by delaying re-allocation of blocks until a sync point (e.g.,
fsync()) that forces completion of all pending I/Os.

4 BypassD Implementation
We implemented BypassD with ext4 without data journaling.
BypassD currently supports NVMe storage devices. The table
below shows the size of implementation.

Component Lines of code
Kernel changes 517 lines
ext4 changes 1303 lines
Device driver changes 885 lines
UserLib 1496 lines

Table 2. Total lines of code added/modified in BypassD.

DRAM

PGD

PUD
PMD

PTE

PGD

PUD
PMD

Process A

Process B

VFS cache

R

R/W

VFS cache

Inode2
PMD

PTE PTE

Inode1
PTE

LBA0

LBA511

…

LBA0-16

LBA17-256

LBA258-511

LBA257

Inode1 2MB file

Figure 4. Attaching file table fragments to processes address
spaces via the fmap() call.

BypassD interposes on file system access using LD_PRELOAD.
Programmers can select whether a file is accessed using By-
passD interface or the default kernel interface. Files requiring
low latency can be accessed using the BypassD interface.
Table 3 summarizes how BypassD handles common file

operations. Below, we discuss important actions performed
in BypassD and then discuss sharing/concurrency scenarios.

4.1 Creating file table entries
During fmap(), the kernel allocates a region in the calling
process’ virtual address space that equals or exceeds the file’s
size and attaches the file table entries. The kernel returns
the starting virtual block address of this virtual region from
fmap(). If the kernel decides that a file is not eligible for being
accessed directly from the userspace, it returns a VBA of 0.

The file system creates the file table entries by retrieving
the Logical Block Addresses (LBAs) of the file blocks. We
call this a cold fmap(). If the block mappings are cached in
memory (e.g., ext4’s extent status tree), obtaining LBAs is
inexpensive. If not, the file system issues I/Os to read the file
to block mapping from the device. We discuss the overheads
of creating these file tables in Section 6.
Pre-populating file table entries. Prior research has stud-
ied the overheads of setting up page tables [6, 24, 36, 47]. To
avoid the overheads of creating private file table entries for
every process that opens the same file, BypassD uses shared
pre-populated file table entries. File table entries can be pre-
populated because the entries’ content (LBAs) are known
upfront and change slowly over time. A similar strategy is al-
ready implemented for persistent memory file mappings [6].
Note that BypassD does not support CoW (copy on write)

39

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yadalam et al.

File operation Userlib actions Kernel FS actions

open() Forward to kernel and issue fmap()
indicating intent to access file through BypassD interface. Attach file table entries to process page table.

read()/write()
(incl. variants)

Create NVMe read/write request: VBA in request formed
by adding offset to Starting VBA of file.
Issue request on SQ and poll CQ for completion.

appends (write
to end of file) Forward to kernel.

Allocate block, update file metadata.
Create new file table entries and attach to page table.
Issue write to new block directly to device without buffering.

fallocate()/ftruncate() Forward to kernel. Allocate/de-allocate blocks. Zero out newly allocated blocks.
Attach/detach file table entries corresponding to the blocks.

fsync()/fdatasync() Flush all queues (NVMe flush) to make data durable, then
forward to kernel.

Update file modified timestamps.
Flush file metadata to disk.

close() Forward to kernel. Detach file table entries.
Table 3.Actions performed by UserLib and kernel FS (in addition to normal actions) in BypassD during common file operations.

filesystems such as btrfs since the offset to block mapping
changes on every write.
As files commonly grow or shrink starting at their final

block and in a dense manner, we use entries of page table
radix-trees to store the LBAs, building them in a bottom-up
manner. Figure 4 shows how a single FTE leaf can store all
the LBAs of a 2MB file. BypassD maintains file table entries
in the file’s cached VFS inode. Their lifetime equals the time
that the inode remains cached. The file system also tracks
all processes accessing a file in the file’s cached inode.
BypassD leverages the cached file table entries to accel-

erate fmap() by attaching them in almost constant time to
the calling process address space (warm fmap()). The ker-
nel builds the page tables of the calling process up to an
intermediate level and attaches the cached file table entries
using simple pointer update operations during the fmap()
call. BypassD maps the entire file (no partial maps). Since the
attachment can happen only at the intermediate granulari-
ties of the page table radix-tree (e.g., PUD or PMD), BypassD
allocates a virtual region for the file at the same granularity
(multiples of 1GB or 2MB). If the allocated virtual region is
greater than the file size, the remaining virtual space can be
used to extend the mapping in place if the file grows in size.
Since BypassD maps files completely, no page faults occur
during file access.
BypassD file table entries are shared between processes

opening the same file. The shared file table entries have the
maximum access rights preset (the R/W bit is always set) by
default. To support different read/write access permissions
per open, BypassD sets the permission bit in the private
part of the process’s page table trees, where the entries are
attached, similar to [6, 24]. Figure 4 shows how two processes
open the same file with different permissions.
Extending or truncating files.When new blocks are allo-
cated to a file, the kernel attaches new FTEs corresponding
to the new blocks so that the process can access these blocks
directly from userspace. Similarly, when blocks are deallo-
cated, corresponding FTEs are detached to deny access to
those blocks from the userspace.

The file system ensures that newly allocated blocks are
zeroed out, and applications must be aware of zero padding
at the end of a file if writes do not complete. Security dictates
the blocks must be zeroed, as otherwise the application could
read the previous data in those blocks.

4.2 Issuing requests through BypassD interface
UserLib intercepts all variations of read (read()/pread()) and
write (write()/pwrite()) system calls. It issues all non-metadata-
modifying operations (all reads and selected writes) to the
device directly from userspace. UserLib converts the offset
into an equivalent VBA and copies data between the user
buffer and the DMA buffer.
Handling reads. Since reads do not modify metadata, they
are issued directly from userspace.
Handling writes. UserLib handles overwrites and appends
differently. Overwrites to existing blocks of a file do not
modify any file metadata, so UserLib issues them directly
to the device from userspace. Appends to the end of a file
have to be handled carefully as they require allocation of
new blocks and modify file metadata. UserLib detects such
appends using stored file size and routes them to the kernel.
The kernel issues appends directly to the device without
buffering them in the page cache.

UserLib does not provide zero-copy I/O. Instead, UserLib
uses pinned DMA buffers over user buffers for two reasons:
i) to avoid the cost of pinning and unpinning user pages, and
ii) ensuring correctness. When user buffers are used for I/O,
programs must ensure that other program threads do not
free those buffers during an I/O. UserLib could adopt Demik-
ernel’s [67] strategy of allocating memory to an application
from a DMA-capable heap to support zero-copy I/O.

4.3 Hardware enhancements
In BypassD, the IOMMU hardware is entrusted to perform
VBA translations and permission checks during device access.
The proposed modifications are modest.
Device changes. Devices receive read/write requests that
contain VBA instead of LBA. They then send VBA translation
request to the IOMMU through PCIe Address Translation

40

BypassD: Enabling fast userspace access to shared SSDs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Service (ATS) [48]. For reads, VBA translation and DMA are
serialized because the device needs block addresses before
reading from the blocks. For writes, the translation request
and DMA are sent simultaneously because the data is first
copied into device memory and then written to the block.
Writes therefore do not experience any VBA translation
overheads.
IOMMU changes. The IOMMU in commercially available
processors translates virtual addresses from I/O requests to
physical addresses in memory. With BypassD, we propose
that the IOMMU is enhanced to also handle translation re-
quests for VBAs. The IOMMU translates VBA just like it
translates virtual memory addresses. It walks the page tables
as usual but interprets the contents of leaf entries differently.
BypassD adds a new bit to the PTE, FT, to distinguish regular
page table entries from file table entries, as shown in Figure 3.
If the bit is set, the IOMMU interprets the contents of the
entry as a LBA instead of a PFN and will only use it for block
address translations. The IOMMU also compares DevID in
the FTE to requester ID in the translation request to ensure
that the process is accessing the files on the correct device.

The IOMMU could receive requests for regions larger than
a single page, both for memory buffers and with BypassD
for blocks. Current IOMMUs walk the page table once for
each page to fetch multiple entries. Similarly, in BypassD
the IOMMU responds to large VBA translation requests with
multiple pairs of (LBA, length) and coalesces them if possible.

Often there is no temporal locality in block accesses, so the
IOMMU does not cache FTEs in the IOTLB, thereby prevent-
ing IOTLB pollution. However, the higher level entries of the
page table are cached in IOMMU’s translation caches. By-
passD would therefore benefit from larger translation caches
but not necessarily a larger IOTLB.

4.4 BypassD guarantees
Our implementation of BypassD is POSIX-compliant and
provides the consistency guarantees of traditional kernel file
systems such as ext4. Similar to ext4 without data journaling,
BypassD provides metadata crash consistency but not data
consistency. Currently, BypassD only supports synchronous
operations, i.e., all operations are considered complete when
the corresponding call returns to the user application.
Accessed and modified timestamps. BypassD deviates
slightly from POSIX semantics when it comes to updating
the accessed and modified timestamps. When a file has been
accessed or written to, the file metadata in the kernel will not
reflect it immediately. The timestamps are updated when the
file is closed or during fsync()/fdatasync(). This strategy is
similar to memory-mapped files and allowed by POSIX [1, 2].

4.5 Sharing and concurrency
One of the primary goals of BypassD is to enable device shar-
ing between multiple applications. In this section, we explain
how BypassD handles intra- and inter-process sharing.

4.5.1 Intra-process sharing. Since BypassD provides a
synchronous interface, all data operations complete only
after the device accepts them. All metadata operations com-
plete after the kernel returns. Therefore, the device acts as
the point of coherence for data operations and the kernel
for metadata operations. As all threads of a process share
UserLib, it provides a consistent view of file information,
such as starting VBA, size, and file offset.

BypassD supports sharing a device and files between threads
of a process. However, special care has to be taken while
handling partial writes that do not completely overwrite the
smallest block size provided by the device.
Serializing partial writes. UserLib handles such writes by
reading the old block data, modifying and writing it back.
Without synchronization, two threads may clobber each
other’s writes. UserLib serializes partial writes to the same
file to avoid data inconsistencies. It maintains a list of offsets
of ongoing partial writes for each open file. When another
thread issues a write, UserLib looks up for matching offsets
in the list. If a match exists, it delays the later write.

4.5.2 Inter-process sharing. BypassD interface supports
multiple processes performing reads and overwrites to the
same file but cannot support operations on shared files that
modify metadata. The kernel revokes direct access (see Sec-
tion 3.6) when it identifies multiple processes changing a
file’s metadata.
Concurrent access through BypassD and kernel inter-
face. It could happen that a file is opened through BypassD
interface in one process and through kernel interface in an-
other. Achieving coherency and consistency is challenging.
BypassD avoids this scenario by not supporting concurrent
access through both BypassD and kernel interfaces. If a file
is already open through the kernel interface, fmap() returns
zero. Likewise, if a file is mapped for userspace access and
then opened for kernel access, BypassD revokes a process’
direct access to the file using the mechanism described in
Section 3.6.

5 Discussion
5.1 Enhancements to BypassD
Appends from the userspace. Appends are routed through
the kernel since they modify file metadata. To accelerate fre-
quent appends, BypassD could pre-allocate blocks using fal-
locate() and then issue overwrites to the pre-allotted blocks.
We implement this as an optimized append operation. An
alternate but more intrusive approach is to adopt the relink
operation of SplitFS [32] that can atomically swap newly
appended blocks from a staging file into the target file.
Non-blocking writes. Currently, BypassD only supports
synchronous writes that return after data is written to the
device. To improve write latency and throughput, BypassD
could be modified to support non-blocking writes, i.e., writes
do not wait for data to be written out to the device. However,

41

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yadalam et al.

this change incurs synchronization and consistency over-
heads to ensure that reads always see the latest data which
could be buffered in an unprocessed write request. With this
approach, the per-inode range-based locking of CrossFS [51]
can be used to increase concurrency.
Alternate data structures. BypassD stores VBA transla-
tions in page tables, which adds cost to fmap() for large files.
Using a different data structure with a new hardware walker
(e.g., rIOMMU [42]) could reduce this cost.

5.2 BypassD in virtualized environments
Containers. BypassD supports sharing an SSD securely be-
tween multiple containers without requiring additional mod-
ifications. Container environments use mount namespaces
to provide processes an isolated view of the device. The ker-
nel ensures that a containerized application can only open
and access files within its namespace. Since BypassD relies
on the kernel for access control and metadata operations,
BypassD works readily with containers.
Virtual Machines (VMs). BypassD can also enable direct
userspace access from processes within a VM. BypassD re-
quires similar hardware virtualization support for direct ac-
cess to devices required by a guest OS, namely SR-IOV [30]
or Scalable-IOV [29]. When a process inside a VM accesses
the device directly, the IOMMU performs a nested address
translation to translate VBAs to LBAs. As isolation between
VMs is provided at the block level by Scalable-IOV or SR-
IOV, this design does not support file sharing across virtual
machines.

5.3 Qualitative security evaluation
BypassD assumes a threat model in which the user process,
including UserLib, could be malicious while the kernel and
the hardware (device and IOMMU) are part of the trusted
computing base (TCB). In BypassD, a malicious process can
only read and write files it has permissions for; it cannot
access any other files owned by other users, exactly the same
as normal file access.

BypassD ensures that a process can only access blocks of
files for which it has right permissions. Much like virtual
memory, processes are required to accesses blocks using
VBAs instead of LBAs. If a process tries to access a block
using a LBA or an invalid VBA, the VBA translation fails in
the IOMMU and the SSD returns an error code to the process
without completing the I/O. A process can therefore only
access blocks with valid VBAs.

VBAs are valid if corresponding file table entries (FTEs) ex-
ist in the process page tables. A valid VBA only exists when
the file has been successfully opened through the kernel; a
valid VBA implies that the kernel has approved the process’
access to the file. When a file is closed or when blocks of a
file are deallocated, the kernel detaches the FTEs from the
process page tables, invalidating the VBAs. A process cannot

access the blocks from userspace thereafter. Therefore, a pro-
cess can only access files after they are successfully opened
through the kernel and before they are closed.
BypassD guarantees confidentiality of user’s data even

when blocks are reallocated to another user’s file. BypassD
zeros a block during allocation, thereby ensuring that direct
accesses to the file does not return the previously stored data.
As mentioned in Section 3.6, BypassD avoids race between
direct I/O and block reallocation by delaying the reuse of a
block until a sync point.

6 Evaluation
We answer the following questions about BypassD:

1. How does BypassD perform while accessing a low
latency SSD? How does it compare to the standard
Linux kernel, SPDK and state-of-the-art solutions?

2. What are the overheads in BypassD?
3. Can a device be shared efficiently between multiple

applications?
4. How does performance of real world applications im-

prove with BypassD?

6.1 Methodology
Experimental setup.We run all our experiments on an Intel
Xeon Gold 5317 CPUwith 12 cores (24 with Hyper-Threading
enabled) and 96GB memory, connected to an Intel Optane
P5800X SSD. We use Ubuntu 20.04 with Linux 5.4. We disable
turbo boost and frequency scaling (C states).
Workloads. We run 3 sets of workloads to evaluate By-
passD’s performance.We use micro-benchmarks to study the
latency and throughput, real world workload to understand
BypassD benefits in production systems, and state-of-the-art
research workloads to understand the maximum potential
of BypassD.

6.2 VBA translation modeling
BypassD proposes minor enhancements to the IOMMU en-
abling it to translate Virtual Block Addresses (VBAs) to Log-
ical Block Addresses (LBAs). Since commercially available
processors do not have this feature, we emulate the over-
heads of VBA translation by adding a delay while issuing
requests from UserLib. VBA translation overhead includes
two costs: PCIe bus latency and IOMMU translation latency.

PCIe round-trip latency. To capture the round-trip latency
across PCIe, we composed an experiment that repeatedly
reads 64 bytes from the Optane SSD device register. On av-
erage, the PCIe round trip latency was about 345ns (similar
to [21, 46]). We assume that the measured PCIe latency is
symmetric. Address Translation Service (ATS) requests can
be reordered with respect to other requests. Therefore under
contention, translation requests can be prioritized to limit
the total VBA translation overheads.

42

BypassD: Enabling fast userspace access to shared SSDs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Experiment configuration Latency

IOMMU off 1120 ns
IOMMU on; constant src and dest (IOTLB hit) 1134 ns
IOMMU on; varying src, const dest (IOTLB miss) 1317 ns

Table 4. IOMMU translation overheads experiment: IOAT
DMA copy latency.

2 4 6 8 10 12
Number of translations per request

150

200

250

IO
M

M
U

ov
er

he
ad

 (n
s)

Figure 5. IOMMU overhead versus number of translations
per ATS request.

PCIe latencies not only depend on the generation but also
depend on the host CPU and the device. We believe that fu-
ture systems will have lower latencies to support low-latency
CXL memories [39, 43]. This would benefit BypassD as the
VBA translation overhead would be lower.

IOMMU translation latency. We measured the IOMMU
translation costs in modern processors using Intel’s I/O Ac-
celeration Technology (IOAT) DMA engine, similar to [7].
The IOAT engine uses the IOMMU to translate buffer vir-
tual addresses to physical addresses. We ran experiments
with different configurations as shown in Table 4 to mea-
sure translations overheads. We forced IOTLB hits by using a
fixed buffer for the DMAs and forced IOTLBmisses by chang-
ing the buffer virtual addresses. First, we noticed that the
translation overhead is negligible if the IOMMU is enabled
and the translation hits in the IOTLB (1134ns vs 1120ns).
Second, an IOTLB miss resulting in a page walk adds about
183ns (1317ns instead of 1134ns). Third, we noticed that
the IOMMU translation overhead does not increase signif-
icantly with number of translations per request. Figure 5
shows the IOMMU translation overhead for different num-
ber of translations with contiguous virtual addresses. We see
a slight increase going from 2 to 3 translations per request.
Thereafter, the translation overheads does not increase with
the number of translations. This is mostly because a single
cacheline (64B) fits 8 page table entries. Therefore, a single
cacheline read could translate an address range of 32KB.

In our experiments, we emulate PCIe latency and IOMMU
translation overheads by adding a delay in UserLib (nop()
loop) . The delay added depends on the translation size with
a minimum delay of 550ns.

6.3 Microbenchmarks
We use fio tester benchmark [8] to measure the latency and
throughput benefits of BypassD. For all experiments, we
issue direct I/O (O_DIRECT) and set queue depth to 1. We
compare BypassD against the following approaches:

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Read bandwidth (GB/s)

10

20

30

40

Re
ad

 la
te

nc
y

(u
s)

4KB 8KB
16KB

32KB
64KB

128KBsync
libaio
io_uring

spdk
bypassd

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Write bandwidth (GB/s)

10

20

30

40

W
rit

e
la

te
nc

y
(u

s)

4KB 8KB
16KB

32KB

64KB

128KBsync
libaio
io_uring

spdk
bypassd

Figure 6. FIO single threaded random-access latency.

sync: Baseline Linux with synchronous system calls.
libaio: Linux’s native asynchronous I/O interface [19].
io_uring: Newer async I/O interface that avoids context

switches by using ring buffers to communicate between user
and kernel [54]. We use fixed buffers and enable submission
queue polling by the kernel for maximum performance.
spdk [65]: Userspace driver to access storage directly

from userspace without a file system.

Latency. Figure 6 shows single-threaded read and write
latency and throughput for different block sizes. BypassD
achieves lower latency and higher bandwidth than all kernel
approaches. Compared to sync and libaio, BypassD improves
the read latency by 30.5% on average and write latency by
27.8%. BypassD avoids context switches, bypasses the VFS
and file system layer in the kernel, uses polling instead of
interrupts and has an optimized software stack.

io_uring avoids context switches by using a kernel thread
that polls for I/O requests. Figure 6 shows that io_uring
improves latency over sync and libaio but cannot perform
as well as userspace approaches. The latency overhead in
io_uring can be attributed to the kernel software stack.

BypassD’s performance is very close to that of SPDK. By-
passD has slightly higher latency due to VBA translations.
Figure 7 shows the amount of time spent in user, kernel

and device while performing random reads. In the sync base-
line, the amount of time spent in the kernel is significant
for small reads which is exactly what BypassD aims to over-
come. In BypassD, very little time is spent in the UserLib
while accessing the device. The majority of the time is spent
in copying data between user and DMA buffer.

VBA translation latency sensitivity study. As mentioned
in Section 6.1, we estimated VBA translation overheads in

43

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yadalam et al.

sy
nc

sp
dk

by
pa

ss
d

sy
nc

sp
dk

by
pa

ss
d

sy
nc

sp
dk

by
pa

ss
d

sy
nc

sp
dk

by
pa

ss
d

sy
nc

sp
dk

by
pa

ss
d

sy
nc

sp
dk

by
pa

ss
d

4KB 8KB 16KB 32KB 64KB 128KB

0

20

40

La
te

nc
y

(u
s) device

kernel
user

Block size
Figure 7. Random read latency breakdown.

4KB 8KB 16KB 32KB 64KB 128KB
Block size

0

1

2

3

Re
ad

 b
an

dw
id

th
(M

B/
s)

No delay
350ns
550ns

950ns
1350ns
sync

Figure 8. Effect of VBA translation latency on single thread
read bandwidth.

200 400 600 800 1000 1200 1400 1600
IOPS (K)

5

10

15

La
te

nc
y

(u
s)

1 2 4
8 12

16 20

sync
libaio
io_uring

spdk
bypassd

Figure 9. Random read latency and IOPS with increasing
number of threads. Number of threads is indicated by anno-
tations on the graph.

BypassD to be around 550ns. However, translation over-
heads could vary across systems. The latency of access in-
creases with slower translations. Figure 8 shows the effect
of translation latency on the single thread read bandwidth.
As expected, increase in translation latency causes a slight
decrease in bandwidth. Even with a translation latency of
1.3us, BypassD achieves significantly higher bandwidth than
the baseline.
This experiment also shows caching FTEs in the IOTLB

is not critical: The difference in bandwidth when FTEs are
cached (350ns) versus not cached (550ns) is minimal.

Scaling. Figure 9 shows I/O latency and IOPS scaling with
threads. For lower thread counts, SPDK and BypassD achieve
lower latency than kernel approaches. At higher thread count
(>12), the device reaches saturation at which point the I/O
latency is dominated by the device time and the software
overheads become negligible. BypassD does not provide any
benefits when accessing an overloaded device. This aligns

1 2 4 8
of processes

0

1500

3000

4500

Ag
gr

eg
at

e
w

rit
e

ba
nd

w
id

th
 (M

B/
s)

sync
libaio

io_uring
bypassd

Figure 10.Aggregate write bandwidthwhen device is shared
between multiple writer processes.

1 2 4 8 12 16
of background readers

0

5

10

4K
B

ra
nd

 r
ea

d
la

te
nc

y
(u

s) sync bypassd

Figure 11. I/O scheduling in the device: Random read latency
with multiple background reader processes.

with past research [62] on Optane SSD that suggests that the
overall load needs to be moderated to achieve low latency.

Performance of io_uring drops drastically after 12 threads.
This is because io_uring requires additional cores on which
kernel threads poll for I/O requests [16]. io_uring needs twice
as many cores to achieve performance close to BypassD.

Unlike kernel approaches, BypassD observes constant ac-
cess latency until the device is saturated (threads>8). This is
because UserLib avoids synchronization costs by allocating
private queues and buffers to each thread. BypassD would
incur very small overheads due to synchronization if multi-
ple threads had to share queues and/or DMA buffers.

Device sharing. Figure 10 shows the total write through-
put when multiple processes are accessing the device. Read
performance is similar. Each process accesses a private file
to avoid any contention. Notice that there are no bars for
SPDK since multiple processes cannot access the device si-
multaneously with SPDK. On the contrary, in BypassD, each
process can access the device directly from its userspace.
Therefore, each process experiences lower I/O access latency
and the total throughput improves. Furthermore, all pro-
cesses achieve identical latency and throughput. In short,
BypassD provides the performance benefits even when the
device is being shared between multiple processes.
It is important to achieve fairness while sharing a de-

vice. Kernel I/O schedulers distribute the device throughput
among applications. Since BypassD bypasses the kernel, it
relies on the I/O scheduling in the device to balance device
time among different applications. Figure 11 shows the aver-
age latency of 4KB random read latency when sharing the
device with different number of reader processes. BypassD
achieves latency lower than the baseline even when there

44

BypassD: Enabling fast userspace access to shared SSDs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

0 1 2 3 4 5 6 7 8
Runtime (s)

200
400
600
800

Th
ro

ug
hp

ut
(M

B/
s)

Bypassd interface

access revoked

kernel interface

Figure 12. Read throughput of a process over time. Process
starts with BypassD interface. At 5s, its access gets revoked
and switches to kernel interface.

File size
Default
open (us)

Open + Warm
fmap (us)

Open + Cold
fmap (us)

4KB 1.28 1.96 2.68
1MB 1.38 1.96 3.67
64MB 1.74 2.76 85.51
256MB 1.59 5.79 333.93
1GB 1.80 17.94 1330.75
16GB 2.10 259.94 21197.88

Table 5. fmap() overheads in BypassD.

are 16 other process reading from the device. NVMe devices
implement a round-robin scheduling across queues. These
results show that this device-side I/O scheduling is good
enough to balance the load. If necessary, devices could im-
plement more sophisticated schedulers [59] to achieve better
fairness when accessing device directly from userspace.
Figure 12 depicts the behaviour of a system when direct

access is revoked (Section 4.5). A reader process initially
accesses the device through BypassD interface. During its
execution, another process opens the file in buffered mode,
and the kernel revokes the direct access for the first process.
The reader process then accesses the device through the
default kernel interface and experiences a drop in throughput.

fmap() overheads. In BypassD, the UserLib fmap()s a file
before accessing it from userspace. If the file table entries are
cached in DRAM, then the kernel only has to attach them
to page tables during fmap() (warm fmap). As explained in
Section 4.1, the file system populates the file tables if they
do not already exist (cold fmap). Table 5 shows the latency
of warm and cold fmap() for different file sizes in BypassD.
The overhead of warm fmap is negligible unless the file is
huge (GBs). Cold fmap()s are costly even for files that are
a few MB in size. The cost of a cold fmap() is amortized
by the low-latency direct I/O accesses. For instance, with
a 16GB file, BypassD benefits an application issuing more
than ∼5000 I/Os. The delay of cold fmap() could be hidden
by issuing kernel-interface operations during startup until
fmap() completes, and then switching to BypassD-interface
operations or by building partial file tables. We do not cur-
rently implement this.

Memory overheads. To avoid the cost of a cold fmap(), By-
passD caches pre-populated file table entries in memory.

0
300
600
900

YCSB A

0
200
400
600

YCSB B

0
200
400
600

YCSB C

0
400
800
1200

YCSB D

1 2 4 8 12
0

30
60
90

YCSB E

1 2 4 8 12
0

200
400
600

YCSB F

Th
ro

ug
hp

ut
 (k

op
s/

s)

 Threads

sync xrp bypassd

Figure 13.WiredTiger throughput scaling with threads.

This adds memory overheads in a system with thousands
of files. Each file table entry is the same size as a regular
page table entry which is 8 bytes long. A 4KB page can hold
512 file table entries. Optane SSD uses a page size of 4KB,
so 512 FTEs would map 2MB of a file. In other words, every
2MB of a file adds a modest memory overhead of 4KB (0.2%
overhead).

6.4 Production workload
WiredTiger. WiredTiger is a NoSQL storage engine used by
MongoDB [5]. It uses an LSM tree to store data in multiple
levels and each level is a single file. The files are indexed using
a B-tree with the key-value pairs stored in the leaf nodes.
WiredTiger caches the B-tree in memory to avoid issuing an
I/O on every access. WiredTiger issues multiple I/Os to read
multiple pages in the B-tree chain while traversing it.
We configure the WiredTiger B-tree page size to 512B

which is equal to Optane SSD’s block size. We create a store
with 1 billion key-value pairs, key and value sizes set to 16B,
resulting in a database of 46GB. We set the cache size to 6GB.
We compare the performance of BypassD against XRP,

a state-of-the art research proposal that overcomes kernel
software stack overheads [70]. XRP uses eBPF scripts to run
user-defined storage functions from a hook in the kernel
driver. XRP accelerates operations, such as index lookups
and aggregation, that issue back-to-back I/Os.
Figure 13 shows the throughput of baseline, XRP and

BypassD for different YCSB workloads. BypassD improves
throughput by 18% on average over baseline and 13% over
XRP. The improvement is larger at smaller thread count.
At higher thread count, although BypassD improves I/O la-
tency, theWiredTiger cache becomes the point of contention
which hides the benefits of faster I/O. BypassD does not pro-
vide benefits for YCSB D workload which is an insert heavy
workload. YCSB D follows a distribution where the newly in-
serted key-value pairs are the most popular ones. Therefore,
it spends very little time on I/O. With YCSB E, a single I/O
returns multiple key-value pairs and consecutive I/Os are not
issued. XRP cannot therefore improve performance. BypassD
is able to accelerate all I/O and improves performance.

45

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yadalam et al.

0.6
0.8
1.0
1.2

 YCSB A

0.6
0.8
1.0
1.2

 YCSB B

0.6
0.8
1.0
1.2

YCSB C

0.6
0.8
1.0
1.2

YCSB D

1 2 4 6

0.6
0.8
1.0
1.2

YCSB E

1 2 4 6

0.6
0.8
1.0
1.2

YCSB F

No
rm

al
iz

ed
 T

hr
ou

gh
pu

t
(k

op
s/

s)

 Cache size (GB)

sync xrp bypassd

Figure 14. WiredTiger single-thread throughput with dif-
ferent cache sizes, relative to synchronous kernel I/O.

25

50

Av
er

ag
e

La
te

nc
y

(u
s) sync

xrp
spdk
bypassd

0 5 10 15 20 25
Threads

25

50

75

p9
9.

9
La

te
nc

y
(u

s)

Figure 15. Avg and p99.9 request latency in BPF-KV.

Figure 14 shows WiredTiger throughput normalized to
baseline for different cache sizes. As the cache size increases,
fewer B-tree pages miss in the cache while traversing the
B-tree. The benefits of XRP therefore decreases as it cannot
issue consecutive I/Os bypassing the kernel software stack,
whereas BypassD accelerates every I/O operation providing
consistent improvements irrespective of cache size.

6.5 Research prototypes
We experiment on state-of-the-art research prototypes that
achieve much better performance than production software
when using more advanced I/O methods.

BPF-KV. It is a key-value store designed to evaluate the
performance of XRP [70]. It uses a B+-tree to locate objects
in the store which are stored in an unsorted log. The index
and log are stored in a single large file.
BPF-KV is configured to have fixed-sized keys (8B) and

values (64B). Each index node in BPF-KV is 512B. We create
a store with 920 million objects that results in a 6-level index.
We disable caching to focus on the overheads of reading data
from disk. Each object lookup requires 7 I/Os, 6 for reading
an index node at each level of the B+-tree and one for reading
the final data.

Figure 15 shows the average and 99.9th percentile latency
for retrieving objects from the key value store. As expected,
the Linux baseline has the highest latency. XRP goes through
the kernel software stack only once and issues subsequent
I/Os from the driver. BypassD does not have to go to the
kernel even once so achieves slightly lower latency than XRP.
Compared to SPDK, BypassD takes an additional 550ns for
VBA translation on every request. For a lookup involving 7
I/Os, BypassD takes about 4us more than SPDK.

On average, BypassD improves the throughput (not shown
in Figure) by 72% over baseline and 9.6% over XRP.

KVell. KVell [38] is a fast persistent key-value store designed
to take full advantage of modern storage device character-
istics. KVell leverages random access performance to avoid
sorted data on disk and batches I/O operations to utilize the
high throughput that these devices offer. KVell compares
favorably against production KVs, including RocksDB and
WiredTiger.

We initialize a KVell database with 50 million objects, and
set the key size to 16B and value size to 1024B resulting
in a database of size 54GB. We evaluate the performance
using YCSB read/write workloads. By default, KVell uses
asynchronous I/O (libaio) to perform I/O. We measure the
performance of KVell with a queue depth of 1 (KVell_1) and
64 (KVell_64). We also implemented a synchronous I/O in-
terface and evaluated the performance of BypassD.
Figure 16 shows the throughput and latency of requests.

BypassD achieves more throughput than KVell_1 but lesser
than KVell_64. KVell_64 achieves high throughput at the
cost of latency. BypassD improves the latency over KVell_64
by two orders of magnitude. For YCSB A, which is a 50/50
read/write workload, BypassD achieves throughput close to
that of KVell_64 while reducing the latency. This is because
of a bottleneck in ext4 while handling concurrent writes to
the same file [44, 51]. BypassD avoids this bottleneck since
writes are issued directly from userspace. For YCSB B and

0
500

1000
1500
2000

 YCSB A

102

103

1000
2000
3000
 YCSB B

101

102

2 4 6 8 10 12 14 16

1000
2000
3000

 YCSB C

1 2 4 8 12 16
101

102

 L
at

en
cy

 (u
s)

 T
hr

ou
gh

pu
t

(k
op

s/
s)

Threads

kvell_1 kvell_64 bypassd

Figure 16. KVell throughput and latency for YCSB.

46

BypassD: Enabling fast userspace access to shared SSDs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Low latency Sharing No device
overheads

Kernel file system [10, 26, 37, 66] ✗ ✓ ✓

Userspace drivers [34, 65] ✓ ✗ ✓

Hybrid solutions [11, 33, 51] ✓ ✓ ✗

BypassD ✓ ✓ ✓

Table 6. Comparison of BypassD with prior approaches.

C workloads, which are read heavy, BypassD outperforms
KVell_1 by 33% and 24% respectively.

7 Related work
Recent advancements in storage technology such as NVM [28]
and low-latency SSDs [4, 13, 27] have placed a spotlight on
the kernel overheads and motivated researchers to address
the I/O architecture. Table 6 summarizes prior approaches.
Kernel optimizations. The most straight-forward approach
to overcoming the software bottleneck is to optimize the
kernel I/O software stack. Researchers have proposed several
optimizations to the kernel I/O stack: i) reduce interrupt
overheads [10, 58], ii) optimize the block layer [10, 26, 66],
and iii) overlap computations with device activity [37]. These
solutions improve the performance of a specific layer in the
I/O stack, but they cannot eliminate the overheads entirely.
For instance, these solutions have to pay the price of context
switching and the overheads of the VFS layer in the kernel.
Userspace access. Another approach is to access devices
from userspace without going through the kernel software
stack [11, 18, 32, 34, 35, 49, 60, 63, 65, 69]. These solutions
avoid the high cost of context switching and generally pro-
vide high performance compared to traditional kernel file
systems. Some of these designs require byte-addressable
storage such as NVM [18, 32, 35, 60, 63, 69] and do not sup-
port block storage devices. SPDK [65] and NVMeDirect [34]
provide a userspace I/O framework for NVMe devices but
require developers to implement own file systems. More im-
portantly, they do not support device sharing as the driver is
mapped into a user process which has complete control over
the device. For example, SpanDB [12] uses a low latency SSD
to store LSM tree and write-ahead logs. It builds a file system
called TopFS on top of SPDK to access low latency SSDs
and sacrifices device shareability. Applications like SpanDB
can benefit from BypassD as it provides low latency access
without requiring new file systems and allows the device to
be shared.
MonetaD [11] is the closest work to BypassD. Like By-

passD, MonetaD accesses the device from userspace and
enforces protection in the hardware. The kernel installs per-
mission records into a table on the device. The device uses
this table to validate accesses from userspace. However, i)
updating the permission data on the device is expensive as
the device pauses servicing requests, ii) MonetaD performs
poorly under fragmentation, and iii) it suffers from high tail

latency when the permission check misses in the table on
the device. BypassD overcomes the above limitations and
achieves the same goals through a less intrusive design.
Arrakis [49] uses SR-IOV [30] to achieve device sharing.

A device presents itself as a Virtual Function (VF) to each
VM. Arrakis proposes significant changes to the device, and
trusts applications with metadata updates or to serve file
operations that may be unsafe in many environments.

uFS [40] accesses devices from userspace using a file sys-
temmicro-kernel. It uses a trusted process to submit requests
to the device. Similar to io_uring, uFS requires additional
cores on which uServer threads are pinned for high perfor-
mance. Demikernel [67] proposes a flexible datapath archi-
tecture for kernel-bypass devices.
Device file systems. A third approach to avoiding the kernel
overheads is to push the file system to the device [33, 51].
Since the file system resides on the device, processes can
access the device directly from userspace. These designs
offer good performance but require significant changes to
the device firmware and rely heavily on devices’ compute
power andmemory. BypassD does not require any significant
compute power on the device.
Near-storage compute. A completely different way to avoid
the kernel is to reduce the number of times processes go to
the device. Several systems propose offloading their storage
functions to the device [17, 22, 31, 53, 55, 56, 61, 68]. These
solutions rely heavily on the computing capabilities of the
device. They also require rewriting applications.
XRP. XRP [70] pushes the storage function to the kernel
device driver. It uses BPF scripts to run user defined func-
tions in the driver. XRP accelerates applications that perform
chained IO, for example B-tree traversal. XRP requires sig-
nificant effort for porting new applications and only works
with data structures that have a fixed layout on disk.

8 Conclusion
With devices getting faster, software overheads dominate the
access latencies. BypassD overcomes the bottleneck by pro-
viding direct access from userspace. Unlike prior userspace
solutions [34, 65], BypassD allows multiple users or applica-
tions to share the device securely by offloading permission
checks to the IOMMU hardware. BypassD improves I/O la-
tency by up to 45% compared to Linux and performs close
to SPDK which is known to achieve the lowest latency.

Acknowledgments
Wewould like to thank our shepherd Huaicheng Li and other
anonymous reviewers for their feedback. We would like to
thank Dr. Arkaprava Basu for his support and guidance.
This work was supported in part by PRISM, one of seven
centers in JUMP 2.0, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA, and by NSF grant CNS
1900758.

47

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yadalam et al.

References
[1] [n. d.]. File timestamps. https://www.gnu.org/software/coreutils/

manual/html_node/File-timestamps.html.
[2] [n. d.]. mmap(2) — Linux manual page. https://man7.org/linux/man-

pages/man2/mmap.2.html.
[3] [n. d.]. NVMe specifications. https://nvmexpress.org/specifications/.
[4] [n. d.]. Toshiba XL-Flash. https://www.kioxia.com/en-jp/about/news/

2019/20190806-1.html.
[5] [n. d.]. WiredTiger storage engine. https://www.mongodb.com/docs/

manual/core/wiredtiger/.
[6] Chloe Alverti, Vasileios Karakostas, Nikhita Kunati, Georgios Goumas,

and Michael Swift. 2022. DaxVM: Stressing the Limits of Memory as a
File Interface. In 55th IEEE/ACM International Symposium on Microar-
chitecture (MICRO).

[7] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. 2010. IOMMU:
Strategies for mitigating the IOTLB bottleneck. In International Sym-
posium on Computer Architecture (ISCA).

[8] Jens Axboe. 2005. Fio-flexible i/o tester synthetic benchmark. URL
https://github. com/axboe/fio (Accessed: 2015-06-13) (2005).

[9] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ran-
ganathan. 2017. Attack of the killer microseconds. Commun. ACM
(2017).

[10] Adrian M. Caulfield, Arup De, Joel Coburn, Todor I. Mollow, Rajesh K.
Gupta, and Steven Swanson. 2010. Moneta: A High-Performance Stor-
age Array Architecture for Next-Generation, Non-volatile Memories.
In 43rd Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO).

[11] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup De, Joel
Coburn, and Steven Swanson. 2012. Providing Safe, User Space Access
to Fast, Solid State Disks. In Proceedings of the Seventeenth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[12] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma, and Yinlong Xu.
2021. {SpanDB}: A fast,{Cost-Effective}{LSM-tree} based {KV}
store on hybrid storage. In 19th USENIX Conference on File and Storage
Technologies (FAST 21). 17–32.

[13] Samsung Corp. [n. d.]. Samsung Z-SSD. https://semiconductor.
samsung.com/ssd/z-ssd/.

[14] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus
Fontoura, and Ricardo Bianchini. 2017. Resource central: Understand-
ing and predicting workloads for improved resource management
in large cloud platforms. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP).

[15] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 53, 1 (2008).

[16] Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and
Animesh Trivedi. 2022. Understanding modern storage APIs: a sys-
tematic study of libaio, SPDK, and io_uring. In Proceedings of the 15th
ACM International Conference on Systems and Storage (SYSTOR).

[17] Jaeyoung Do, Sudipta Sengupta, and Steven Swanson. 2019. Pro-
grammable solid-state storage in future cloud datacenters. Commun.
ACM (2019).

[18] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen. 2019.
Performance and protection in the ZoFS user-spaceNVMfile system. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles
(SOSP).

[19] Daniel Ehrenberg. [n. d.]. The Asynchronous Input/Output (AIO)
interface. https://github.com/littledan/linux-aio.

[20] Exim Internet Mailer [n. d.]. Exim Internet Mailer. http://www.exim.
org/.

[21] DonghyunGouk, Sangwon Lee, Miryeong Kwon, andMyoungsoo Jung.
2022. Direct access,{High-Performance} memory disaggregation with
{DirectCXL}. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22). 287–294.

[22] Boncheol Gu, Andre S Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee,
Jonghyun Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon,
Sangyeun Cho, et al. 2016. Biscuit: A framework for near-data pro-
cessing of big data workloads. (2016).

[23] Tejun Heo, Dan Schatzberg, Andrew Newell, Song Liu, Saravanan
Dhakshinamurthy, Iyswarya Narayanan, Josef Bacik, Chris Mason,
Chunqiang Tang, and Dimitrios Skarlatos. 2022. IOCost: block IO
control for containers in datacenters. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[24] Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and Karsten
Schwan. 2015. Unified Address Translation for Memory-Mapped SSDs
with FlashMap. In Proceedings of the 42nd Annual International Sympo-
sium on Computer Architecture (ISCA).

[25] Jack Tigar Humphries, Kostis Kaffes, David Mazières, and Christos
Kozyrakis. 2021. A case against (most) context switches. In Proceedings
of the Workshop on Hot Topics in Operating Systems (HotOS).

[26] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agar-
wal. 2021. Rearchitecting Linux Storage Stack for 𝜇s Latency and High
Throughput.

[27] Intel Corp . [n. d.]. Intel Optane P5800X SSD. https:
//ark.intel.com/content/www/us/en/ark/products/201859/intel-
optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html.

[28] Intel Corp. [n. d.]. Intel Optane Persistent Memory.
https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html.

[29] Intel Corp. 2018. Intel Scalable I/O Virtualization. https://www.intel.
com/content/www/us/en/developer/articles/technical/introducing-
intel-scalable-io-virtualization.html.

[30] Intel Corp. 2018. Recent Enhancements in Intel Virtualiza-
tion Technology for Directed I/O (Intel VT-d). https:
//01.org/blogs/ashokraj/2018/recent-enhancements-intel-
virtualization-technology-directed-i/o-intel-vt-d.

[31] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven
Swanson. 2017. KAML: A flexible, high-performance key-value SSD.
In IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA).

[32] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,
Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS: Reducing soft-
ware overhead in file systems for persistent memory. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (SOSP).

[33] Sudarsun Kannan, Andrea C Arpaci-Dusseau, Remzi H Arpaci-
Dusseau, Yuangang Wang, Jun Xu, and Gopinath Palani. 2018. De-
signing a true direct-access file system with DevFS. In 16th USENIX
Conference on File and Storage Technologies (FAST).

[34] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. 2016. NVMeDirect:
A user-space I/O framework for application-specific optimization on
NVMe SSDs. In 8th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage).

[35] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. 2017. Strata: A cross media file system.
In Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP).

[36] Gyusun Lee, Wenjing Jin, Wonsuk Song, Jeonghun Gong, Jonghyun
Bae, Tae Jun Ham, Jae W. Lee, and Jinkyu Jeong. 2020. A Case for
Hardware-Based Demand Paging. In ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA).

[37] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W Lee, and
Jinkyu Jeong. 2019. Asynchronous I/O stack: A low-latency kernel
I/O stack for ultra-low latency SSDs. In USENIX Annual Technical
Conference (ATC).

[38] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel.
2019. Kvell: the design and implementation of a fast persistent key-
value store. In Proceedings of the 27th ACM Symposium on Operating

48

https://www.gnu.org/software/coreutils/manual/html_node/File-timestamps.html
https://www.gnu.org/software/coreutils/manual/html_node/File-timestamps.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://nvmexpress.org/specifications/
https://www.kioxia.com/en-jp/about/news/2019/20190806-1.html
https://www.kioxia.com/en-jp/about/news/2019/20190806-1.html
https://www.mongodb.com/docs/manual/core/wiredtiger/
https://www.mongodb.com/docs/manual/core/wiredtiger/
https://semiconductor.samsung.com/ssd/z-ssd/
https://semiconductor.samsung.com/ssd/z-ssd/
https://github.com/littledan/linux-aio
http://www.exim.org/
http://www.exim.org/
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/201859/intel-optane-ssd-dc-p5800x-series-1-6tb-2-5in-pcie-x4-3d-xpoint.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introducing-intel-scalable-io-virtualization.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introducing-intel-scalable-io-virtualization.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introducing-intel-scalable-io-virtualization.html
https://01.org/blogs/ashokraj/2018/recent-enhancements-intel-virtualization-technology-directed-i/o-intel-vt-d
https://01.org/blogs/ashokraj/2018/recent-enhancements-intel-virtualization-technology-directed-i/o-intel-vt-d
https://01.org/blogs/ashokraj/2018/recent-enhancements-intel-virtualization-technology-directed-i/o-intel-vt-d

BypassD: Enabling fast userspace access to shared SSDs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Systems Principles (SOSP).
[39] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zar-

doshti, Stanko Novakovic, Monish Shah, Samir Rajadnya, Scott Lee,
Ishwar Agarwal, et al. 2023. Pond: CXL-based memory pooling sys-
tems for cloud platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2. 574–587.

[40] Jing Liu, Anthony Rebello, Yifan Dai, Chenhao Ye, Sudarsun Kannan,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2021. Scale
and performance in a filesystem semi-microkernel. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles (SOSP).

[41] LWN.net. 2021. Shared Virtual Addressing. https://lwn.net/Articles/
747230/.

[42] Moshe Malka, Nadav Amit, Muli Ben-Yehuda, and Dan Tsafrir. 2015.
rIOMMU: Efficient IOMMU for I/O devices that employ ring buffers.
ACM SIGPLAN Notices 50, 4 (2015), 355–368.

[43] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent
page placement for CXL-enabled tiered-memory. In Proceedings of the
28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 3. 742–755.

[44] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and Taesoo Kim.
2016. Understanding manycore scalability of file systems. In USENIX
Annual Technical Conference (ATC).

[45] MySQL [n. d.]. MySQL. https://www.mysql.com/.
[46] Shweta Pandey, Aditya K Kamath, and Arkaprava Basu. 2023. Scoped

Buffered Persistency Model for GPUs. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2. 688–701.

[47] Anastasios Papagiannis, Giorgos Xanthakis, Giorgos Saloustros, Mano-
lis Marazakis, and Angelos Bilas. 2020. Optimizing Memory-mapped
I/O for Fast Storage Devices. In USENIX Annual Technical Conference
(ATC).

[48] pcisig.com. 2021. Address Translation Services. https://members.
pcisig.com/wg/PCI-SIG/document/download/8255.

[49] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind
Krishnamurthy, ThomasAnderson, and Timothy Roscoe. 2015. Arrakis:
The operating system is the control plane. ACM Transactions on
Computer Systems (TOCS) (2015).

[50] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and
Michael A Kozuch. 2012. Heterogeneity and dynamicity of clouds at
scale: Google trace analysis. In Proceedings of the third ACM symposium
on cloud computing.

[51] Yujie Ren, Changwoo Min, and Sudarsun Kannan. 2020. CrossFS: A
cross-layered direct-access file system. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI).

[52] RocksDB [n. d.]. RocksDB. http://rocksdb.org/.
[53] Zhenyuan Ruan, Tong He, and Jason Cong. 2019. INSIDER: Designing

In-Storage Computing System for Emerging High-Performance Drive.
In USENIX Annual Technical Conference (ATC).

[54] Samsung. [n. d.]. Samsung Z-SSD. https://lwn.net/ml/linux-fsdevel/
20190112213011.1439-1-axboe@kernel.dk/.

[55] Robert Schmid, Max Plauth, Lukas Wenzel, Felix Eberhardt, and An-
dreas Polze. 2020. Accessible near-storage computing with FPGAs. In
Proceedings of the Fifteenth European Conference on Computer Systems
(EuroSys).

[56] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor
Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. 2014.
Willow: A User-Programmable SSD. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI).

[57] Dimitrios Skarlatos, Qingrong Chen, Jianyan Chen, Tianyin Xu, and
Josep Torrellas. 2020. Draco: Architectural and operating system

support for system call security. In 2020 53rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO).

[58] Amy Tai, Igor Smolyar, Michael Wei, and Dan Tsafrir. 2021. Optimiz-
ing Storage Performance with Calibrated Interrupts. In 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).

[59] Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie
Kim, Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa,
Juan Gómez-Luna, and Onur Mutlu. 2018. FLIN: Enabling fairness
and enhancing performance in modern NVMe solid state drives. In
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 397–410.

[60] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M
Swift. 2014. Aerie: Flexible file-system interfaces to storage-class
memory. In Proceedings of the Ninth European Conference on Computer
Systems (EuroSys).

[61] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-
Jean Wu, David Brooks, and Gu-Yeon Wei. 2021. RecSSD: near data
processing for solid state drive based recommendation inference. In
Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[62] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2019.
Towards an unwritten contract of Intel Optane SSD. In 11th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage).

[63] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File Sys-
tem for Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX
Conference on File and Storage Technologies (FAST 16).

[64] Jisoo Yang, Dave B Minturn, and Frank Hady. 2012. When poll is
better than interrupt.. In 10th USENIX Conference on File and Storage
Technologies (FAST).

[65] Ziye Yang, James R Harris, Benjamin Walker, Daniel Verkamp, Chang-
peng Liu, Cunyin Chang, Gang Cao, Jonathan Stern, Vishal Verma, and
Luse E Paul. 2017. Spdk: A development kit to build high performance
storage applications. In 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom).

[66] Young Jin Yu, Dong In Shin, Woong Shin, Nae Young Song, Jae Woo
Choi, Hyeong Seog Kim, Hyeonsang Eom, and Heon Young Yeom.
2014. Optimizing the block I/O subsystem for fast storage devices.
ACM Transactions on Computer Systems (TOCS) (2014).

[67] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Jacob
Nelson, Omar S Navarro Leija, Ashlie Martinez, Jing Liu, Anna Korn-
feld Simpson, Sujay Jayakar, et al. 2021. The demikernel datapath os
architecture for microsecond-scale datacenter systems. In Proceedings
of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(SOSP).

[68] Jian Zhang, Yujie Ren, and Sudarsun Kannan. 2022. FusionFS: Fus-
ing I/O Operations using CISCOps in Firmware File Systems. In 20th
USENIX Conference on File and Storage Technologies (FAST).

[69] Shengan Zheng, Morteza Hoseinzadeh, and Steven Swanson. 2019.
Ziggurat: A Tiered File System for Non-Volatile Main Memories and
Disks. In 17th USENIX Conference on File and Storage Technologies
(FAST).

[70] Yuhong Zhong, Haoyu Li, Yu Jian Wu, Ioannis Zarkadas, Jeffrey Tao,
Evan Mesterhazy, Michael Makris, Junfeng Yang, Amy Tai, Ryan
Stutsman, et al. 2022. XRP: In-Kernel Storage Functions with eBPF. In
16th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI).

49

https://lwn.net/Articles/747230/
https://lwn.net/Articles/747230/
https://www.mysql.com/
https://members.pcisig.com/wg/PCI-SIG/document/download/8255
https://members.pcisig.com/wg/PCI-SIG/document/download/8255
http://rocksdb.org/
https://lwn.net/ml/linux-fsdevel/20190112213011.1439-1-axboe@kernel.dk/
https://lwn.net/ml/linux-fsdevel/20190112213011.1439-1-axboe@kernel.dk/

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Yadalam et al.

A Artifact Appendix
A.1 Abstract
This artifact includes the source code of BypassD which
includes three components: Linux kernel, a kernel module
and the user library (UserLib). Table 2 summarizes the lines
of coded added/modified in BypassD. Changes related to
the file system and file table entries are part of the Linux
kernel. The kernel module supports allocating DMA buffers
and mapping NVMe queue pairs to the userspace. UserLib is
a shim library that intercepts system calls and handles file
reads and writes directly from userspace.

This artifact also includes the scripts and tools to evaluate
BypassD and reproduce some of the key results in this paper.
We open-source this artifact to allow other researchers and
developers to use and improve it in their own work. In Sec-
tion A.7, we describe the steps to use BypassD with a new
workload. In this appendix, we briefly describe the steps to
compile and install BypassD, and to reproduce the results.

A.2 Artifact check-list (meta-information)
• Compilation: BypassD includes several software compo-
nents, each of which is compiled separately. All of them use
make build tool along with gcc/g++. The scripts for compi-
lation handle the dependencies required for compilation.

• Data set: No external dataset. The experimental setup will
create some arbitrary files with garbage data.

• Hardware: Preferably Intel Xeon CPU with atleast 24 cores
(including Hyper-Threading) with atleast 32GB of memory,
and importantly, an Intel Optane P5800X NVMe SSD.

• Run-time environment: Experiments are carried out on
a bare-metal instance. All experiments are to be run on the
custom Linux kernel included in the repository.

• Execution: The repository contains scripts to generate the
results presented in the paper. Running the experiments is
as simple as launching a script.

• Output:Output of all experiments are stored under a results/
sub-directory that is created by the scripts. The output con-
tains stats about I/O latency and throughput. The scripts will
also plot graphs similar to the ones in the paper. The graphs
are saved as pdfs under the experiment’s sub-directory.

• Experiments: Using storage I/O workloads with FIO tester
suite [8], the experiments exhibit the performance benefits
(latency and bandwidth) that can be achieved using BypassD
under different scenarios.

• Howmuch disk space required (approximately)?:About
12GB for the source code and about 16GB for experiment
files on the NVMe device used for evaluation.

• How much time is needed to prepare workflow (ap-
proximately)?: <30 minutes.

• How much time is needed to complete experiments
(approximately)?: About 60 minutes.

• Publicly available?: Yes, all of the source code relating to
BypassD is publicly available at https://github.com/multifacet/
Bypassd and also archived on Zenodo.

• Code licenses (if publicly available)?: GNU GPL.

• Archived (provide DOI)?: BypassD artifact is divided
across 3 components:
1. Main repositorywith scripts: https://doi.org/10.5281/zenodo.

10069841
2. BypassD kernel andmodule: https://doi.org/10.5281/zenodo.

10038719
3. UserLib: https://doi.org/10.5281/zenodo.10038717

A.3 Description
A.3.1 How to access. The artifact is publicly available
on GitHub at https://github.com/multifacet/Bypassd. This
repository contains all of the source code related to BypassD
and links (submodules) to dependencies. The repository is
also archived on Zenodo and can be accessed at https://doi.
org/10.5281/zenodo.10069841.

A.3.2 Hardware dependencies. While BypassD itself is
not tied to any particular hardware architecture, the scripts
in the repository are written for an Intel CPU. The preferred
hardware configuration for evaluation would be similar to
that described in Section 6: Intel Xeon CPU with atleast
24 cores (with Hyper-threading) and 32GB of memory, in-
terfacing a low latency Intel P5800X SSD. The source code
(repository) and dependencies require 12GB of storage space.

The experiments have to be carried out a bare-metal ma-
chine after installing the custom Linux kernel included in
the repository. It is recommended to turn off CPU frequency
scaling and run the cores at maximum frequency. This arti-
fact includes scripts to turn off CPU frequency scaling for
Intel CPUs (except those using p-states).

A.3.3 Software dependencies. BypassD has been built
with Linux-5.4 (included in the artifact). However, the changes
can be applied to more recent Linux versions but will require
manual effort. This artifact has been tested on Ubuntu-20.04
which includes gcc-9.4 and binutils-2.34.

The artifact contains links to external code-bases including
SPDK [65] and fio tester suite [8]. These packages in-turn
have other dependencies. Please refer to their documentation
for more details.

The graphs are plotted with Python3 using matplotlib.

A.4 Installation
The README.md in the repository lists the steps to setup
BypassD and run experiments which is summarized below.

1. Clone the repository and initialize the submodules.
$> git clone https://github.com/multifacet/Bypassd
$> cd Bypassd
$> git submodule update –init –recursive

2. Build and install the custom Linux kernel included in
the repository. The repository also includes a sample
config file for reference.
$> bash utils/build_Linux_kernel.sh

50

https://github.com/multifacet/Bypassd
https://github.com/multifacet/Bypassd
https://doi.org/10.5281/zenodo.10069841
https://doi.org/10.5281/zenodo.10069841
https://doi.org/10.5281/zenodo.10038719
https://doi.org/10.5281/zenodo.10038719
https://doi.org/10.5281/zenodo.10038717
https://github.com/multifacet/Bypassd
https://doi.org/10.5281/zenodo.10069841
https://doi.org/10.5281/zenodo.10069841
https://github.com/multifacet/Bypassd

BypassD: Enabling fast userspace access to shared SSDs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

3. Build dependencies: fio and SPDK.
$> bash utils/build_fio.sh
$> bash utils/build_spdk.sh

4. Reboot into the built custom kernel.
$> sudo grub-reboot "Advanced options for
Ubuntu>Ubuntu, with Linux 5.4.0"
$> sudo reboot

5. The final step is to build and load the kernel module.
This is optional as the evaluation scripts take care of
loading and unloading the module.
$> cd kernel/module
$> make
$> sudo insmod bypassd.ko

A.5 Experiment workflow
The artifact_evaluation/ directory in the repository con-
tains scripts to run experiments and generate the graphs.
These scripts configure and compile the kernel module and
UserLib. They also mount/unmount the device and enable
or disable cpu frequency scaling. They launch all experi-
ment runs needed for one figure. The results are generated
in results/ sub-directory. The scripts finally plot graphs
similar to those in the paper.

1. Run the scripts by providing the device file under /dev
and a mountpoint to mount the device.
$> bash run_exp.sh /dev/nvme0n1 /mnt/bypassd

A.6 Evaluation and expected results
The scripts inside the evaluation directory will generate
graphs that are very similar to the ones in the paper. There
could be slight variations due to the performance of the
device, CPU performance and CPU operating frequency.

Results can vary significantly for some reasons:
1. CPU frequency scaling is not disabled.
2. Instead of a low latency SSD such as the Intel Optane

P5800X, an SSD with higher latency is used.
3. The system doesn’t have enough cores (atleast 20).

A.7 Experiment customization
One could use the repository in a stand-alone fashion to
run BypassD with any application to improve its I/O perfor-
mance. This can be done by configuring and compiling the
UserLib separately. Refer to utils/enable_bypassd.sh for
more information on compiling the UserLib. You can then
run any workload with these steps:

1. Ensure the custom kernel is installed.
2. Load the BypassD kernel module using sudo insmod

bypassd.ko.
3. Run any application with the UserLib as the shim li-

brary: sudo LD_PRELOAD=./libshim.so <app>

51

