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ABSTRACT
Prior work in Software Transactional Memory has identified
high overheads related to starting and committing transac-
tions that may degrade the application performance. To
amortize these overheads, transaction coalescing techniques
have been proposed that coalesce two or more small trans-
actions into one large transaction. However, these tech-
niques either coalesce transactions statically at compile time,
or lack on-line profiling mechanisms that allow coalescing
transactions dynamically. Thus, such approaches lead to
sub-optimal execution or they may even degrade the perfor-
mance.

In this paper, we introduce Dynamic Transaction Coa-
lescing (DTC), a compile-time and run-time technique that
improves transactional throughput. DTC reduces the over-
heads of starting and committing a transaction. At compile-
time, DTC generates several code paths with a different
number of coalesced transactions. At runtime, DTC im-
plements low overhead online profiling and dynamically se-
lects the corresponding code path that improves through-
put. Compared to coalescing transactions statically, DTC
provides two main improvements. First, DTC implements
online profiling which removes the dependency on a pre-
compilation profiling step. Second, DTC dynamically selects
the best transaction granularity to improve the transaction
throughput taking into consideration the abort rate. We
evaluate DTC using common TM benchmarks and micro-
benchmarks. Our findings show that: (i) DTC performs like
static transaction coalescing in the common case, (ii) DTC
does not suffer from performance degradation, and (iii) DTC
outperforms static transaction coalescing when an applica-
tion exposes phased behavior.

1. INTRODUCTION
Transactional Memory (TM) [9, 8] is a concurrency mech-

anism that simplifies the development of multi-threaded ap-
plications. It has been shown that TM is easier to use than
locks [12] because it frees the programmer from having to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CF’14, May 20 - 22 2014, Cagliari, Italy
Copyright 2014 ACM 0-12345-67-8/90/12 ...$15.00.
http://dx.doi.org/10.1145/2597917.2597930

implement the synchronization to access shared data. Pro-
gramming with locks is known to be error-prone and can
cause deadlocks or erroneous execution due to multiple re-
leases of the locks. Additionally, protecting critical sections
with locks is non-composable because the code using lock
can not be treated as a “black box”.

Most of the current TM systems are implemented as a li-
brary in software [7, 5] or as compiler extensions [11]. In
order to support concurrent execution of transactions, a
software TM (STM) system manages transactional meta-
data during transactional execution. This creates overheads
related to transaction initialization, versioning, read/write
instrumentation, etc. At the beginning of each transaction,
the STM system initializes transactional metadata (read and
write sets) and creates a checkpoint of the current thread
state (the register file and local variables). If the transac-
tion aborts due to a conflict with another transaction, the
checkpoint is used to restore the state from the beginning
of the transaction. Otherwise, it commits the changes in
shared data and associated metadata.

Prior work in STM has identified high overheads related
to starting and committing transactions [15, 18, 4, 14]. In
case the executed transactions in an application are numer-
ous and small, the overheads accumulate rapidly – even more
than 70% of the total execution time in extreme cases [4] –
and may degrade the application performance. To mitigate
these overheads, researchers proposed various techniques to
coalesce transactions in order to amortize the cost of creat-
ing and committing transactions [4, 18, 14]. However, these
techniques either coalesce transactions statically at compile
time, or lack on-line profiling mechanisms that allow coa-
lescing transactions dynamically.

For example, Stat-TC [14] is the state-of-the art trans-
action coalescing technique1. Stat-TC is a profile-guided
compiler optimization technique that coalesces two or more
small transactions into one large transaction. However, Stat-
TC coalesces transactions statically at compile-time. Such
an approach suffers from two important drawbacks: (i) the
number of coalesced transactions may be sub-optimal, and
(ii) the application performance may degrade when the num-
ber of aborts increases due to longer transactions. Thus,
Stat-TC cannot adapt to dynamic program behavior, such
as when the application exposes phased behavior with dif-
ferent abort rates or when the thread count changes.

In this paper we introduce Dynamic Transaction Coa-
lescing (DTC), a compile-time and run-time technique that

1In this paper we refer to [14] as Stat-TC for the sake of
readability and clarity.



improves the application performance. At compile-time,
DTC generates several code paths with a different number
of coalesced transactions. At runtime, DTC implements low
overhead online profiling and dynamically selects the corre-
sponding code path that improves throughput. In this way,
DTC improves the transaction throughput of the loops ex-
ecuting transactions. To evaluate the effectiveness of DTC,
we used various benchmarks (CLOMP-TM, SSCA2, Vaca-
tion) that are widely used in TM research, and micro-benchmarks
(hash-table and red-black tree). Our findings show that
DTC improves the performance of SSCA2, Vacation, CLOMP-
TM, and hash-table by 44.4%, 45.8%, 66.9%, and 62.9%
respectively when running with 12 threads. Also, we show
that the DTC’s online profiling mechanism has low overhead
(11% in the worst case).

The main contributions of this paper are:

• We show that statically coalescing transactions per-
forms sub-optimally – even degrading the performance
– when the running conditions of the program change
(e.g. thread count, abort rate).

• We introduce Dynamic Transaction Coalescing (DTC),
a compile-time and run-time technique that improves
transactional throughput of the loops executing trans-
actions.

• We show that DTC dynamically selects the best trans-
action granularity (to improve transactional through-
put) and adapts it accordingly to the program behav-
ior.

The remainder of this paper is organized as follows: in
Section 2 we motivate our work; in Section 3 we explain
the design and implementation of the dynamic transaction
coalescing technique; in Section 4 and Section 5 we show
experimental results; in Section 6 we compare our work to
previous studies; finally, we conclude in Section 7.

2. BACKGROUND AND MOTIVATION
Prior works in TM has shown that starting and commit-

ting transactions can incur high overheads [15, 18, 4, 14].
These overheads may account for even more than 70% of
the total execution time in extreme cases [4]. In response,
researchers proposed mechanisms to coalesce transactions in
order to minimize the associated overheads of starting and
committing transactions. In this section we provide back-
ground information about Stat-TC [14], the state-of-the-art
static transaction coalescing technique, and we demonstrate
the short-comings of this approach that motivate our work.

2.1 Background - Transaction Coalescing
Static Transaction Coalescing (Stat-TC) is a profile-guided

compiler optimization that aims to reduce the overheads of
starting and committing a transaction [14]. Stat-TC co-
alesces transactions statically at compile-time. First, the
compiler profiles the single-threaded version of the applica-
tion and collects profiling information (transaction length,
the transaction frequency, and the transaction distance).
Based on this information, the compiler statically coalesces
two or more transaction instances into one larger transac-
tion. The number of transactions that are included in the
final coalesced transaction define the transaction coalesce

Figure 1: Hash-table main loop: (a) For-loop with one
transaction in the loop body; (b) For-loop unrolled with the
unroll factor 2. The body of the unrolled loop contains the
coalesced transaction, which contain the two initial transac-
tions.

factor (TC factor)2.
Figure 1 shows the hash-table benchmark with statically

coalesced transactions. The main loop of the benchmark has
one transaction that repetitively executes either the lookup()
or the update() function based on a probability. Assuming
that the profiling step indicated as optimal a TC factor of 2,
Stat-TC unrolls the loop once and removes the unnecessary
extra calls to TX_START() and TX_COMMIT() functions, gen-
erating a single coalesced transaction. Hence, the resulting
code has lower transactional overhead than the two original
transactions.

2.2 Motivation
Stat-TC generates profiling information based on single-

threaded execution and uses this information to coalesce
transactions at compile time. Such a static approach ig-
nores the behavioral changes of the application as, for ex-
ample, the number of threads changes. Thus, coalescing
transactions statically may result in sub-optimal execution
and even performance degradation.

To better understand the limitations of coalescing trans-
actions statically, we use the hash-table benchmark (Fig-
ure 1.a) executing the update() function with a 50% proba-
bility. We first run the ‘original’ benchmark where the main
loop executes only one transaction. Then, we instruct the
compiler to unroll the loop and to coalesce transactions for
various TC factors generating different executables with TC
factors equal to 2, 4, 8 and 16.

Figure 2a shows the speedup for the hash-table bench-
mark. We observe that the best TC factor changes with the
number of threads. More specifically, when the number of
threads is small (1 or 2) the best TC factor is 16, when the
number of threads is modest (3-6) the best TC factor is 8,
and when the number of threads is larger than 7 the most
suitable TC factor is 4. Moreover, the results show that
Stat-TC can increase the performance when the TC factor
is small (2 or 4) but may also degrade performance when the
TC factor is large (16) due to high abort rates as we explain

2Every coalesced transaction has its own TC factor. It is
possible that different parts of the program contain transac-
tions with different TC factor
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Figure 2: Hash-table speedup and aborts with update
rate 50%. Hash-table has 1024 entries with 2048 possible
key values.

next.
Transaction Coalescing increases the length of the transac-

tion, which in turn may increase the abort rate and decrease
overall performance. Figure 2b shows the abort rate for the
hash-table benchmark. For TC factor 2 and 4, the abort rate
stays below 25% even when the number of threads increases
up to 12. For TC factors 8 and 16 the number of aborts in-
crease rapidly (by more than 50% when the thread number
is higher than 8). Based on these results, we conclude that
higher TC factors are likely to increase the abort rate. It is
also difficult to predict the speedup from the abort rate and
vice versa.

Summarizing, this simple example shows that there can-
not be a single TC factor performing best for all thread
counts. Thus, the approach of Stat-TC to statically gener-
ate code with fixed TC factors performs sub-optimally when
the number of threads changes. Also, aggressively coalescing
transactions based on profiling the single-threaded applica-
tion may degrade the performance due to an increased abort
rate. Since Stat-TC lacks a dynamic feedback mechanism, it
cannot adapt to changing abort rates caused by a large num-
ber of running threads. In the following section we introduce
DTC, a technique that dynamically adjusts the transaction

coalesce factor in the presence of changing conditions of the
application.

3. DYNAMIC TRANSACTION COALESCING
In this paper we introduce Dynamic transaction coalesc-

ing (DTC), a compile-time and run-time technique that
improves transactional throughput of the loops executing
transactions. At compile-time, DTC unrolls the loops con-
taining the transaction and applies the transaction coalesc-
ing algorithm on the transactions contained in the loop body.
Instead of generating only one unrolled loop instance, DTC
generates several loop instances where each instance is un-
rolled with a different unroll factor. Consequently, each loop
instance contains one coalesced transaction with a different
‘TC factor’. At run-time, DTC profiles the application and
dynamically selects which loop instance to execute. This
way, DTC dynamically selects and executes coalesced trans-
actions with the most appropriate TC factor.

Our implementation of DTC has three main components:
(i) loop replacement and unrolling, (ii) transaction coalesc-
ing algorithm, and (iii) run-time transaction profiling. These
components are related in the following way:

• Loop replacement and Unrolling (LU): At compile-
time, LU replaces the loops that contain transactions
with multiple loop instances where each loop instance
is unrolled with a different unroll factor.

• Transaction Coalescing Algorithm (TCA): At
compile-time, TCA coalesces transactions in each loop
instance generated by the LU step. As a result, each
loop instance contains one coalesced transaction that
has its transaction coalesce factor equal to the loop
unroll factor.

• Run-time Transaction Profiling (RTP): At compile-
time, RTP inserts additional code that profiles transac-
tions. At run-time, the profiling code measures trans-
actional throughput and dynamically selects the TC
factor in order to improve the throughput.

In the remaining of this section, we explain in more detail
the LU, TCA, and RTP components of DTC and how they
interact with each other.

3.1 Loop Replacement and Unrolling (LU)
At compile-time, LU replaces the loops containing trans-

actions with multiple loop instances where each loop in-
stance is unrolled with a different unroll factor. To better
understand LU’s code transformations, we use a simple while
loop3 example (Figure 3.a). The loop body contains one
transaction surrounded with <pre> and <post> code that is
not a part of the transaction. LU transforms the while loop
into a switch statement (Figure 3.b) which contains several
unrolled instances of the loop. Each case 2, 4, 8, 16 has
the loop body unrolled with unroll factors 2, 4, 8, 16, re-
spectively, while the default case statement contains the
original (non-unrolled) version of the loop body.

The resulting code has two main characteristics: (i) the
case statements contain unrolled loop bodies that are suit-
able for transaction coalescing and (ii) the code can dynami-
cally select which case statement to execute by changing the
value of the unroll_factor variable.
3Every for-loop, while-loop, and do-while-loop can be trans-
formed into an equivalent while-loop.



Figure 3: While loop with transaction - Creating co-
alesced transactions. Example of a while loop (a) with
one transaction in the loop body. The compiler transforms
the loop applying loop replacement and unrolling giving an
expanded loop (b). The expanded loop contains several code
paths (default, case 2, 4, 8, 16) containing while loop bod-
ies unrolled with a different loop unroll factor (white rect-
angles). Next, the compiler transforms the expanded loop,
applying the transaction coalescing algorithm on the code in
each ‘case block’, giving several coalesced transactions (gray
rectangles (d)). In the end, the compiler inserts <profil-
ing code> (c) at top of the while loop.

3.2 Transaction Coalescing Algorithm (TCA)
The compiler takes the transformed while loop from the

LU step (Figure 3.b) and applies the Transaction Coalescing
Algorithm (TCA) [14] on each case block (the code between
case statement and the following break statement). TCA
coalesces transactions into one larger transaction in the fol-
lowing way. TCA takes the Abstract Syntax Tree (AST)
of each case block, finds the transactions nodes, finds the
common parent node of all transactions, encloses the par-
ent node in a transaction, and removes original transaction
nodes from the AST. By design, each case statement con-
sists of an unrolled loop body that contains a single coa-
lesced transaction, where each loop unroll factor is equal to
the TC factor of the corresponding coalesced transaction.
The resulting code (Figure 3.d) contains several coalesced
transactions where each transaction has a different TC fac-
tor. If the loop body contains two or more transactions,
TCA coalesces all the transactions by finding the common
parent node of all transactions.

It is important to stress that TCA correctly coalesces

Figure 4: Time period consists of time intervals where
every time interval lasts for 256 transaction commits. The
sampling phase has 3 time intervals and the running phase
has 97 time intervals. This example shows a sampling phase
that uses unroll factors of 4, 8, and 2. In this example, the
time interval with unroll factor 8 was measured to be the
fastest, therefore, the unroll factor 8 is used for all the time
intervals in the running phase.

smaller transactions into one larger transaction4. Despite
the existence of the goto statements, the compiler handles
the coalesced transaction correctly because it inserts addi-
tional code that commits the transaction on every code path
that escapes out of the coalesced transaction.

3.3 Run-time Transaction Profiling (RTP)
At the beginning of the transformed loop, RTP inserts

the <profiling_code> (Figure 3.c) that calls the profile()

function. This function measures the transactional through-
put of the loop for various TC factors, and selects which coa-
lesced transaction to execute by updating the unroll_factor
variable. Since all threads read the unroll_factor, all of
them execute the same code path with the same TC factor.
In order to reduce the profiling overhead, we only select one
thread to be the profiling thread (thread_id == profile_thread_id).

To explain better the implementation of the profile()

function, we introduce the following terms:

• Time interval is the time it takes to commit 256
transactions. The unroll_factor variable remains con-
stant during the time interval.

• Time period consists of 100 consecutive time inter-
vals (Figure 4).

• Profiling phase consists of the first 3 time intervals
of a time period.

• Running phase consists of the remaining 97 time
intervals of a time period. All 97 time intervals in
the running phase use the same unroll_factor value.

The profile() function periodically estimates the trans-
actional throughput by measuring the duration of the time
intervals in the sampling phase. For each time interval of
the profiling phase, profile() sets a different unroll factor
(current unroll factor, next larger unroll factor, next smaller
unroll factor), and selects the best unroll factor for the next
running phase. Since the number of committed transactions
is fixed, the throughput is inversely proportional to the in-
terval length. So, the best unroll factor has the shortest time
interval.

Our profiling approach introduces two sources of over-
head: (i) instrumentation overhead and (ii) phase check

4For the implementation and the correctness of TCA, please
refer to [14].



Benchmark Input arguments
Hash-table fixed update rates 1%, 20%, 50%
Red-black tree fixed update rates 1%, 20%, 50%
Hash-table + phases 4 phases with update rates 1%, 20%, 50%, 100%
Red-black tree + phases 4 phases with update rates 1%, 20%, 50%, 100%
Vacation qpt=1,2,3 -n1,2,3 -q90 -u98 -r1048576 -t4194304
SSCA2 -s20 -i1.0 -u1.0 -l3 -p3
CLOMP-TM; No conflicts -1 1 x1 d6144 128 Stride1 3 1 0 6 1000
CLOMP-TM; Rare conflicts -1 1 x4 d6144 128 Adjacent 3 1 0 6 1000
CLOMP-TM; High conflicts -1 1 64 100 128 firstParts 3 1 0 6 1000

Table 1: Benchmark input parameters.

overhead. The instrumentation overhead exists because the
transformed code is larger than the original code but this
overhead is negligible (less than 0.1%). The phase check
overhead exists because after every time period (100 time
intervals) the profile() function changes the unroll factor
to check if there is a better one available using hill climb-
ing technique. So, even if the benchmark executes with the
best unroll factor, the profiling executes for two time inter-
vals with “non optimal” unroll factors during the sampling
phase. Changing the unroll factor in the sampling phase
creates interference in the program execution since it af-
fects the execution of all the threads running the program.
To minimize the interference, we empirically selected profile
parameters values (256 commits, 100 time intervals, and 3
profiling intervals) in order to provide a good balance be-
tween performance and interference.

3.4 Discussion
In this paper we propose DTC as the combination of

compile-time and run-time techniques where we generate
alternative code paths at compile-time and we select the
code paths to execute at run-time. We follow this approach
because we target the C/C++ programming environments
that do not support run-time code generation. Thus we
need to generate the different code paths at compile-time.
However, implementing DTC for other programming envi-
ronments that support run-time code generation, e.g. JVM
and .Net, may allow the use of just-in-time (JIT) compi-
lation for generating the alternative code paths. This is a
potential direction for future work.

3.5 Summary
We have shown how dynamic transaction coalescing (DTC)

transforms the loop containing transaction/s. DTC has three
main components: (i) loop replacement and unrolling (LU),
(ii) transaction coalescing algorithm (TCA), and (iii) run-
time transaction profiling (RTP). LU generates several un-
rolled loop instances, TCA coalesces transactions in the un-
rolled loop instances, and RTP profiles the loop execution
and updates the unroll factor. Because the loop unroll factor
is equal to the transaction coalesce factor, the profiling code
dynamically chooses the best TC factor to increase transac-
tional throughput.

4. EVALUATION METHODOLOGY
We perform the experiments on a Sun Fire x4140 sys-

tem equipped with two Six-Core AMD Opteron 2427 (12
cores in total), with 32GiB RAM, and running Linux 2.6.32-
5. We compile the applications with GCC 4.7 which in-
cludes Transactional Memory support and link them with
TinySTM[7] 1.0.3. We manually implement the DTC com-
piler pass and use GCC as a backend.

4.1 Benchmarks
We evaluate the effectiveness of DTC using 2 micro-benchmarks

(hash-table and red-black tree) and 3 well-known bench-
marks that are used in TM research (Vacation [10], SSCA2 [3],
and CLOMP-TM [13]). We select these benchmarks because
they cover different application domains: (i) hash-table and
red-black tree are used ubiquitously in programs, (ii) Vaca-
tion mimics a travel reservation application powered by an
in-memory database, (iii) SSCA2 mimics applications oper-
ating over large directed, weighted, multi-graphs (e.g. social
network graphs and page-rank), and (iv) CLOMP-TM mim-
ics large scale multi-physics applications used in high per-
formance computing. Finally, we use the input parameters
specified on each of the benchmark documentation (Table 1).

All of the benchmarks have a similar program structure
which consist of an initialization section, an execution sec-
tion, and a finalization section. The initialization sets up
the data structures necessary for program execution, the
execution section contains the parallel region that runs the
transactions in benchmarks’ main loop, and finalization sec-
tion checks the results consistency. All transactions run in
the benchmarks’ main loop. Next we briefly describe the
benchmarks used in this paper.

Hash-table and red-black tree execute repetitively the
transactional lookup(), add(), or remove() functions. Each
function operates on shared data stored in the hash-table
or the red-black tree. We control the number of updates
(add() and remove()) relative to the total number of opera-
tions (lookup(), add(), and remove()) with the update rate
parameter.

Vacation [10] implements a travel reservation system pow-
ered by an in-memory database. Several client threads inter-
act with the database through transactional requests. The
performance is measured as the number of served client re-
quests per second. Zyulkyarov et al. [19] showed that the
performance bottleneck in Vacation is the red-black tree that
is used as database storage and suggested replacing it with
a hash-table. Following their suggestion, Stipic et al. [14]
replaced the red-black tree with a hash-table and showed
that these modifications improve the performance. For our
evaluation, we use this improved version of the benchmark.

SSCA2 [3] is a synthetic benchmark that operates on
a large, directed, weighted multi-graph. The main loop of
SSCA2 traverses all the edges of the graph. The graph can
be traversed in any order and the final result of the bench-
mark is the same; thus, transactions in the main loop ex-
ecute in arbitrary order. Stipic et al. [14] improved the
performance of the benchmark by modifying the main loop.
Their modifications – instead of executing the transactions
immediately – buffer the values of the variables used in the
transactions and when the buffer gets full, execute all the
transactions in a tight loop. For our evaluation we use their
improved version of the benchmark.

The CLOMP-TM [13] benchmark generates memory ac-
cesses that emulate the synchronization characteristics of
HPC applications. An unstructured mesh is divided into
partitions, where each partition is subdivided into zones.
Threads concurrently modify these zones to update the mesh.
Specifically, each zone is pre-wired to deposit a value to a
set of other zones, called scatter zones, which involves (i)
reading the coordinate of a scatter zone, (ii) doing some
computation, and (iii) depositing the new value back to the
scatter zone. Since threads may be updating the same zone,
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(d) Red-black tree; ur = 1%
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(e) Red-black tree; ur = 20%
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Figure 5: Hash-table, red-black tree, and Vacation: Throughput and abort rate for different numbers of update rate
and queries per transaction (qpt).
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(b) Hash-table with phased execution
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(c) Red-black tree with phased execution

Figure 6: SSCA2, hash-table, and red-black tree. Hash-table and red-black tree with phased execution. Each phase last
for a quarter of the total execution time and each phase has update rate (ur) of 1%, 20%, 50%, and 100%.

value deposits need to be synchronized. Conflict probability
can be adjusted by controlling how the zones are wired, and
by changing the number of scatters per zone; the amount
of work done in a critical section can also be adjusted. For
our evaluation we use the “Large TM” part of CLOMP-TM
, that uses transactions to synchronize critical sections.

4.2 Metrics
Our results show the performance of applying DTC on

the benchmarks’ main loop. For all benchmarks we present
two plots, one for the speedup and one for the abort rate.
We normalize the speedup results to the benchmark running
with one thread. In the speedup plots, we also show the
dominant TC factor that DTC chooses for that benchmark
run (a number next to the small circle in the figures). In the
abort rate plots, the abort rate of transactions is plotted in
terms of percentage of total executed transactions. Finally,
we compare DTC with Stat-TC, and we show the results for
different TC factors (2, 4, 8, and 16). We do not plot results
for TC factors larger than 16 because they do not provide
any performance improvements.

5. RESULTS
In this section we show how DTC affects the performance

of each benchmark, we compare DTC with the performance
of Stat-TC, and we also analyze the performance of both
mechanisms in the presence of phased execution in the bench-
marks.

5.1 Hash-table
The hash-table benchmark with 1% update rate (Fig-

ure 5.a) contains short transactions and exhibits a negli-
gible abort rate. Such characteristics make the benchmark
well suited for transaction coalescing techniques. The re-
sults show that DTC improves the application performance
by 62.9% over the original version when running with 12
threads. Compared to Stat-TC, DTC performs slightly worse
(7.7%) although DTC chooses correctly the dominant TC
factor. This performance difference is due to: (i) the profil-
ing overheads of DTC, and (ii) the suitability of the bench-
mark to static transaction coalescing since it exhibits well-
expected behavior without any phases or abort rate changes.
Still, we observe that DTC improves significantly the appli-
cation performance and performs close to Stat-TC even for
the case that dynamically coalescing transactions is not nec-
essary.

Figures 5.b and 5.c show the results for the hash-table
with update rates of 20% and 50%. We see that DTC con-
sistently improves the application performance for all thread
counts and always follows the best case of Stat-TC. We
make the following important observations. First, in Stat-
TC there is no single best TC factor that performs best
for all thread counts. For example, Figure 5.c shows that
the best TC factor is 16 for up to 3 threads, 8 for up to 8
threads, and 4 for up to 12 threads. Second, aggressively
increasing the TC factor may degrade the application per-
formance significantly. For the case of 50% update rate and
with thread count larger than 8, Stat-TC with TC factor
16 performs worse than the original benchmark because of
the high abort rate that reaches more than 80%. Unlike
Stat-TC, DTC dynamically identifies the best TC factor
taking the abort rate into consideration. Due to profiling
overheads, DTC does not attain the best performance but
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Figure 7: CLOMP-TM

is just 5.2% slower than the best TC factor for all thread
counts.

5.2 Red-black tree
Figures 5.d, 5.e and 5.f show the results for the red-black

tree benchmark with update rates 1%, 20% and 50% re-
spectively. For update rates other than 1%, we observe that
the benchmark is unsuitable for static transaction coalescing
since the performance only degrades. For example, running
the benchmark under Stat-TC with more than 4 threads
and TC factors of 4 and more degrades performance signif-
icantly. This drastic performance degradation is due to the
extremely high abort rate that reaches up to 99.9%. On the
other hand, DTC does not degrade transaction throughput
and follows the performance of the original version, having
only 6.6% performance loss due to the profiling overhead
(12 threads, update rate 50%). Hence, DTC does not suffer
from Stat-TC’s performance degradation when coalescing is
not useful.

5.3 Vacation & SSCA2
Vacation (Figures 5.g, 5.h and 5.i) and SSCA2 (Figure 6.a)

exhibit low abort rate (less than 1%) and demonstrate that
coalescing techniques can improve performance. For Vaca-
tion with 12 threads and qpt=1, DTC and Stat-TC perform
similarly well and improve the performance of the origi-
nal benchmark by 15.3% and 16.4%. For SSCA2 with 12
threads, DTC and Stat-TC improve the performance of the
original benchmark by 44.4% and 45.8%. Again, we con-
clude that DTC significantly improves performance of the
applications, and closely follows the performance of Stat-
TC in case there is no need for dynamically changing the
TC factor, and meanwhile the profiling overhead remains

low.

5.4 CLOMP-TM
Figure 7 shows the performance of the CLOMP-TM bench-

mark. TC factor 8 and 16 perform the best when the con-
flicts are rare (Figure 7.a and Figure7). DTC selects TC
factors 4 and 8 for the execution but the best performing
TC factors are 8 and 16. DTC is not able to ‘find’ the best
TC factor due to profiling interference. Still, DTC does not
suffer from TC’s performance degradation (Figure 7.c with
TC factor 16) and DTC performs just 11% worse than the
best TC factor, while still being substantially better than
the original version.

5.5 Phased execution
Up to this point, we analyzed the performance of DTC

and we compared it to that of Stat-TC. However, we per-
formed our evaluation on various benchmarks that do not
have phased execution. In other words, the running condi-
tions (thread count) or the program behavior (e.g. abort
rate) did not change dynamically during the execution. In
order to compare the performance of DTC and Stat-TC in
changing conditions, we modify the hash-table and red-black
tree benchmarks and introduce phased execution. We intro-
duced four phases in the benchmark execution where each
phase has the same duration and executes with different up-
date rate parameters (ur = 1%, 20%, 50%, 100%).

Figure 6.b shows the speedup5 and the abort rate for
the hash-table benchmark with phases. We observe that
DTC improves the performance by 64.7% for the hash-table
benchmark, outperforming Stat-TC by 8.3%. The reason is

5We do not plot the dominant TC factor for DTC because
it changes during the program execution.



that there is no single TC factor that performs best for all
execution phases. Thus, Stat-TC executes various phases
with sub-optimal TC factor. In contrast, DTC dynamically
adapts to the program execution and selects the best TC
factor improving application performance.

Figure 6.c shows the results for the red-black tree bench-
mark with phased execution. We observe that DTC per-
forms equally or slightly better than the original version.
DTC’s profiling mechanism does not identify any potential
benefits through coalescing, and executes most of the time
without any coalesced transactions (TC factor 0). On the
other hand, blindly increasing the TC factor – as Stat-TC
does – would lead to increased abort rate and degrades the
application performance by 3.5x with 12 threads compared
to the original version.

5.6 Overview
We make the following observations to summarize this

section:

• DTC is able to considerably increase the application
performance over the original version (e.g. hash-table,
Vacation, and SSCA2).

• DTC follows closely the performance of Stat-TC with
the best TC factor for those applications that do not
exhibit high abort rates. The performance gap is due
to the profiling mechanism, but still remains lower
than 11% in the worst case.

• DTC outperforms both the original version and Stat-
TC with the best TC factor when programs exhibit
phased execution (e.g., hash-table and red-black tree
with phases).

• DTC does not introduce performance degradation when
transactional coalescing is not beneficial, while Stat-
TC may harm the performance. (e.g., red-black tree).

6. RELATED WORK
In this section we discuss the related work in the area

of coalescing transactions, and explain how our approach
differs from it. We also present briefly other optimization
techniques for TM systems.

6.1 Coalescing Transactions
Chung et al. [4] leverage STM to provide thread-safe dy-

namic binary translation (DBT). The transactions aim to
provide atomic access to the data and metadata during the
program execution. To reduce the overheads of starting and
committing a transaction, the authors generate transactions
at the basic block level (instead of instruction level) and
they further apply transaction coalescing. The decision of
coalescing transactions depends only on the amount of work
per transaction, i.e. the number of instructions. However,
this approach applies only to DBT and does not take into ac-
count the transaction throughput and abort rate. Thus, ag-
gressively coalescing transactions without such information
may degrade the application performance [4]. In contrast,
DTC differs in two ways: (i) DTC generates transactions of
different size at compile-time, (ii) DTC uses run-time profil-
ing information to choose dynamically the transaction size.
In this way, DTC is able to increase or decrease the coalesce

factor correspondingly and to improve application perfor-
mance.

Yoo et al. [18] evaluate the performance of Intel Trans-
action Synchronization Extensions (TSX) that implement
best effort hardware transactional memory. To quantify
the transactional overheads, the authors analyze the perfor-
mance benefits of static and dynamic transaction coalesc-
ing6 and show that transaction coalescing improves perfor-
mance. However, their implementation of transaction coa-
lescing lacks the profiling mechanism that identifies the op-
timal transaction granularity at run-time. Their dynamic
coalescing combines multiple dynamic instances of the same
transactional region. In contrast, DTC generates several
static instances of the same transactional region and uses on-
line profiling to dynamically select the region that increases
the throughput.

Stipic et al. [14] introduce a transaction coalescing tech-
nique which we call as Stat-TC in this paper for the sake
of readability and clarity. Stat-TC is a profile-guided com-
piler optimization technique that reduces the overheads of
starting and committing a transaction by coalescing two or
more small transactions into one large transaction. Stat-
TC consists of a pre-compilation profiling step that collects
information about transactions (transaction length, transac-
tion frequency, and transaction distance) and uses this infor-
mation to coalesce transactions statically (at compile-time).
The limitation of this approach is that coalescing transac-
tions statically cannot adapt to dynamic program behavior.
DTC improves Stat-TC by removing the dependency on the
pre-compilation profiling step and by dynamically selecting
the most appropriate number of coalesced transactions at
run-time.

6.2 Other Optimization Techniques
Many optimizations have been proposed for compilers and

runtime systems to reduce the overheads of STM [16, 17,
6, 2]. Wang et al. [16] provide compiler optimizations for
eliminating unnecessary read/write barriers (read after write
barrier, barriers on local variables, etc.) and register check-
pointing. Afek et al. [2] propose static analysis and code
motion to decrease the number of memory accesses inside
transactions. Wu et al. [17] use compiler optimizations
on statistics collected at run-time to eliminate redundant
barriers and checkpointing. Dragojevic et al. [6] present
run-time and compiler optimizations to identify transaction-
local stack and heap allocation, and an API for annotating
thread-local and read-only memory regions. DTC is an or-
thogonal mechanism to all these techniques and can be used
to further improve the performance of STM systems.

Adl-Tabatabai et al. [1] use compiler and run-time op-
timizations for transactional memory language constructs.
They use a JIT compiler to reduce the overheads of STM.
The JITting mechanism could be used also to dynamically
generate unrolled loops that benefit from dynamic transac-
tion coalescing. Wang et al. [15] evaluate the performance
of the BlueGene/Q machine that provides HTM support.
BlueGene/Q maintains speculative states in the L2 cache
and uses software register checkpointing with the setjmp()

function. Even though BlueGene/Q has support for best ef-
fort hardware TM, the implementation has issues with small
transactions. The authors admit that the software regis-

6Transaction coalescing is called coarsening in Intel’s termi-
nology.



ter checkpointing has significant overhead for small transac-
tions. Thus we believe that DTC can act complementary in
reducing these overheads.

7. CONCLUSIONS
In this paper we introduced dynamic transaction coalesc-

ing (DTC), a compile-time and run-time technique that
improves transactional throughput of the loops executing
transactions. We explained how DTC transforms the loops
and how DTC generates coalesced transactions of different
sizes. Also, we explained the implementation of DTC’s on-
line profiling and showed how profiling helps to find the best
transaction granularity that increases the throughput. We
evaluated DTC using 3 benchmarks(SSCA2, Vacation, and
CLOMP-TM) and 2 micro-benchmarks (hash-table and red-
black tree).

We show that DTC improves the performance of SSCA2,
Vacation, CLOMP-TM, and hash-table by 44.4%, 45.8%,
66.9%, and 62.9% respectively (running with 12 threads and
having a high conflict rate). We also show that DTC per-
forms like the statically selected best transaction coalesce
factor, and that DTC’s online profiling has small perfor-
mance overhead. The overhead is 6.6% in hash-table and
red-black tree; 11% in CLOMP-TM; and less than 1% in
SSCA2 and Vacation. Finally, we show that DTC performs
better than Stat-TC when phases are present improving the
performance of hash-table and red-black by 8.2% and 1.1%
with respect to Stat-TC with the best TC factor.
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