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Abstract—In this paper, we present gem5-MARVEL, the first
consolidated microarchitecture-level fault injection infrastructure
for heterogeneous System-on-Chip architectures comprising CPUs
of all major Instruction Set Architectures (ISAs) and different
types of domain-specific accelerators. The proposed framework is
based on a modular design that facilitates flexible fault injection
scenarios that correspond to different fault models and system
configurations. gem5-MARVEL includes a set of libraries for
the automation of fault injection and the analysis of the effects
of hardware faults at full system execution. We evaluate the
proposed framework on several 64-bit CPU ISAs: x86, Arm,
and RISC-V, as well as on different designs of domain-specific
accelerators. The case studies we present unveil important insights
and demonstrate the effectiveness of the proposed infrastructure
in the analysis of the impact of faults on different types of
heterogeneous computing systems. gem5-MARVEL facilitates
broad design space exploration for entire heterogeneous computing
systems at the microarchitecture level, where resilience under
realistic fault scenarios can be simultaneously analyzed with
performance (the typical use of microarchitectural simulators).

Index Terms—Reliability, CPUs, accelerators, heterogeneous
architectures, transient faults, permanent faults, silent data
corruptions, microarchitecture-level fault injection

I. INTRODUCTION

With Moore’s Law slowing down [1], domain-specific
accelerators (DSAs) have become increasingly important due
to their superior performance and efficiency on specific tasks
compared to general-purpose CPUs [2]. Accelerators are
specialized hardware engines designed for specific domains,
such as graphics [3], deep learning [4], bioinformatics [5],
image processing [6], and simulation [7]. They deliver high
performance gains by reducing overheads, offering fast special-
ized operations, optimized memory systems, and parallelism.
General-purpose CPUs perform better at control-intensive
tasks, but are less efficient than DSAs for specific tasks [8].
As modern computing systems become more complex and
heterogeneous, multiple CPUs of different ISAs, and a diverse
set of DSAs need to cooperate for optimized performance and
energy efficiency.

However, the reliability of integrated circuits deteriorates
with increasing design complexity, decreasing feature sizes
of transistors, and the wide manufacturing variability; all
these make modern computing systems severely vulnerable
to various types of faults, such as transient and permanent
faults [9]. Transient faults are temporary and can be caused by
environmental factors, such as radiation or power fluctuations,
while permanent faults are caused by manufacturing defects or

aging effects over time. Both types of faults can significantly
impact the system’s reliability, and it is crucial to evaluate
and mitigate their effects. Hardware faults of all types can
lead to unexpected behavior, system crashes, or even worse,
data corruptions [10]–[15]. More importantly, DSAs are often
critical components for many applications (e.g., [4]–[6]), and
thus, the loss of data or incorrect processing due to a fault in a
DSA can have severe consequences, especially in safety- and
mission-critical systems [16].

Reliability assessment of computing systems is crucial to
guarantee correct operation. This assessment is particularly
significant at early design stages for complex Systems-on-
Chip (SoCs) with CPUs and DSAs. Early identification of
weak hardware structures that are more vulnerable to faults can
prevent system failures and data corruptions, guiding effective
countermeasures. Calculating the Architectural Vulnerability
Factor (AVF) for each microarchitectural component is the
comprehensive way to assess the vulnerability of the entire
system stack [17]–[20]. Two prevailing methods to estimate the
AVF are Architecturally Correct Execution (ACE) analysis [21]
and statistical fault injection (SFI) [18]. While ACE analysis
is fast, it can overestimate AVF and has implementation
difficulties. SFI, although slower, provides accurate results [17],
[20], and thus, SFI is the focus of this work. Still, both methods
operate at the microarchitecture-level and calculate the cross-
layer AVF [17] of the system.

In the rising popularity of the RISC-V ISA [30], [31],
enabling diverse designs from various vendors, reliability eval-
uation becomes ever more critical. The expanding utilization
of RISC-V in safety-critical applications [32], [33], as well as
its emerging adoption in cloud computing and HPC, makes
this assessment essential to ensure resilience against hardware
faults when compared to classic ISAs like x86 and Arm. To
this end, a heterogeneous microarchitecture-level fault injection
framework is necessary to assess CPU and DSA resilience
jointly. Currently, as shown in Table I, there is no fault
injection framework that operates at the microarchitecture-level
and targets all major aspects of modern computing systems,
including microarchitecture-level fault injection to both CPU
and DSAs (jointly as an SoC or independently), support for
multiple ISAs, and for multiple fault models, etc. Such a
framework is essential for chip designers and researchers
to assess system vulnerability against hardware faults, guide
design changes for improved resilience, and identify critical
components needing extra protection early in the design cycle.



TABLE I
STATE-OF-THE-ART AND CONTRIBUTIONS OF THIS WORK REGARDING RESILIENCE ANALYSIS FRAMEWORKS.

State-of-the-Art Simulation Fault Injection ISA Support Fault Models Bit-Flips Support Metrics
uArch gem5 FS CPU DSA SoC x86 Arm RISC-V Transient Permanent Single Multiple AVF HVF

FIMSIM [22] ✓ ✓* ✓ ✓ ✓ ✓ ✓ ✓
GeFIN [23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MaFIN [23] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GemFI [24] ✓ ✓ ✓† ✓ ✓ ✓
Thales [25]/Fidelity [26] ✓ ✓ ✓

LLFI [27]/LLTFI [28] ✓ ✓ ✓ ✓ ✓

gem5-Approxilyzer [29] ✓ ✓ ✓ ✓§ ✓ ✓
This Work ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

*FIMSIM uses M5 simulator, the predecessor of gem5, and is based on Alpha ISA. †Not tested ISA. §It also works for SPARC.

Developing this consolidated resilience analysis framework for
complex computing systems is challenging, particularly for
heterogeneous systems with diverse CPUs and DSAs. Thus, a
customizable microarchitecture-level fault injection framework
is crucial to evaluate the resilience of CPUs and accelerators,
regardless of their architecture or specific use case [34].

In this paper, we propose gem5-MARVEL, the first con-
solidated microarchitecture-level fault injection framework
for evaluating transient and permanent fault resilience in
heterogeneous systems early in the design cycle. The framework
encompasses multiple CPUs with different ISAs and a variety
of DSAs. By injecting faults, gem5-MARVEL simulates real-
world scenarios, offering significant insights into the entire
heterogeneous system’s response to faults. Leveraging and
combining the state-of-the-art gem5 simulator for CPUs [35]
and gem5-SALAM for DSAs [36], gem5-MARVEL provides
flexibility, fast design-space exploration, and various scenarios
for comprehensive reliability evaluation. The diverse operation
modes for CPUs and accelerators enable covering nearly every
aspect of reliability evaluation.

Motivation & Importance of the work: Reliability evalua-
tion of a modern heterogeneous computing system at the early
design stages, is more important than ever before, because:

1) DSAs are specialized and integrated into larger SoCs with
general-purpose CPUs, adding complexity and potential
fault sources that impact overall system reliability.

2) Hardware failures and downtime costs are substantial,
particularly in data centers with extensive CPU and
accelerator deployments. Early reliability evaluation can
identify potential weak hardware structures and mitigate
the impact of faults in them on the system (either at the
software or at the hardware layer).

3) Transient and permanent faults can cause system failures
and data corruptions, leading to financial losses and repu-
tation damages. A consolidated fault injection framework
for CPUs of different ISAs and DSAs is critical to ensure
system reliability and performance.

4) Unlike existing tools (Table I), gem5-MARVEL focuses
on reliability evaluation at the microarchitecture level,
providing fast and accurate results for all major ISAs
and a large variety of DSAs in the entire SoC. A recent
study [17] confirms the significance of microarchitecture-
level fault injection and the flaws of other types of
injections at the software or the ISA layers (e.g., [27]–
[29]). Therefore, the value that gem5-MARVEL brings

is high and the breadth of studies across different ISAs,
microarchitectures and DSA designs is very large.

In summary, the main contributions of this paper are:
1) We extend the full-system support of gem5-SALAM to

support the RISC-V ISA along with the Arm ISA, which
was the main ISA that gem5-SALAM supported. Thus,
the accelerator designs can be simulated along with any
of the two prevailing RISC ISAs, enabling broader design
space exploration studies.

2) We propose the gem5-MARVEL fault injection frame-
work, that operates at the microarchitecture-level and
supports transient and permanent fault injections to
all hardware structures of the CPU and for the three
prevailing ISAs (Arm, x86, RISC-V).

3) We present, for the first time, a consolidated fault
injection framework at the microarchitecture-level that
targets heterogeneous SoCs with diverse CPUs and DSAs.
We also present numerous insights and observations.

4) gem5-MARVEL evaluates both the end-to-end AVF and
HVF (Hardware Vulnerability Factor) [37] through fault
injection. Recent studies (e.g., [17], [20]) have shown
that both AVF and HVF are essential metrics for any
reliability evaluation study.

II. BACKGROUND & RELATED WORK

A. Reliability Concepts & Background

AVF calculates the probability that a fault in a hardware
structure of a microprocessor will produce a program visible
error. AVF takes into account both the microarchitecture and the
program structure and its input data [19]. AVF is technology-
independent and captures the full-system vulnerability, includ-
ing all phases of fault activation and propagation through the
microarchitecture, the architecture, and the software layers [38].
For example, if a fault occurs in the physical register file of an
out-of-order microprocessor, it may not affect the program’s
execution if that fault is discarded due to a pipeline flush.
However, even if the fault is eventually propagated to the
software layer, the algorithm may discard or overwrite the
corrupted data and still produce the correct result. Therefore,
faults can be masked at either the hardware or the software
layer.

To further aid error protection strategies, the full system stack
can be divided into layers, and the AVF can be calculated based
on individual vulnerability factors for each layer. The System
Vulnerability Stack, proposed in [37], illustrates this approach



by assigning a vulnerability value to a bit at each layer to
determine its visibility. Another important reliability metric is
the HVF, which calculates the hardware portion of the AVF.
While AVF provides the full-stack vulnerability evaluation,
including the microarchitecture, the architecture, and the soft-
ware layers, HVF provides hardware designers with additional
insights beyond what AVF analysis alone offers, particularly
regarding microarchitecture-dependent vulnerability.

Computer architects often use AVF as a reference to
determine where and when to introduce redundancy in the
system design, especially for assessing runtime reliability
techniques (e.g., [39], [40]) and for the cross-layer evaluation
of fault-tolerant methods [17]. However, relying solely on
the AVF for the evaluation of microarchitectural decisions
made during the design stage, such as the sizing and the
organization of structures, is not an ideal approach. AVF does
not consider program-level operations that may be masked,
which could obscure changes in hardware performance. For
instance, AVF does not account for the placement of dead reads
and cannot provide insights into this behavioral change [37].
Therefore, HVF is a useful metric to analyze alongside AVF, as
it more diligently supports design decisions for fault protection.
gem5-MARVEL is a tool that facilitates both AVF and HVF
measurements.

B. Early Reliability Assessment

Early reliability assessment typically occurs using models
that are developed prior to the creation of silicon prototypes.
These models can be categorized into three main levels:
architecture, microarchitecture, and RTL (Register-Transfer
Level). These levels vary in terms of detail, with the most
abstract available early in the design process and the most
detailed (RTL) emerging later on [41], [42]. Architecture-level
models often lack most, if not all, hardware-specific details,
providing a functional emulation at the software level [17]. In
contrast, microarchitecture-level models (e.g., based on gem5)
encompass functional and timing-accurate representations of
the microarchitecture and offer accuracy at the clock cycle
level. Additionally, microarchitecture-level models accurately
depict various memory elements within the system, such as
SRAMs, registers, and non-logic-related flops and latches,
such as state machines. RTL models provide a comprehensive
description of the implemented hardware, encompassing logic
components and SRAM elements. Simulation time required
for each abstraction layer correlates with the level of detail,
with each increase in detail adding approximately two orders
of magnitude to the simulation time.

C. Microarchitecture-Level Fault Injection

Typically, designers use either Statistical Fault Injection
(SFI) [18] or analytical methods like the Architecturally
Correct Execution (ACE) analysis [19] to gain insights into the
resilience of programs against transient faults1. For transient

1ACE applies to transient faults only, while fault injection works for both
transient and permanent faults since the entire execution of the program is
simulated in the presence of faults.

faults, both methods aim to measure the AVF of hardware
structures, but each has its advantages and disadvantages. SFI
is very accurate, but slow since it requires multiple runs to
reach high confidence, whereas ACE analysis is fast, but
has a high development effort and may overestimate AVF
(up to 3x overestimation [20]). Statistical fault injection is a
reliability estimation technique that can provide full-system
AVF estimation by directly accessing the program output
produced with the injected faults. Statistical fault-injection
is a widely adopted method for reliability assessment. It offers
flexibility in terms of accuracy, depending on the size of the
statistical sample, while providing failure samples generated
through simulation. However, it comes with the drawback of
requiring multiple simulations, which can be time-consuming
and, depending on the level of model detail, may be considered
impractical.

D. Related Work

George et al. [43] argued that a microarchitecture-level
fault injection approach can provide accurate vulnerability
estimations and proposed a fault injection framework on top
of the PTLSim [44]. However, that framework targeted only
the x86 ISA and the register file. Yalcin et al. [22] proposed
FIMSIM, an SFI framework for microarchitectural simulators.
While that framework provided fault injection support for
various structures, it mainly targeted the M5 simulator, which
has been superseded by gem5 and was evaluated only with
simple in-order cores of the Alpha ISA. Parasyris et al. [24]
proposed GemFI, an ISA-level SFI framework based on gem5.
It, thus, only supports fault injection for the architectural
register file and targets a rather old version of gem5. Kaliorakis
et al. [23] proposed GeFIN, an SFI framework built on top of
gem5. GeFIN supports injections on different microprocessor
structures for x86 and Arm, but not for RISC-V or any kind
of accelerator, and targets a rather old version of gem5.

The software level SFI approaches typically operate at
the program source code [45], assembly [46]–[50], or at the
compiler intermediate level [27], [51]–[55]. Prior research [56]
has shown that IR-level and assembly-level injections deliver
very similar results. Venkatagir et al. [29] introduced gem5-
Approxilyzer, which operates at the architectural level and
precisely evaluates how an instruction error affects the final
output. However, these approaches at the software or ISA
layer may not fully capture critical fault manifestation and
propagation aspects, potentially leading to misleading reliability
findings, as it was recently demonstrated in [17].

Li et al. [57] characterized the propagation of errors in
DNN applications by using fault injection on a high-level
simulator for DNN accelerators. Mahmoud et al. [58] proposed
GoldenEye, a functional simulator with fault injection capabil-
ities for common and emerging numerical formats that target
DNN frameworks and accelerators. However, these simulators
support only DNN frameworks and accelerators, and lack
modeling support at the microarchitecture level. Several high
level software tools have been proposed for performing fault
injection studies within particular machine learning frameworks,



such as TensorFI [59], MindFI [60], and PyTorchFI [61].
However, all these tools inject faults at framework level, into
the ML model parameters and the outputs of operators. Reagen
et al. [62] proposed Ares, a DNN-specific fault injection
framework that operates at application level. Agarwal et al.
proposed LLTFI [28], a fault injection tool for ML applications
that operates at the LLVM IR level. Still, these approaches
operate at software-level and do not accurately reflect the
AVF [17], [25].

III. MICROARCHITECTURE-LEVEL SFI FRAMEWORK

A. Simulation Platform

Fault injection should ideally be based on a real system
with physical injection capabilities in all microarchitectural
structures (such a system does not exist, but even if it did,
making protection decisions after studying and implementing
it would be too late) or a very detailed low-level simulator
(e.g., RTL, gate) which allows the same. Although low-level
simulators may provide accurate fault effects, their simulation
throughput is extremely low to be affordable and cannot model
long-running workloads with OS activity (RTL simulation
is several orders of magnitude slower than cycle accurate
microarchitectural simulation [63]–[65]. To this end, gem5-
MARVEL relies on microarchitecture-level simulation using
the latest version of the gem5 simulator [35], [66], [67],
which allows (i) deterministic, (ii) end-to-end, (iii) cycle level
execution of (iv) large workloads (v) on top of an operating
system; this combination is impossible at lower levels.

B. gem5-based Accelerator Modeling

Recently, several efforts have been made to integrate domain
specific accelerator models with the state-of-the-art gem5
simulation environment. These efforts include, among others,
gem5-Aladdin [68] and PARADE [69]. Additionally, SystemC
support was added to gem5 [70] enabling the potential of cycle-
accurate modeling of hardware structures including accelerator
datapaths. Therefore, existing works for modeling domain-
specific accelerators rely either on pre-RTL [68], [69] or RTL-
based solutions [70] (e.g., C/C++ based models).

However, all these options have significant disadvantages.
On one hand, both gem5-Aladdin and PARADE, although they
are both pre-RTL frameworks, and thus, comprehensive, they
provide limited support for design space exploration due to their
restrictive simulation semantics. In addition, they suffer from
low simulation fidelity when data availability, parallelism, and
timing are not decoupled from the input dataset. On the other
hand, while SystemC support offers the potential of highly
accurate modeling, being an RTL-based alternative, it requires
considerably higher design effort and eventually provides lower
throughput (see Section III-A) than the other two pre-RTL
frameworks. To this end, in this work we are based on a new
pre-RTL framework, which overcomes these limitations and
provides flexibility, and excellent tradeoffs among performance,
simulation fidelity, and ease-of-use.

1) gem5-SALAM: gem5-MARVEL is based on gem5-
SALAM [36] that uses an advanced dynamic graph execution
engine based on LLVM [71]. gem5-SALAM instruments the
LLVM IR (Intermediate Representation) to model DSAs using
C descriptions of their functionality. Its main advantages are:

1) It provides accurate representation of the accelerator
datapath based on analysis of the LLVM intermediate
representation of the accelerated algorithm.

2) It provides cycle level modeling through the dynamic
LLVM-based runtime execution engine.

3) It decouples the datapath and memory components to
aid design space exploration and system optimization.

4) gem5’s tight integration enables seamless and intricate
interaction between the accelerator and other system
modules, including the CPU and the memory subsystem.

For the above reasons, we believe that gem5-SALAM is
the ideal candidate for integration into our fault-injection
framework to complement the CPU side of the system with the
accelerators side. This allows us to evaluate the performance
and reliability of a plethora of different accelerator architectures,
ranging from loosely-coupled multi-accelerator configurations
to tightly-coupled coprocessors.

2) gem5-SALAM Architecture Overview: gem5-SALAM
consists of two core components: the Compute Unit and the
Communications Interface. The Compute Unit serves as the
datapath for the custom accelerator, while the Communications
Interface enables memory access, control, and synchronization
through memory access ports, Memory-Mapped Registers
(MMRs), and interrupt lines. Memory access ports allow paral-
lel access to various memory types like scratchpad memories
(SPMs) and register banks. MMRs consist of configurable
status, control, and data registers, facilitating low-level device
configuration and communication between the accelerator and
the host, as well as between multiple accelerators in a cluster.
The accelerator is treated as a memory-mapped device, allowing
the host to use interrupt signals for synchronization without
constant polling. gem5-SALAM also includes Direct Memory
Access (DMA) devices and custom memories, which can be
seamlessly integrated into accelerator designs, enhancing its
versatility. The SoC architecture, including gem5-SALAM’s
features, is shown in Figure 1. The accelerator designs are
loosely coupled and communicate with the host CPU through
MMRs and DMA transactions. The CPU writes input and
output memory addresses to the accelerator MMRs and directs
the accelerator to start computation. DMA transfers data
between the accelerator and its SPMs or Register Banks,
where calculations are performed, and then the results are
transferred back to the system memory. After task completion,
the accelerator notifies the host via a pre-defined interrupt.

C. Adding RISC-V ISA support in gem5-SALAM

Currently, gem5-SALAM only supports the Arm ISA when
it comes to the simulated system processor cores. However, the
tremendous growth of the RISC-V ecosystem in the past few
years, and its rapid adoption in both academia and industry,



Host Platform

DMA

CPU

… SPMNSPM2SPM1

DSA1 DSAN
…

Cache 
Memories

IO Cache

In
te

rr
up

t 
C

o
nt

ro
lle

rs

Accelerator Cluster

gem5 Memory Subsystem

DRAM
System 

Peripherals

… RegBankΝRegBank1

DSA2

Fig. 1. gem5-based SoC architecture and interconnection.

motivated us to port gem5-SALAM to also support the RISC-
V ISA and system configuration. The recent introduction of
RISC-V full-system execution support into gem5 [35], [66]
was highly beneficial to this endeavor. Nonetheless, the main
challenge of extending the framework to support also the RISC-
V ISA is to identify the Arm specific components (i.e., the
ISA dependencies) and translate them into the corresponding
RISC-V ones. We summarize below the major components
that had strong dependency on the Arm platform. Specifically:

1) The interrupt system used by gem5-SALAM hardware
components that employed the Arm General Interrupt
Controller (GIC) for posting interrupts to the host CPU,

2) The automatic gem5 configuration script generator that
used an Arm gem5 configuration script as a template.

Next, we briefly discuss these two ISA-dependent features,
and how we convert them to enable RISC-V support into
gem5-SALAM.

1) From (Arm) GIC to (RISC-V) PLIC: gem5-SALAM
hardware components, use the Arm GIC to send and receive
interrupts to and from the CPU, aiding the synchronization
between accelerator and host and removing the overheads of
constant polling. We translated these functions at both hardware
and software levels to the Platform Level Interrupt Controller
(PLIC) that is present in the current gem5 RISC-V model.

2) Automatic Configuration Script Generator: gem5-
SALAM simplifies accelerator-rich SoC development using
an automatic configuration script generator. The generator
parses a single YAML file containing the system description
to produce complex configuration scripts. To enable RISC-
V ISA support in the latest gem5 version, we replaced the
Arm-specific script template with an existing RISC-V full-
system configuration script. Additionally, we made necessary
modifications to initialize gem5-SALAM components and
included accelerator memory-mapped addresses within the
RISC-V platform’s address ranges.

D. Configurations, Benchmark Suite & Accelerator Designs

gem5-MARVEL supports all dominant 64-bit ISAs, i.e., Arm,
x86, and RISC-V, and for the CPU side evaluations we present
in the following sections, we model the same out-of-order
microarchitecture for every ISA (microarchitectural modifica-
tions can of course be arbitrarily implemented in gem5), as
shown in Table II. gem5-MARVEL targets tens of hardware
structures for both CPUs and DSAs (see Section IV-E). In this
paper, we showcase the framework for 5 of the most important
structures of a modern OoO microprocessor: the L1 data and
instruction caches, the Physical Register File, and the load and
store queues. We employ a comprehensive and diverse set of 15
workloads from the MiBench benchmarks suite [72] for all 3
different CPU ISAs. This suite is commonly used in reliability
studies [17], [43], [63], [64], [73]–[81] as it facilitates complete
end-to-end executions.

For the DSAs evaluation, we present results for fault
injections in the two largest types of accelerator memory
structures: the scratchpad memories and the register banks
of the designs (see section IV-E for details). For the needs of
our study, we also employ 8 MachSuite accelerator designs [82]
(see Table IV in Section V-E) and we measure their AVF when
running full-system simulations based on the RISC-V ISA
for the CPU side. For each structure, 1,000 single-bit faults
are randomly generated following the uniform distribution as
defined in [18], resulting in nearly 250,000 fault injection
runs in total for all benchmarks and accelerator designs, 3
different 64-bit ISAs, and all hardware components for CPU
and DSAs. We follow the widely adopted formulation of [18]
for the statistical fault sampling calculations; our 1,000 faults
correspond to 3% error margin with 95% confidence level.

IV. FEATURES & IMPLEMENTATION

A. Fault Models & Effects Classification

1) Fault Models: gem5-MARVEL models the following
types of faults on microarchitectural structures: transient and
permanent faults, as well as their combinations (see Table III).
These types of fault models allow a wide analysis of the effect
of different factors that affect reliability: latent manufacturing
defects, environmental conditions, early-life failures, chip
aging and wear-out, and voltage scaling. Additionally, gem5-
MARVEL provides support for fault injection experiments that
can simulate multiple faults occurring in various combinations
to mimic the spatial and temporal behavior of faults in hardware
structures. These combinations involve injecting multiple faults
of any type in a single structure, or multiple faults occurring

TABLE II
MAJOR SIMULATOR CONFIGURATIONS FOR EACH ISA.

Parameter Value
ISA RISC-V / Arm / x86

Pipeline 64-bit OoO (8-issue)
L1 Instruction Cache 32KB, 64B line, 128 sets, 4-way

L1 Data Cache 32KB, 64B line, 128 sets, 4-way
L2 Cache 1MB, 64B line, 2048 sets, 8-way

Physical Register File 128 Int; 128 FP
LQ/SQ/IQ/ROB entries 32/32/64/128



TABLE III
FAULT MODELS DESCRIPTION.

Fault Model Description

Transient
A storage element’s bit value is flipped in a clock

cycle of the program execution; the bit position and
the cycle can be set arbitrarily (randomly or directed)

Permanent A storage element’s bit value is permanently set
‘0’ or to ‘1’; the bit position can be set arbitrarily

in different structures. Although, due to space limitations, we
show results only for single bit flips, gem5-MARVEL also
supports multibit fault injection.

2) Fault Effects Classification: For the AVF evaluations,
gem5-MARVEL classifies the effect on the program output
into the following classes (typically used in all SFI studies):

Masked: Simulation finished with no deviations from a
fault-free execution. Thus, the fault did not affect the system
or the application in any observable way.

Silent Data Corruption (SDC): Simulation finished nor-
mally, but the program output was different from the fault-free
simulation, without any observable indication.

Crash: A simulation was interrupted by a catastrophic event,
preventing it from completing or reaching the program’s end.
Consequently, no program output was generated.

On the other hand, HVF campaigns have two separate classes
of fault effect classification:

Masked: The fault did not reach the commit stage (i.e., did
not reach the software layer) until the end of simulation.

Corruption: A mismatch was detected in the commit stage
compared to the fault-free trace (i.e., the fault became visible to
the software layer). The mismatch may pertain to the instruction,
operands, data transactions, or program order.

B. Implementation of gem5-MARVEL

The objectives of gem5-MARVEL are enumerated below:
Ensuring Accuracy: gem5-MARVEL aims to deliver accu-

rate vulnerability reports (AVF and HVF). It achieves this by
executing applications or accelerator models until completion,
unless a fault is detected earlier, which is masked (e.g., invalid
cache line or overwritten before being read). This approach
captures the effect of faults on the program outcome.

Increasing Speed of Fault Injection Campaigns: gem5-
MARVEL optimizes SFI campaigns, particularly for transient
faults, by utilizing multiple workstations. It can promptly
terminate an SFI run when a fault is inserted into an invalid
or unused hardware structure entry or when a faulty entry is
overwritten before being read. These optimizations significantly
reduce the time needed for individual fault injection runs.

High Configurability: gem5-MARVEL is highly config-
urable, allowing users to specify various fault models, fault
injection targets, and fault characteristics. It uses fault masks
that specify the injection of faults, containing information about
targeted components and timing.

Support for Different Hardware Configurations: gem5-
MARVEL incorporates configuration presets that define at-
tributes like ISA, memory configuration, CPU core type (in-
order, out-of-order), multicore setup, system setup, disk images,

kernel versions, etc. It also supports a list of hardware structures
for fault injections, and new presets can be easily added to
cover various requirements.

Flexibility and Ease of Expansion: gem5-MARVEL
provides high flexibility and ease of expansion, making it
suitable for reliability evaluation studies involving different
microprocessors or accelerator designs. Its modular design
utilizes gem5’s checkpointing features to ensure that faults
only affect the program being studied. Additional functionality
has been incorporated into gem5’s checkpointing mechanism
to preserve both microarchitectural and architectural states,
allowing the study of long-running workloads without long
warm-up periods and enabling analysis from any desired time
point while maintaining the accurate microarchitectural state,
including cache data.

Overall, gem5-MARVEL is a powerful and flexible fault
injector built upon the gem5 simulator, designed to accurately
evaluate and analyze the impact of faults in modern systems.
Its optimizations aim to speed up fault injection campaigns
and improve the reliability evaluation process.

C. Fault Injection Campaign

As shown in Figure 2, a fault injection campaign in gem5-
MARVEL consists of injecting a series of faults (statistical
sample) into simulations. These simulations produce output
results, which are parsed to estimate the vulnerability or
other desired metrics. Depending on system parameters, a
gem5-MARVEL component generates fault mask files 1 .
Running scripts serve as a campaign controller and manage fault
injection campaigns, composing the gem5-MARVEL library.
Each fault injection simulation requires a fault mask input file
2 . The simulations are run 3 , with the controller supplying

necessary inputs and storing the results. Multiple systems/CPU
cores can be used for faster assessment. gem5-MARVEL can
configure multiple workers to achieve 100% hardware resource
utilization. Each gem5-MARVEL instance corresponds to one
injected fault and produces output files and logs 4 . Simulation
outputs are stored for post-processing, determining the effect
of the injected fault. Results are parsed 5 , and finally, the
AVF or HVF estimation is exposed 6 .

1) Hardware Configurations: To perform a vulnerability
assessment campaign using gem5-MARVEL, a hardware con-
figuration is required. This configuration includes gem5 system
scripts, instructions for running fault-free and fault injection
simulations, and hardware structure information for generating
appropriate faults within benchmark execution bounds.

2) Workloads & Accelerator Designs: gem5-MARVEL also
maintains a pool of pre-configured workloads, similar to the
hardware presets, using the functionality of gem5. There are
checkpoints at the beginning of a workload which are used by
gem5-MARVEL exactly like gem5 does. The requirements
for the workload presets are to have a checkpoint at the
beginning of the benchmark, switch to emulation at the end of
the benchmark, export the output to the host during emulation,
and terminate the simulation. These actions are performed
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Fig. 2. Fault injection campaign high-level layout with parallel workers.

using directives (i.e., magic instructions of gem5) given either
from the host or the simulated workload.

D. Measuring AVF and HVF

gem5-MARVEL uses two vulnerability evaluation method-
ologies: HVF assessment [37] and AVF assessment [76]. As
shown in Figure 3(a), HVF assesses the effects of hardware
faults until they first impact the software layer and stops there.
It categorizes faults as Benign (masked by microarchitectural
operations) or Corruptions (architecturally visible at the commit
stage). AVF (see Figure 3(b)), on the other hand, provides a
cross-layer vulnerability assessment, considering the entire
program’s execution. Another essential contribution of gem5-
MARVEL is that it can perform HVF and AVF analysis either
on the same or separate runs. Additionally, since the fault masks
should be the same between different evaluation methodologies
(i.e., HVF or AVF), gem5-MARVEL can also provide in-depth
information about the propagation path of a specific fault (see
Figure 3(b)). To the best of our knowledge, there is no other
framework that can provide such a fine-grained correlation of
faults, enabling numerous explorations. For accelerator designs
targeting scratchpad memories, or register banks, HVF and
AVF analyses are identical, since any fault is visible unless it
hits an invalid or unused cell, which is then considered masked.

E. Target Hardware Structures

gem5-MARVEL supports various CPU microarchitectural
components as fault-injection targets, including integer and
floating-point physical register files, memory cache levels, load
and store queues, reorder buffer, TLBs, register renaming
unit, etc. Due to space constraints, this paper focuses on
five major CPU structures for fault injection: (1) Integer
Physical Register File, (2) L1 Instruction Cache, (3) L1 Data
Cache, (4) Load Queue, and (5) Store Queue. For DSA
designs, fault injection results are reported for scratchpad
memories and register banks, since these are the available
DSA hardware structures. Scratchpad memories are high-
speed internal memories located close to accelerator functional
units (see Figure 1; DSAs consist of functional units). They
serve as temporary storage for ongoing calculations and data
manipulation, tailored to the specific needs of the accelerator
design. In our accelerator configurations, scratchpad memories
play a crucial role in handling input, output, and intermediate
data for accelerated algorithms. Input data are transferred
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Fig. 3. (a) HVF evaluation process; (b) AVF evaluation process, which may
also consider the HVF evaluation.

from the CPU to accelerators via DMA, and the results are
DMA’d back to the CPU after processing. Register banks
fulfill a comparable role to SPMs but function as slower and
less complex components, showing a delta delay between the
moment a register is written to and when the data becomes
available for read operations.

F. Sanity Checking of the Proposed Fault Injector

To validate gem5-MARVEL fault injection, specific test
programs were developed for each individual microarchitectural
component that gem5-MARVEL supports. We present the
program used to validate the fault injection on the L1 Data
cache; similar approaches were followed for all other hardware
structures (details omitted due to limited space). As shown in
Listing 1, the validation program incorporates inline assembly
(i.e., keep variables and iterators in registers instead of spilling
to the memory) and compiler directives to prevent interference
from compiler optimizations and memory alignment (lines 1-8).
All test programs are compiled using -O0 GCC flag, which
instructs the compiler to avoid any code optimizations. The
validation test program starts by creating an array aligned to
the cache-line size, equal to the L1 data cache size (lines 7-8).
Through 10 iterations 2, the array is filled with zeros, ensuring
the data cache is entirely zero-filled (lines 13-15). A checkpoint
using the gem5’s pseudo-instruction m5_checkpoint() [86] is
taken to capture the system’s architectural and microarchitec-
tural state, including cache contents (see Section IV-B).

This pseudo-instruction indicates the beginning of the fault
injection process (line 17). During the injection window, a
nop loop runs to avoid disturbing cache contents (lines 18-19),
while gem5-MARVEL injects faults at the L1 Data Cache, as
described in Section IV-C. The program switches to emulation
using m5_switch_cpu() pseudo-instruction, indicating the end
of the fault injection process (line 21). In a fault-injection free
window (lines 23-25), cache contents are checked by summing
all words in the array, where a non-zero sum indicates a
correctly injected fault. Faults are uniformly distributed across
the entire data array during a 10,000 fault injection campaign
to target all cache lines.

2Before running any cache test, we need to warm up the cache by iteratively
accessing the desired data multiple times. This process ensures that all cache
ways are fully filled due to pseudo-LRU replacement policy [83]–[85].



1 #define CSIZE 4096
2 register uint32_t i asm ("r28");
3 register uint32_t j asm ("r27");
4 register uint64_t *arr asm ("r26");
5 register uint64_t sum asm ("r25");
6

7 uint64_t __attribute__((section (".myArrSec")))
8 array[CSIZE] __attribute__ ((aligned (64)));
9

10 int main(void) {
11 arr = array;
12 sum = 0;
13 for (j = 0; j < 10; j++)
14 for (i = 0; i < CSIZE; i++)
15 arr[i] = (uint64_t)0x00;
16

17 m5_checkpoint(); // Start injection here
18 for (i = 0; i < 10000; i++)
19 asm volatile ("nop");
20 m5_switch_cpu(); // End injection here
21

22 for (i = 0; i < CSIZE; i++)
23 sum += arr[i];
24 printf("%X", sum);
25 m5_exit(); // Simulation ends here
26 }

Listing 1. L1 data cache validation test program for Arm ISA.

The measured AVF is 100%, indicating that gem5-MARVEL
correctly measures the vulnerability of the entire L1 data cache
contents (100% coverage).

V. EXPERIMENTS — CASE STUDIES — INSIGHTS

In this section, we present results from multiple case studies
conducted on gem5-MARVEL to demonstrate its effectiveness
and key insights. The objective is to showcase various features
and capabilities of the framework rather than exhaustively
analyzing all reliability aspects for each CPU, workload, ISA,
or DSA. gem5-MARVEL allows fault injection in either a
single component or multiple components, and the aggregated
results can provide a comprehensive SoC AVF report (see
Section IV-A1). However, for clarity, we present the results
separately to offer distinct insights for each case.

A. Weighted AVF

To provide a comprehensive summary of detailed data and
results for each hardware structure, and to enable meaningful
comparisons among different CPU and accelerator designs,
we adopt an aggregated AVF-based metric. Considering the
different execution times of the benchmarks, we use a weighted
approach for calculating the AVFs, similar to [73], [77]. This
weighting naturally leads to a smaller impact on to aggregate
AVF of hardware structures coming from benchmarks with
shorter execution times compared to those with longer execution
times. The weighted AVF is obtained by summing the AVFs of
all benchmarks, with each AVF multiplied by the corresponding
benchmark’s execution time (the weight), and then dividing
by the sum of execution times of all benchmarks, as shown
below:

wAV F (c) =

N∑
k=1

(AV Fk(c)× tk) /

N∑
k=1

tk

where, wAVF(c) is the weighted AVF of a component c,
AV Fk(c) is the AVF of component c for benchmark k, tk
is the execution time of each benchmark k, and N is the total
number of benchmarks. The weighted AVF (wAVF) is shown
for each hardware structure at the rightmost bars of each figure.

B. CPUs Vulnerability Evaluation — the 3 ISAs

In this subsection, we present AVF fault injection campaigns,
targeting the major microarchitectural components of an OoO
microprocessor model and for the three different 64-bit ISAs.
Note that the insights we discuss below about the relative
vulnerabilities of the ISAs are only applicable to the specific
workloads and microarchitectural configuration we employed
(which is the same across the three ISAs; as discussed in
Section III-D and Table II of the paper). Our results do
not imply that one ISA is generally more robust (i.e., less
vulnerable) than another. Naturally, there is no guarantee that
the rank ordering of the ISAs would not change under a
different microarchitectural configuration or workload suite.
Such an investigation would require an extensive study involv-
ing numerous microarchitectural configurations and workloads
and is not the purpose of this paper. Instead, we present a
baseline microarchitecture to demonstrate the potential of gem5-
MARVEL, along with initial observations and implications
specific to the case studies outlined in this paper.

1) Physical Register File: Figure 4 presents the AVF results
for the Integer Physical Register File (RF) across fifteen
benchmarks of the MiBench [72] suite for the three prevailing
ISAs (Arm, x86, RISC-V). At the right of the graph, we show
the weighted AVF (wAVF) for each ISA that aggregates the
individual AVF results of different benchmarks. As shown in
Figure 4, the AVF varies from 6% to 14% for Arm, 4.7%
to 13.2% for x86 and 5.1% to 20.8% for RISC-V. The AVF
strongly depends on the program being executed, indicating
a high sensitivity to the access pattern and the utilization of
the register file. For most benchmarks, the RISC-V ISA has a
consistently higher AVF compared to both Arm and x86, with
notable outliers being the dijkstra, edges and corners.

Observation #1: Transient fault vulnerability of the physical
register file is significantly higher in RISC-V than in Arm
and x86 for the considered microarchitectural configuration
and workloads.
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Fig. 4. AVF for the physical register file for Arm, x86 and RISC-V ISAs.



Architectural Implication #1: Although the source code
workloads are the same among the three ISAs, the different
binaries may influence how transient faults in the register
file contents affect program execution. Some workloads are
more likely to trigger specific access patterns of the register
file that could exacerbate vulnerabilities in a particular ISA
(RISC-V in this case) rather than in other ISAs.

2) L1 Instruction Cache: Figure 5 presents the AVF results
of the L1 Instruction Cache across the fifteen benchmarks
for all three ISAs. Unlike the register file (Figure 4), the L1
instruction cache presents more uniform distribution across the
benchmarks, ranging from 20.5% to 37.9% for Arm, 25.2% to
38.2% for x86 and 16.4% to 34.9% for RISC-V. As shown in
Figure 4, the Arm ISA exhibits the highest vulnerability (i.e.,
high AVF) across most benchmarks, while RISC-V has the
lowest AVF compared to Arm and x86. However, the relatively
lower variance of the AVF in the L1 instruction cache compared
to the RF indicates that the access pattern of the instruction
cache for all ISAs is less dependent on the specific benchmark
being tested. The smaller AVF of the RISC-V ISA might be
related to the simpler encoding logic of RISC-V instructions,
resulting in higher masking effects than in other ISAs.

Observation #2: The transient fault vulnerability of the
L1 Instruction Cache for the RISC-V ISA is the lowest
among the three ISAs for the considered microarchitectural
configuration and workloads.

Architectural Implication #2: The RISC-V ISA’s simplicity
and modularity, along with its efficient decoding logic, may
result in a reduced probability of faults during instruction
fetch and decode stages. Additionally, compiler optimiza-
tions may influence the vulnerability of the instruction
cache (even if all binaries are compiled with the same GCC
compiler version for all ISAs), considering different ISAs
may have varied compiler strategies and code generation
quality.

3) L1 Data Cache: Figure 6 presents the AVF results of
the L1 Data Cache across fifteen benchmarks for all three
ISAs. The AVF for this hardware structure ranges between
4.3% to 44.9% for Arm, 3.4% to 35.1% for x86 and 5.9% to
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Fig. 5. AVF for the L1 instruction cache for Arm, x86 and RISC-V ISAs.
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Fig. 6. AVF for the L1 data cache for Arm, x86 and RISC-V ISAs.

40.9% for RISC-V. The L1 Data Cache AVF has the largest
variance of all three components. This can be attributed to the
fact that the L1 data cache access pattern and utilization are
highly dependent on the benchmark being executed. x86 has
the lowest wAVF, with Arm and RISC-V being quite close.

Observation #3: The Arm and RISC-V ISAs exhibit
the highest vulnerability to transient faults compared to
the x86 ISA for the L1 data cache for the considered
microarchitectural configuration and workloads.

Architectural Implication #3: Data cache requests may be
influenced by various factors such as memory operations
within the program’s execution path, load instructions that
were predicted incorrectly, prefetching, and load/store de-
pendencies that are yet to be resolved. The x86 ISA typically
has more complex instructions that perform multiple simpler
operations in a single instruction. This complexity may lead
to more intricate cache access patterns compared to Arm and
RISC-V ISAs, increasing the hardware masking probability,
and thus, making them less vulnerable to transient faults.

4) Load Queue: Figure 7 presents the AVF results of the
Load Queue across fifteen benchmarks for all three ISAs. The
AVF for this hardware structure ranges between 2.4% to 8.6%
for Arm, 2.7% to 11.1% for x86 and 3.5% to 12.9% for
RISC-V. The benchmark with the highest AVF averaged across
all three ISAs is smooth and the benchmark with the lowest
AVF is adpcme. We observe significant variability among
benchmarks and ISAs; however, benchmark-dependent trends
remain consistent across all three ISAs.
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Fig. 7. AVF for the Load Queue for Arm, x86 and RISC-V ISAs.
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Fig. 8. AVF for the Store Queue for Arm, x86 and RISC-V ISAs.

5) Store Queue: Figure 8 presents the AVF results of the
Store Queue across fifteen benchmarks for all three ISAs.
The AVF for this hardware structure ranges between 2.2% to
6.2% for Arm, 2.1% to 9.3% for x86 and 1.8% to 12.0% for
RISC-V. The benchmark with the highest AVF averaged across
all three ISAs is corners and the benchmark with the lowest
AVF is adpcme. We observe significant variability between
benchmarks and ISAs; however, benchmark-dependent trends
remain consistent across all three ISAs.

Observation #4: Transient fault vulnerability of the load
and store queues is lower in Arm compared to RISC-V and
x86 for the considered microarchitectural configuration and
workloads.

Architectural Implication #4: The ISA memory ordering
model defines load and store interactions with memory and
each other. Variations in memory models may affect the
number of in-flight or queued load and store instructions.
Therefore, Arm’s memory ordering model may positively
impact the load and store queue’s resilience to transient
faults.

Considering the observations mentioned above, there are
instances about specific microarchitectural components where
one ISA appears less vulnerable than others. In contrast, in
other scenarios, the same ISA may appear more vulnerable.
This outcome can be explained in two ways. Firstly, each ISA
can be affected differently by the specific microarchitectural
configuration. Some ISAs might exhibit superior optimization
or design that minimizes the impact of transient faults under
certain configurations, yet render them more susceptible under
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Fig. 9. SDC AVF for the physical register file.

different setups. Secondly, diverse workloads impose varying
stress (usage) levels on different parts of the microarchitecture.
Certain ISAs may excel under particular workloads owing
to their architecture’s handling of specific operations or data
accesses, thus resulting in different vulnerabilities across
scenarios.

C. SDC Contribution to AVF

In this subsection, we present the contribution of Silent Data
Corruptions (SDCs) to the overall AVF, considering three major
microarchitectural components of an OoO core. Note that the
right-most columns of each graph present the SDC weighted
AVF (wAVF) for each ISA that aggregates the individual SDC
AVF results of all benchmarks.

1) Physical Register File: Figure 9 presents the SDC AVF
results for the Integer Physical Register File (RF) across fifteen
benchmarks of the MiBench [72] suite for the three prevailing
ISAs (Arm, x86, RISC-V). As shown in Figure 9, the AVF
varies from 0% to 6.9% for Arm, 0% to 3.7% for x86 and
0.1% to 9.9% for RISC-V. Compared to the overall weighted
AVF, the SDC wAVF is 4.6 times lower for Arm, 5 times
lower for x86, and 4 times lower for RISC-V. Therefore, the
SDC probability for the RF is significantly less than the Crash
probability, which is the remaining fault effect that composes
the overall AVF.

2) L1 Instruction Cache: Figure 10 presents the SDC AVF
results for the L1 Instruction Cache across fifteen benchmarks
of the MiBench [72] suite for the three ISAs (Arm, x86, RISC-
V). As shown in Figure 10, the AVF varies from 0.3% to 9.9%
for Arm, 0.3% to 4.6% for x86 and 0.2% to 5.7% for RISC-V.
Compared to the overall weighted AVF, the SDC weighted
AVF is 9 times lower for Arm, 11.2 times lower for x86, and
17 times lower for RISC-V. Therefore, the SDC probability
for the L1 Instruction Cache is extremely low compared to the
Crash probability.

3) L1 Data Cache: Figure 11 presents the SDC AVF results
for the L1 Data Cache across fifteen benchmarks of the
MiBench [72] suite for the three ISAs (Arm, x86, RISC-V).
As shown in Figure 11, the AVF varies from 1.2% to 43% for
Arm, 0.7% to 32.6% for x86 and 0.8% to 40.2% for RISC-V.
Compared to the overall weighted AVF, the SDC weighted
AVF is 20.6% vs 23.8% for Arm, 13.7% vs 17.1% for x86,
and 17.8% vs 21.7% for RISC-V. Therefore, in contrast to

0%

3%

5%

8%

10%

sm
oo
th
qs
or
t

cr
c3
2

co
rn
er
s

ed
ge
s
sh
a

ad
pc
m
_e
nc

di
jks
tra

ad
pc
m
_d
ec

bi
tc
ou
nt

bl
ow
fis
h_
en
c

bl
ow
fis
h_
de
c

fft
_in
v

pa
tri
cia

ba
sic
m
at
h

wA
VF

SD
C

 A
V

F 
[%

]

Benchmarks

L1 Instruction Cache

x86 Arm RISC-V

Fig. 10. SDC AVF for the L1 instruction cache.
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Fig. 11. SDC AVF for the L1 data cache.

other hardware structures, the SDC probability for the L1 Data
Cache is extremely high compared to the Crash probability.

Observation #5: SDCs are much rarer in the Physical
Integer Register File and L1 Instruction Cache than in the
L1 Data Cache, where they are the dominant fault effect.

Architectural Implication #5: Wrong values in registers
are very likely to result in illegal memory accesses, and
corrupted blocks in the L1 Instruction cache will most likely
result in an illegal instruction being executed. Data cache
corruptions, on the other hand, are less likely to cause
a crash and can easily propagate to the program output
resulting in an SDC.

D. SDCs due to Permanent Faults

Permanent faults, also known as hard errors, are long-lasting
or permanent defects in the CPU’s hardware structures, such as
SRAM arrays. These faults typically result from manufacturing
defects, physical damage (e.g., from overheating or electrical
overloads), or wear and tear over time. Permanent faults are
persistent and usually require hardware repair or replacement
to resolve. Permanent faults may have serious consequences
for CPU operation, potentially resulting in system instability,
data corruption, or even severe system failures, depending on
their severity and frequency. In this subsection, we present
the probability of permanent faults generating SDCs for the
three ISAs of this study, for two major microarchitectural
components of an OoO core (i.e., the L1 Instruction Cache,
and the L1 Data Cache).

1) L1 Instruction Cache: Figure 12 presents the SDC
probability results for permanent faults in the L1 Instruction
Cache across fifteen benchmarks of the MiBench [72] suite for
the three ISAs (Arm, x86, RISC-V). As shown in Figure 12,
the SDC probability varies from 0.1% to 2.3% for Arm,
0.1% to 1.3% for x86 and 0.3% to 2.7% for RISC-V. On
average for all benchmarks, the x86 ISA shows the lowest
SDC probability among the ISAs studied in this paper (i.e.,
most benchmarks have the lowest SDC probability), while
in most of the benchmarks we can see that the RISC-V ISA
shows the highest SDC probability.

2) L1 Data Cache: Figure 13 shows the SDC probability
results for permanent faults in the L1 Data Cache across fifteen
benchmarks of the MiBench [72] suite for the three ISAs (Arm,

x86, RISC-V). As shown in Figure 13, the probability varies
from 5.1% to 53.3% for Arm, 4.4% to 64.7% for x86 and
4.4% to 70.8% for RISC-V. On average for all benchmarks,
the RISC-V ISA has the highest SDC probability among all
ISAs studied in this paper (i.e., most benchmarks have the
highest SDC probability).

Overall, for the microarchitecture and workloads we ana-
lyzed, the RISC-V ISA exhibits a significantly higher proba-
bility of SDCs due to permanent faults compared to the other
ISAs, namely Arm and x86.

E. Domain-Specific Accelerators Vulnerability Evaluation

In this subsection, we report the AVF results from fault
injection on eight different DSA designs, targeting their large
on-chip SRAMs: scratchpad memories (SPMs) and register
banks (RegBanks). These components store input, output
data, and intermediate results of accelerated algorithms. For
each DSA, we select representative SPMs and RegBanks for
independent fault injection campaigns to assess their AVF, as
shown in Table IV. Figure 14 presents the breakdown of SDC
and Crash fault effects, which together constitute the complete
AVF, for all designs.

The BFS DSA design uses two distinct RegBanks for
accessing the EDGES and the NODES of the input graph,
and does not use any SPMs. The AVF of the EDGES RegBank
is 35%, while the AVF of the NODES RegBank is 20%, and as
shown in Figure 14, nearly all fault effects of BFS are Crashes.
This is due to data from both RegBanks being used as indices
for graph traversals by the accelerator hardware. As a result,
faults in any RegBank lead to either excessively long execution
times or out-of-bounds memory accesses that surpass the size
of the system’s physical memory. The FFT design utilizes two
SPMs to store the imaginary (IMG) and REAL components of
the algorithm’s output. The IMG SPM has an AVF of 44.5%,
while the REAL SPM has an AVF of 45.1%. These AVFs are
quite similar because a fault in either the imaginary or real
part of the FFT result has an equal probability of corrupting
the accelerator output. Interestingly, as shown in Figure 14, all
faulty runs result in SDCs, since the SPM data is not utilized
by any accelerator control logic or used as indices for memory
accesses. The same pattern is also observed in the GEMM and
MERGESORT designs. GEMM holds the input data of one of
the matrices to be multiplied in one SPM and the result of the
matrix multiplication in another SPM, while MERGESORT
uses two SPMs to store the main array data and temporary
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Fig. 12. SDC AVF for permanent faults of the L1 instruction cache.



0%

20%

40%

60%

80%

ad
pc
m
_d
ec

ad
pc
m
_e
nc

ba
sic
m
at
h

bi
tc
ou
nt

bl
ow
fis
h_
de
c

bl
ow
fis
h_
en
c

co
rn
er
s
cr
c3
2

di
jks
tra

ed
ge
s

fft
_in
v

pa
tri
cia
qs
or
t
sh
a

sm
oo
th

wA
VF

SD
C

 P
ro

b
ab

il
it

y

Benchmarks

Permanent Faults (L1D Cache)

x86 Arm RISC-V

Fig. 13. SDC AVF for permanent faults of the L1 data cache.

TABLE IV
TARGET INJECTION COMPONENTS FOR EACH DSA DESIGN.

Accelerator Component Memory Size (Bytes) Memory Type

BFS EDGES 16,384 RegBank
NODES 2,048 RegBank

FFT IMG 8,192 SPM
REAL 8,192 SPM

GEMM MATRIX1 32,768 SPM
MATRIX3 32,768 SPM

MD KNN NLADDR 16,384 SPM
FORCEX 2,048 SPM

MERGESORT MAIN 8,192 SPM
TEMP 8,192 SPM

SPMV VAL 13,328 SPM
COLS 6,664 SPM

STENCIL2D
ORIG 32,768 SPM
SOL 32,768 SPM

FILTER 360 RegBank

STENCIL3D
ORIG 65,536 SPM
SOL 65,536 SPM

C VAR 8 RegBank

intermediate values. As shown in Figure 14, the output SPM
(MATRIX3) of GEMM has significantly lower AVF than the
input SPM. This can be attributed to the injected faults in the
output SPM being overwritten much more often because the
input SPM gets written to only once by the DMA device when
the accelerator is initialized, whereas the output SPM gets
written to for the entire accelerator runtime. For MERGESORT,
the TEMP SPM has significantly lower AVF than in MAIN
SPM, which can be attributed to the overwriting of numerous
faults due to the continuous stream of memory writes to the
SPM. Similar observations hold also for the remaining DSA
designs, which are omitted due to space limitations.

Observation #6: Most accelerator designs result in very
high SDC rates in the presence of faults.
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Architectural Implication #6: Most accelerators are
datapath-heavy, with few control dependencies on their
input data. This characteristic enables accelerators to effi-
ciently execute data-intensive tasks by prioritizing parallel
processing of large data volumes. However, it also amplifies
the probability of SDCs in the presence of transient faults.
Therefore, fault mitigation strategies for accelerators should
primarily focus on data corruptions and not the control flow.

F. Sensitivity Analysis: Registers Number and Vulnerability

Figure 15 presents the AVF for all fifteen benchmarks used
in this study, running for the RISC-V ISA with different
Physical Register File sizes (i.e, 96, 128 and 192 physical
registers) as a sensitivity case study. As shown in Figure 15,
the vulnerability of the physical register file increases as the
number of physical registers is reduced due to the increased
utilization of each register. With fewer physical registers, each
register is accessed and updated more frequently, increasing the
chances of a fault occurring during register access. Additionally,
with fewer physical registers available, the microprocessor will
reuse a register for multiple purposes, which can increase the
probability of a fault occurring due to an unexpected value
in the register. Therefore, reducing the number of physical
registers in a microprocessor can increase the vulnerability of
the physical register file to transient faults. This is a consistent
observation across the three ISAs.

G. Performance-Aware Comparison

We explore how different computing systems can be fairly
compared using gem5-MARVEL regarding reliability, and show
how vulnerability measurements can be combined with system
performance. We showcase our methodology with a test case
scenario by comparing the reliability of two different computing
systems: a standalone RISC-V CPU and a standalone DSA.
For a fair comparison, 4 particular algorithms are properly
implemented to run and are modeled in both computing systems.
These are a Matrix Multiplication Algorithm (i.e., GEMM),
BFS, FFT, and KNN algorithms (as described in Table IV).
AVF is a pure reliability metric that does not provide any
information about the system performance. AVF alone cannot
provide any insights on the tradeoff between performance and
reliability of a chip. To this end, gem5-MARVEL is also able
to compute a new simple reliability metric named Operations
per Failure (OPF). OPF is the number of times a workload
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Fig. 16. Breakdown of SDC and Crash AVF of 4 algorithms for both CPU and
accelerator (left graph), and the OPF for CPU and accelerator (right graph).

is executed before a system failure happens, and is computed
using the following formula: OPF = OPS/AV F , where OPS
(Operations per Second) is the number of operations (i.e., tasks)
that the compute unit can perform during 1 second. Assume, for
example, the Matrix Multiplication algorithm, which performs
2×N3 operations, where N is the size of the matrices. Thus,
OPS = 2 × N3/Exec T ime. The OPF metric enables a
combined analysis of performance and reliability into a single
metric. For the same workload that runs in different platforms
(a CPU or an accelerator in our example), larger OPF values
indicate better tradeoff between reliability and performance
(larger number of correct executions over time).

Figure 16 showcases the pure reliability evaluations against
the new proposed metric for the 4 algorithms, which takes
into account the performance of the platform and presents the
tradeoff between performance and reliability in a single metric.
As Figure 16 demonstrates, while the AVF (left graph) shows
that all 4 algorithms running on the accelerator (the DSA labels
in the x-axis) are significantly more vulnerable than running on
a RISC-V CPU, the combined vulnerability and performance
metric OPF (right graph) shows that the same algorithms can
be executed in the accelerator significantly more times than in
the CPU before observing a system failure (i.e., better tradeoff
between performance and reliability for the accelerator design).

Observation #7: Although the accelerator design is more
vulnerable, it demonstrates better tradeoff between perfor-
mance and reliability.

Architectural Implication #7: The higher OPF value sug-
gests that the accelerator design offers increased resilience
and can maintain stable operation for a more extended
period, making it more suitable for executing the algorithm
in real-world scenarios where reliability is crucial. Although
the AVF highlights its higher vulnerability, the advantages
in OPF emphasize the benefits of using the accelerator
design to achieve improved performance while maintaining
an acceptable level of reliability.

H. Accelerator Design Space Exploration

gem5-MARVEL models data-dependent control accelerator
execution by independently evaluating static and dynamic
elements, providing more configuration options for design
space exploration. Users can specify constraints on hardware re-
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the performance and area statistics.

sources to enforce functional unit reuse. The hardware resource
model is generated dynamically from YAML configuration
files (an inherent feature of the gem5-SALAM), enabling the
creation of hardware profiles at the granularity of individual
accelerators within the cluster. This allows users to redefine
parameters, including customized instructions and functional
units, without recompiling or rebuilding the system [36].
The proposed gem5-MARVEL injection framework leverages
the features from both gem5 and gem5-SALAM to explore
the accelerator design space from the reliability perspective.
As a case study, we show the reliability evaluation of the
MachSuite [82] GEMM accelerator for different degrees of
parallel processing, i.e., amount of parallel functional units.
Figure 17(a) shows the AVF of MATRIX1 SPM (holds the
data of one of the input matrices) for the different accelerator
configurations. We can see that as the parallel functional units
are reduced, the AVF increases significantly. This can be
relatively safely attributed to the slower SPM access rate that
allows more faults to propagate to the output without being
masked. Note that the data occupy the entire SPM from the
beginning of processing. Along the same lines, in Figure 17(b)
we can see the differences of performance and area for the
GEMM accelerator design. It is clear from these graphs that
based on the outcomes of gem5-MARVEL we can find the
optimal tradeoff between reliability, area, and performance.

Observation #8: The AVF increases significantly when the
number of parallel functional units in DSAs is reduced.

Architectural Implication #8: With fewer parallel func-
tional units, faults have a higher chance of affecting the
output data due to the data occupying the entire SPM from
the beginning of processing. This implies that designs with
fewer parallel functional units may be more susceptible to
transient faults, potentially leading to incorrect results during
computation. To enhance fault resilience, future designs
could consider optimizing the access rates to the SPM and
implementing suitable fault-tolerance mechanisms.

I. HVF Results

Figure 18 shows the HVF and AVF results for six bench-
marks targeting the physical register file and L1 data cache. As



shown in Figure 18, the corruptions measured by HVF analysis
(the yellow bars in Figure 18) are constantly higher than the
AVF measurements (i.e., the blue bars). The reason is that
HVF calculates any corruption that could not get masked at the
hardware layer and eventually reaches the software layer. After
that point, the corruption may or may not get masked at the
software layer. In case that it gets masked at the software layer,
it counts and “masked” in the AVF measurement, otherwise, it
counts as an SDC or a Crash, depending on its effect. Thus,
by definition, the HVF measurements will always be greater
than the AVF measurements.

VI. RESILIENCE ASSESSMENT OF THE HETEROGENEOUS
ARCHITECTURE

Naturally, if a different microarchitecture is selected for each
ISA (to resemble another CPU chip) the results and part of the
final observations of the previous section may be different, since
it is well known that a CPU’s vulnerability to faults depends
on all the following: ISA, microarchitecture, and workload.
Our results serve as a case study, primarily demonstrating the
capabilities of gem5-MARVEL. For a head-to-head comparison
of a particular x86-ISA CPU, an Arm-ISA CPU, and a
RISC-V ISA CPU, gem5-MARVEL can be configured to
reflect each one’s microarchitecture. gem5-MARVEL is a state-
of-the-art microarchitecture-level fault injection framework
that targets heterogeneous SoC architectures, including both
CPUs of different ISAs and DSAs. Such a framework can
provide numerous invaluable insights into the overall systems’
resilience. Since space limitations do not allow us to present
exhaustively all the in-depth observations and implications,
we group the fundamental insights that gem5-MARVEL can
deliver:

1) CPU ISA comparison: By injecting faults into CPUs
with different ISAs, gem5-MARVEL can compare fully
unprotected designs or any error detection or correction
mechanisms at the software or hardware layer. This
analysis reveals which ISA performs better under fault
conditions and which requires stronger protection.

2) Accelerator impact: Fault injection in DSAs helps
understand how resilient they are to different fault
scenarios, which is critical in several application domains.

3) System-level resilience: gem5-MARVEL allows analyz-
ing the overall system’s resilience. By injecting faults
at different locations in the system, it can be observed
how the CPUs and accelerators interact and recover from
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Fig. 18. Hardware Vulnerability Factor (HVF) results for the physical register
file and the L1 data cache.

faults. This knowledge is valuable for designing next-
generation fault-tolerant systems at scale.

4) Error recovery mechanisms: gem5-MARVEL can shed
light on the effectiveness of error protection (detection
and correction) mechanisms in both the CPUs and
accelerators. This insight can guide improvements in
the system’s error handling and fault recovery strategies.

5) Power and performance trade-offs: gem5-MARVEL
can help the concurrent assessment of the complex
tradeoffs among power consumption, performance, and
resilience. It provides insights into how protection mech-
anisms can impact the performance and power efficiency.

VII. CONCLUSION

We presented and extensively demonstrated the features
of gem5-MARVEL, the first consolidated microarchitecture-
level fault injection infrastructure for heterogeneous SoC
architectures consisting of CPUs with different ISAs and
domain-specific accelerators. Such an infrastructure is an
important step forward in measuring the vulnerability of
complex computing systems to hardware faults and guiding
protection methods. We showcased that gem5-MARVEL offers
a flexible and extensible way of simulating a wide range of
faults, automating the fault injection process, and analyzed
the results. The proposed gem5-MARVEL infrastructure fills
a gap in the existing microarchitecture-level fault injection
frameworks by offering a complete framework that can be
adapted to a wide range of computing systems architectures.
We have presented a subset of the plethora of case studies that
can be based on gem5-MARVEL; such case studies can deliver
deep insights on system properties that can be vulnerability-
only or can combine vulnerability and performance.
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