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Motivation: 2D Address Translation in Virtualized Execution
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State of Practice:
Huge pages fail to eliminate
translation overheads
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State of the Art:

Direct Segments sca13, RMM
isca‘1s], TLB Coalescing [ISCA ‘17]



Contiguity-Aware Paging: Create Contiguous Mappings

Problem: Default paging allocates physical pages randomly = no contiguous page mappings

Solution: CA paging enhances the OS with contiguous-aware page allocation support =2

Create contiguous page mappings gradually across page faults,
preserving allocation on demand
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Speculative Offset Address Translation (SpOT)

Problem: Hard to track the mappings boundaries in 2
dimensions and cache their intersection

Solution: SpOT exploits CA to predict translations 2>

Hides nested page walk latency with
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Performance Results

' CA Paging: 128 largest mappings cover | - 13218
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Avoids pre-allocation or unnecessary page
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* >90% TLB misses =2 correct predictions
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SpOT avoids all the hardware complexity of a aK+4K 2M+2M SPOT +
\_ deterministic scheme ) CA paging
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https://github.com/cslab-ntua/contiguity-isca2020
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