Enhancing and Exploiting Contiguity
for Fast Memory Virtualization

CHLOE ALVERTI, STRATOS PSOMADAKIS, VASILEIOS KARAKOSTAS, JAYNEEL GANDHI*,
KONSTANTINOS NIKAS, GEORGIOS GOUMAS, NECTARIOS KOZIRIS

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
* VMWARE RESEARCH

\ m’, N © QOO QO National Technial University of Athens vmware:
:Bf) 0O
) s @SLab RESEARCH

Motivation: 2D Address Translation in Virtualized Execution

Guest Virtual
Address

o

@ Guest Page
Table
v

gPA

@ Nested Page
Table

o

Host Physical
Address

Translation Overheads:
x86 nested page walk 2
24 memory accesses

132.18

ul
o
|

o

o
|

o
|

(92
!

N N W W b b
ol

o
|

=
2]
|

Execution Overhead (%)

o U
|

Geomean

State of Practice:
Huge pages fail to eliminate
translation overheads

Page Size

if

2D
Translation

hPA

Large contiguously mapped pages

State of the Art:

Direct Segments sca13, RMM
isca‘1s], TLB Coalescing [ISCA ‘17]

Contiguity-Aware Paging: Create Contiguous Mappings

Problem: Default paging allocates physical pages randomly = no contiguous page mappings

Solution: CA paging enhances the OS with contiguous-aware page allocation support =2

Create contiguous page mappings gradually across page faults,
preserving allocation on demand

VMA ..
VMA Offset = target page identification ' VA
CA . _
] Contiguity Map - track free contiguity
Paging Offset
Placement = avoid fragmented memory : PA

o,
.
.
L}
..
Y

Speculative Offset Address Translation (SpOT)

Problem: Hard to track the mappings boundaries in 2
dimensions and cache their intersection

Solution: SpOT exploits CA to predict translations 2>

Hides nested page walk latency with

—>
Execute| Nested Page Walk

VA
=]

speculative execution

PC
Micro-architectural extension

SpOT PC-indexed small prediction table

Tracks 2D Effective Offsets on the fly

Execute

L2TLB |
SpOT 4, v
Nested
walk
?
[

hPA,

Performance Results

' CA Paging: 128 largest mappings cover | - 13218

 ~97% footprint when 0% fragmentation 45 -

N
o
|

e ~94% footprint when 50% fragmentation

w
U
!

Avoids pre-allocation or unnecessary page

w
o
|

\ migrations /

N
o
|

~ SpOT: Combined with CA paging serves

[EEY
Ul
|

[EEY
o
|

Execution Overhead (%)

* >90% TLB misses =2 correct predictions

U
!

e <1% TLB misses = incorrect predictions . 0.85
SpOT avoids all the hardware complexity of a aK+4K 2M+2M SPOT +
_ deterministic scheme) CA paging

Geomean

https://github.com/cslab-ntua/contiguity-isca2020

Enhancing and Exploiting Contiguity for Fast Memory Virtualization

https://github.com/cslab-ntua/contiguity-isca2020

