
DaxVM: Stressing the Limits of Memory as a File Interface

Chloe Alverti∗ Vasileios Karakostas† Nikhita Kunati‡ Georgios Goumas∗ Michael Swift §
∗ National Technical University of Athens † University of Athens

‡ NVIDIA § University of Wisconsin-Madison
{xalverti, goumas}@cslab.ece.ntua.gr vkarakos@di.uoa.gr nikhitak@nvidia.com swift@cs.wisc.edu

Abstract—Persistent memory (PMem) is a low-latency storage
technology connected to the processor memory bus. The Direct
Access (DAX) interface promises fast access to PMem, mapping
it directly to processes’ virtual address spaces. However, virtual
memory operations (e.g., paging) limit its performance and
scalability. Through an analysis of Linux/x86 memory mapping,
we find that current systems fall short of what hardware can
provide due to numerous software inefficiencies stemming from
OS assumptions that memory mapping is for DRAM.

In this paper we propose DaxVM, a design that extends
the OS virtual memory and file system layers leveraging
persistent memory attributes to provide a fast and scalable
DAX-mmap interface. DaxVM eliminates paging costs through
pre-populated file page tables, supports faster and scalable
virtual address space management for ephemeral mappings,
performs unmappings asynchronously, bypasses kernel-space
dirty-page tracking support, and adopts asynchronous block
pre-zeroing. We implement DaxVM in Linux and the ext4 file
system targeting x86-64 architecture. DaxVM mmap achieves
4.9× higher throughput than default mmap for the Apache
webserver and up to 1.5× better performance than read system
calls. It provides similar benefits for text search. It also provides
fast boot times and up to 2.95× better throughput than default
mmap for PMem-optimized key-value stores running on a
fragmented ext4 image. Despite designed for direct access to
byte-addressable storage, various aspects of DaxVM are relevant
for efficient access to other high performant storage mediums.

Keywords-virtual memory; persistent memory; file systems;

I. INTRODUCTION

Persistent memory (PMem) is a new storage technol-
ogy [43], [67] that is connected to the system via the
memory bus, like DRAM, and is accessible via CPU load and
store instructions. The technology uniquely combines four
characteristics: (i) scaling capacities, (ii) byte-addressability,
(iii) latency/bandwidth close to DRAM, and (iv) non-
volatility, blurring the decades-old distinction between slow
but persistent storage and fast but volatile memory.

With PMem, storage accesses can be cheaper than OS invo-
cations, so reducing the OS overheads is a strong requirement.
The DAX (Direct Access) interface [3] can map persistent
memory directly to user-space, enabling applications to access
storage via regular load/store instructions. Multiple works [7],
[27], [36], [47], [54], [58], [76], [79], [80], [81], [82] attempt
to reduce PMem software stack overheads e.g., by optimizing
file systems [22], [78], or designing them from scratch as
PMem-aware to optimize metadata operations [47], [81], [82],
[85]. Our work focuses on a different part of the stack: the

performance of DAX memory-mapped file access. We refer
to this as the memory-mapped (MM) file interface.

Prior research focuses on MM overheads deriving from
the until-recently necessary DRAM buffering of the data
(page cache) [60], [61]. PMem and DAX-mmap remove
this necessity, as files are already stored in byte-addressable
memory. Despite the true zero-copy access that they provide,
we find that memory-mapping can still be significantly slower
than system call file access. The overheads have two sources.
First, fast storage exposes the overheads of Linux mmap
operations. Second, direct access to fast storage enables new
use cases for mmap; e.g. replacing read system calls with
mmap operations for applications that access numerous small
files (e.g., web and mail servers). Such new use-cases, change
the traditional mmap workload and expose new overheads
not previously important.

In this work, we analyze how Linux behaves when it maps
files stored in PMem and observe that the interface’s generic
design often assumes that file mappings refer to DRAM
resources. For example, all file mappings are populated lazily
via page-faults and deleted synchronously to save scarce
volatile memory. Such savings are irrelevant with PMem and
DAX-mmap. In addition, hardware-maintained metadata –
page access and dirty bits – target and drive efficient volatile
memory management. By design they assist the selection of
victim pages to reclaim page cache memory. With PMem and
DAX, page cache management is no longer necessary. From
this analysis, we identify multiple opportunities to remove
unnecessary overheads targeting a design that comes close
to the limits of what hardware can provide for MM direct
access to byte-addressable storage.

We propose DaxVM, an efficient interface to byte-
addressable storage, that extends the Linux virtual memory
and file system layers. To reduce latency, DaxVM maintains
shareable pre-populated page tables per file (file tables)
and (de) attaches them to processes’ address spaces during
mmap. This eliminates paging costs and enables fast O(1)
operation [72]. To improve scalability, DaxVM provides
support for ephemeral file access patterns, e.g. opening
multiple small files, reading/processing the data once, and
closing them. Such concurrent access usually dictates the
use of read/write system calls, as contention over virtual
memory locks makes MM access prohibitive. DaxVM intro-
duces a dedicated lightweight virtual address space manager



that enables ephemeral MM access scaling to many cores.
DaxVM also provides batched, asynchronous unmapping
operations to minimize TLB coherence overheads. It also
minimizes and potentially eliminates kernel-space dirty
tracking overheads for applications that manage durability
from user-space. Finally, DaxVM introduces asynchronous
background block zeroing on PMem file systems to deal with
the inherent double-writing costs of MM append operations.

DaxVM combines these techniques under a new high-
performance interface for persistent memory operations
providing new m(un)map calls. Separating the current unified
volatile and non-volatile interface supports the observation
that usage patterns for persistent and volatile data may differ
substantially, enabling distinct optimizations.

Some of DaxVM’s mechanisms are inspired by prior
works; however, those works targeted different setups (e.g.,
block mapping for flash storage [39] or lazy unmapping for
volatile memory [53]), required hardware extensions [39],
or described high-level ideas [72], [83]. Our work combines
these into an interface to persistent memory, implements
them in a real operating system—enabling us to study the
complexity and the details of their realization and synergy—
and evaluates them with commodity hardware.

Despite tailoring for byte-addressable storage and PMem,
various DaxVM aspects, e.g., file tables and virtual memory
scalability optimizations, are relevant for fast access to other
high-performance storage mediums (Section VI).

We implement DaxVM in Linux 5.1.0 with the ext4-DAX
[78] and we make it publicly available1. For multi-threaded
workloads operating for short time intervals over multiple
small files, e.g., Apache [1], DaxVM improves standard
mmap performance up to 4.9×. It also reverses the trend
that favors read for such setups, outperforming it by up
to 1.5×. It comparably boosts the performance of other
applications with ephemeral access patterns that do not move
data out of PMem (e.g., text search like ag [9]),. DaxVM also
increases system availability, providing fast boot times for
PMem databases [8]. It can finally provide up to 2.95× better
throughput than baseline MM for PMem-optimized key-value
stores [42] running on a fragmented ext4 image. This paper
makes the following contributions:
• We detail the inherent costs of MM file access and we

identify virtual memory features that assume data are
always buffered in DRAM. We show how byte-addressable
storage attributes can be leveraged to control the costs.

• We integrate file tables with a well-tested kernel-space file
system (ext4) and show how they can eliminate paging
costs via O(1) mmap. We study the address translation
overhead implications of placing page tables on a slower
medium (PMem) and show mitigations.

• We exploit the potentially ephemeral lifetime of DAX
mappings and their access characteristics for fast address

1DaxVM is available at https://github.com/cslab-ntua/DaxVM-micro2022

space (de)allocation and lazy unmappings, significantly
improving DAX MM scalability to many cores.

• We show that block pre-zeroing is an inherently different
requirement for MM access than write syscalls which un-
dermines MM benefits. We demonstrate how asynchronous
pre-zeroing in the file system removes this cost.

• We show that kernel’s dirty page tracking harms perfor-
mance even for applications that manage durability from
user-space, and enable bypassing these costs.

• We show that a dedicated interface for DAX mappings
unleashes optimization opportunities not possible with
POSIX strict semantics.

• We combine all the above in DaxVM, an interface close
to the limit of what hardware can provide for MM access.
We provide an end-to-end implementation in Linux and
evaluate it on a real system.

II. BACKGROUND

DAX [3] mechanism enables PMem file access without
buffering data through DRAM (e.g., copying files pages
in page cache). With DAX-mmap, virtual pages are directly
mapped to PMem physical locations. The OS virtual memory
subsystem creates virtual-to-pmem translations and persistent
data can be accessed via load/store CPU instructions.
Memory-mapped and system call file access. Intuitively,
memory mapping files holds important advantages compared
to system call access (read/write), even for traditional block
storage. Memory mapping files spares crossing the user/kernel
boundary on multiple same file access, and always avoids
at least one data copy. However, with block devices, file
data must still be copied from the device to the volatile
page cache to be mapped. In addition, the avoided extra copy
(compared to read/write) is relatively cheap; from page cache
to private per-process memory locations. Hence, for decades
the guidance has been to use memory-mapping over block
devices only when files are big and accessed randomly or
multiple times [74].

PMem and DAX mappings offer true zero-copy storage
access for the first time. However, with the faster and direct
access storage path, the performance bottleneck moves from
the device latencies to the software stack, with the complex
and prohibitively expensive virtual memory operations being
the primary source of overhead. In this paper we seek to
study how this affects the decades-old trade-off between
memory-mapped and system call file access.

III. MEMORY AS FILE INTERFACE

In this section we study how DAX zero-copy memory-
mapped file access performs compared to system call access.
We aim to understand the inherent overheads of file mapping.
We run experiments on a system equipped with 384GB Intel
Optane DCPMM (PMem) in AppDirect mode with an aged
ext4-DAX file system using micro-benchmarks (Section V
provides details regarding our methodology).



(a) (b) (c)
Figure 1: DAX interfaces: (a) the latency of reading a file once via MM is worse than read system calls, especially for small file sizes
(lower is better), (b) MM read-once access does not scale to many cores (higher is better), (c) MM repetitive access on a large file can
perform worse than read/write (higher is better). All results are from an aged ext4 image. DaxVM significantly reduces latency and
improves scalability for MM, regardless of the file system fragmentation.

One time access. First, we examine the latency of accessing
multiple files once: opening them, reading their content and
closing them. This is a common access pattern in server
workloads (e.g., web servers, mail servers). For memory-
mapped access we measure the latency of mapping a file
(mmap), access all its data in-place at 8-byte granularity
(sum them) and then unmap it (munmap). For system call
access, we read the file data into a private buffer (read) with
one call and consume them similarly.

Figure 1a shows the latency results for a single thread as a
function of the file size. We plot the average of reading up to
50K files or as can fit on 100GB of storage. For small files
(shaded), memory-mapped access is significantly slower than
read (up to ∼30%) despite the avoided copy. We refer to this
as the small files problem. For larger files, the performance
of memory-mapped access depends heavily on the number
of huge persistent pages that back the mapped file. For files
close to 2MB, memory-mapped access performs significantly
better than system call access as files are 100% huge page
covered. However, as the file size increases the performance
drops non-deterministically, depending on the mix of small
and huge pages that back the file, due to fragmentation on the
aged ext4-DAX system [46]. For example, memory-mapped
access performs ∼10% worse than read for 1GB file on this
run. We did not consider 1GB huge pages in our experiments.

Next, we focus on throughput, and perform the same
access pattern but over 32KB files using multiple threads.
Figure 1b shows the operational throughput. As thread count
increases, memory-mapped access does not scale to many
cores, corroborating a known problem [18], [25], [26].
Repetitive access. Figure 1c shows the operational through-
put of another common file access pattern, that of repetitive
operations over the same large file (e.g., databases). We
issue sequential and random 4KB reads and writes over
a 100GB file. For memory-mapped access, we initially
map the entire file and use memcpy() [46], [47], [80] with
AVX512 instructions [56], [86] and non-temporal stores [77]
to perform reads and writes [46], [47], [56], [80]. We observe
that memory-map performs equally (for random access) or
even worse than system calls (for sequential access) [32].

We now discuss inherent memory-mapped access overheads
and compare them to system call behavior. We examine
how PMem attributes affect some of the current OS design
assumptions. We discuss prior work and seek ways to
minimize the overheads; we target a design to stress the
limits of memory as a file interface.

A. Virtual Memory Overheads

Unlike system call file access, memory mapping inherently
involves virtual memory operations that are costly.

1) Paging: Memory-mapped file access requires a page
table entry (PTE) for each mapped page of the file. Linux
populates virtual mappings lazily, adding the cost of a
synchronous page fault to create PTEs at page access time.
DAX impact: With block devices, file content is page
cache buffered so faulting is important for fine-grain volatile
memory management. With PMem, moving data between
storage and DRAM is unnecessary as files are already in a
byte-addressable medium. Also, the entire set of physical
translations is known upfront and changes slowly as it reflects
storage locations.
Prior works: Multiple works [39], [56], [68], [72], [79], [83]
leverage the concept of page tables maintained by the file
system to translate file offsets to PMem physical locations.
O(1) memory [72] suggests the high-level idea of sharing
them among processes to eliminate paging, following an
older proposal for flash SSDs [39], but the design is only
discussed at a conceptual level. MERR [83] emulates O(1)
operations for fast address space randomization and requires
special hardware to support per-process permissions. SIMFS
[68] implements some key concepts but fails to support
file sharing with different permissions and requires a pre-
set global maximum file size. All the above also emulate
persistent memory so the performance of persistent page
tables remains unclear. Finally, ctFS [56] integrates file tables
to a FS that maps the entire DAX device to user-space,
trading secure (meta)data operations for fast appends. Table I
summarizes the limitations of prior works and the key aspects
of the DaxVM approach.



FlashMap [39] SIMFS [68] O(1) [72] Merr [83] ctFS [56] DaxVM

PMem storage ✓ ✓ ✓ ✓ ✓
Real OS implementation ✓ ✓ ✓ ✓
Commodity hardware ✓ ✓ ✓ ✓

O(1) mmap ✓ ✓ ✓ ✓ ✓
PMem/DRAM page table management ✓
Scalable mmap ✓
Fast unmap ✓
Per-process permissions ✓ ✓ ✓ ✓

Dirty-page tracking avoidance ✓

Asynchronous block pre-zeroing ✓

Table I: Comparison of DaxVM with prior works that focus on memory mapping storage.

DaxVM approach: We provide flexible O(1) memory
mappings via pre-populated file tables integrated on a well-
tested kernel file system, without restrictions and using
only existing hardware on a real system. We manage the
potential overheads (e.g., TLB miss costs) of shared page
tables residing on persistent memory.

2) Virtual address space management: File mapping
requires (de)allocating an area in the process address space
to (un)map the file. Operating systems serialize address space
operations (e.g., virtual address allocation), limiting manycore
scalability of virtual memory. For example, Linux protects
the entire virtual address space of a process with a semaphore
(mm→mmap sem) [31].

Linux also records all allocated virtual memory areas
(VMA) in a centralized data-structure (the VMA red-black
tree). This fine-grain recording enables the support of a
variety of POSIX memory operations (partial munmap
and mprotect, etc.). However, it induces significant lock
contention when VMAs live briefly (are quickly unmapped).
Applications that access many small files once before closing
(e.g., web servers, mail servers) issue frequent (un)map
requests but rarely any other memory operations. On the
other hand, applications that repetitively access files (e.g.,
databases) commonly use complex operations (mremap, etc.).
Prior works: Clements et. al [24], [25] proposed using
concurrent data structures to enable simultaneous operations
on different address ranges. However, a relevant Linux
implementation [31] showed that the transition is not trivial
because the contention may be transferred to range locks as
memory operations commonly affect multiple ranges [52].

DaxVM approach: We focus on file mappings only,
and differentiate the address space (de)allocation scheme
based on the expected mapping lifetime and the required
operation support. We provide lightweight file mappings
that trade complex memory operations support (e.g.,
partial mprotect/mremap) for scalable virtual address
space (de)allocation operations.

3) Synchronous resource release: File unmapping re-
leases virtual addresses and requires maintaining virtual

memory coherence. POSIX dictates that the release occurs
synchronously, i.e., before the operation returns. This require-
ment for synchrony requires clearing PTEs and invalidating
corresponding TLB entries in local and remote cores (shoot-
downs). If stale translations remain in the TLB, an application
could access reclaimed physical memory, raising correctness
and security issues. Shootdowns are inherently non-scalable
operations, requiring synchronous inter-processor interrupts
(IPIs) [17] that cost up to thousands of cycles [14].
DAX impact: With block devices, unmap operations also
potentially release physical resources (page cache) under
memory pressure. PMem mappings no longer occupy volatile
memory; thus, unmap operations release only virtual ad-
dresses. The mapped persistent memory is independently and
exclusively reclaimed by specific file system operations (e.g.,
when files truncate) whose frequency is relatively low [15].
Prior works: To avoid scalability overheads, state-of-the-art
PMem user-space filesystems, never unmap the files [47],
[56]. For example, SplitFS [47] maps files under the hood
and keeps them mapped to user-space until the process dies
or the files get truncated. This extreme strategy raises safety
concerns [83]. LATR [53] on the other hand, uses a message-
passing mechanism in place of IPIs to invalidate TLBs locally
and asynchronously [26], but in very short time intervals as
it targets volatile memory. This general-purpose mechanism
is complex, error prone [14], and still suffers from scalability
issues due to its own locking (Section V).

DaxVM approach: We focus on file mappings only, and
take advantage of the fact that the mapped physical re-
sources (storage) are reclaimed slowly and independently.
We opt for a simple design of lazy unmapping; we still
unmap files but asynchronously and use existing robust
mechanisms to achieve that.

4) Dirty page tracking for file syncing: With block devices,
both system call and memory-mapped write access is buffered
in volatile memory and the corresponding pages are tagged
as dirty in the OS page cache metadata tree, to be flushed
to disk during sync (e.g., fsync).
DAX impact: Persisting data requires just writing-back dirty
CPU cache lines. Thus, DAX write system calls commonly



bypass the CPU caches using non-temporal store instructions
to copy data to the device (e.g., ext4-DAX, NOVA), omitting
the need of any dirty tracking.

With DAX memory-mapped access, however, the kernel
still has to record the physical regions that user-space dirtied,
to be able to flush the corresponding CPU cache lines on sync
operations. Thus, the OS still uses the page cache tree to tag
dirty pages when DAX-mmap is used. While x86 hardware
page walkers set the PTE dirty bit when a page is first written,
Linux also tracks mapped dirty pages in software. It initially
marks pages as read-only and relies on permission faults
to detect writes and update the page cache tree [4], [65],
[89]. Sync operations write-protect file pages again for all
mapping processes after flushing, to restart the mechanism.
We measure that performing one msync call every 10 write
operations (random access, 1KB each) on a memory-mapped
10G file causes ∼2.8x more faults compared to no sync.
Prior works: DAX mapping allows applications to manage
data durability from user-space, omitting sync system calls.
Prior works actually recommend this approach [47], [56], [80].
The application can use non-temporal stores or cache line
flush instructions (e.g., clwb and sfence) over DAX mappings
to persist file data at the granularity of bytes. However, the
OS in those works still tracks each initial dirty page access
and remains oblivious to user-space managed endurance. In
this way, the system remains compatible with sync operations
but pays all the overheads of dirty-page tracking.

DaxVM approach: We drop all kernel-space dirty page
tracking activity for applications that manage durability
from user-space, to achieve maximum performance.

B. Double writing for secure appends

Append operations are write operations that involve block
allocations by the file system.
DAX impact: As write system calls directly update block
content via non-temporal stores, the newly allocated storage
blocks do not necessarily require zeroing for security. Ext4-
DAX zeroes out blocks on write system calls, but NOVA
and PMFS do not as they are optimized for PMem.

To append a file via memory mapping requires first
allocating new blocks (e.g., via fallocate or ftruncate) and
then mapping them to user-space for write access. In this case
the new blocks must be zeroed; otherwise user-space will get
access to stale data from deleted files previously using the
same blocks, causing a security leak. Therefore, block zeroing
is necessary for DAX memory-mapped appends, which
doubles the writes per operation and penalizes performance.
We measure that ∼ 30−40% of append operation latency is
spent in block zeroing, irrespective to the append size.
Prior works: The exact same security concerns exist for
volatile memory, and multiple works [59], [64] propose asyn-
chronous page pre-zeroing to control allocation overheads.
For storage, asynchronous zeroing is not that simple as it

can consume the available bandwidth and stall concurrent
requests to the device. It is only considered for SSDs (garbage
collectors) due to their erase-before-write NAND nature and
multiple works attempt to mitigate GC overheads [49].

DaxVM approach: Inspired by volatile memory strategies
and harnessing the high PMem bandwidth we adopt
asynchronous pre-zeroing in PMem file systems.

C. Micro-architectural performance

Memory-mapped and system call file access behave differ-
ently at the micro-architectural level. These are fundamental
observations about processor and OS operations that we
cannot work around.
TLB performance. Linux maps the entire PMem physical
space with huge pages. Thus, the internal copy of a read/write
call benefits from reduced TLB misses, even when files are
<2M or fragmented. But, small file memory-mapped access
always pays small page TLB miss costs and large file access
performance depends heavily on file system fragmentation
and the ability to use huge pages.
Cache performance. System calls copy data, which pre-
fetches persistent data into higher layers of the cache
hierarchy. User-space code runs faster hitting in the caches.
With memory-mapped access the user-space code will pay
the cost of fetching data from persistent memory.
Vectorization. User-space memory-mapped access can use
Advanced Vector Extensions [40], to perform SIMD oper-
ations over file data (e.g., memcpy). This can significantly
improve performance [38], [56], [86]. Copies inside kernel
system calls cannot benefit from AVX instructions as support-
ing them would introduce register save and restore overheads
when crossing the user-kernel space boundary.

IV. DAXVM

Based on the observed opportunities we design and imple-
ment DaxVM, a fast and scalable MM interface aiming
to come close to the limit of what hardware can provide.
DaxVM extends the OS memory-management and file system
layers and consists of five key components.
1. Fast paging operations through pre-populated file tables.
With DaxVM, the file system maintains pre-populated page
table fragments that translate file offsets into storage physical
addresses. These file tables are attached/detached to processes
page tables during m(un)map operations, eliminating the
paging setup and teardown costs of DAX mappings.
2. Scalable address space management for ephemeral
mappings. DaxVM maintains a dedicated heap to serve
fast (de)allocation requests for ephemeral mappings. These
mappings are expected to live for short periods and support no
other operations (e.g., protection change through mprotect).
3. Asynchronous resource release; batching unmap
requests. If application correctness does not rely on syn-
chronous unmapping, DaxVM’s virtual memory layer can



optionally defer munmap operations. It tracks the zombie
mappings and releases them asynchronously in batches. This
eliminates frequent fine-grain TLB shootdowns.
4. Low durability cost. DaxVM provides a mode that drops
all kernel-space dirty tracking for applications that manage
durability in user-space and opt for maximum performance.
5. Asynchronous storage block pre-zeroing. DaxVM ex-
tends PMem file systems to asynchronously zero out storage
blocks when they are freed (e.g., unlink, truncate).
DaxVM comes as a new interface, with stripped-down
POSIX features and relaxed restrictions targeting performance
(Section IV-F). It adds two new system calls: daxvm mmap
and daxvm munmap along with new optional flags.

DaxVM speeds applications that perform frequent
m(un)map operations, e.g., briefly process small files, appli-
cations sensitive to paging (e.g., databases), and allocation-
intensive workloads especially on fragmented FS images.

We implement and evaluate DaxVM in Linux 5.1 and
the ext4-DAX [78] and NOVA [81] file systems. We target
the x86-64 architecture. DaxVM primarily targets DAX-
aware file systems that relax data operation atomicity for
performance (e.g., NOVA relaxed [81], xfs-DAX). They allow
in-place updates on DAX mappings. Atomic copy-on-write
updates, e.g., shadow paging, negate DaxVM benefits with
frequent page table updates.

A. O(1) mmap

DaxVM maintains pre-populated page tables per file, and
(de)attaches them to process address spaces during m(un)map
operations. This eliminates paging costs and provides instant
access to files irrespective to their size (O(1) operation). For
the rest of this paper we refer to the them as file tables.

1) Pre-populated File Tables: They are fragments of an
x86-64 page table (radix tree) and translate file offsets to
PMem addresses. For example, if a 1MB file is stored in
pages P1-P256 of PMem, the file table stores the addresses
of P1-P256 starting from index 0.
Maintenance. Upon storage allocation (e.g., append),
DaxVM populates the file’s tables with the physical addresses
of the newly allocated PMem pages. Upon storage de-
allocation (e.g., ftruncate), DaxVM clears the file table entries
and/or frees the corresponding file tables.
Fragments instead of entire trees. Files usually shrink/grow
sequentially and densely at the end of the file. Unlike the
sparse population of virtual address spaces, this characteristic
makes it possible to build file tables in a bottom-up fashion.
For small files, we use a single 4KB page of PTEs, and
expand in 4KB increments. In Figure 2 only the PTE level
of the radix tree is needed to hold the translations of inode 2.
This bottom-up maintenance controls file tables storage tax.
Huge Pages. For aligned huge page blocks in larger files,
DaxVM supports huge PMD entry formats. To simplify the
description, we consider the general 4KB block condition.

FS Page Table 

DRAM 

PMD 

PTE PTE 

PTE 

Process 1 Page Table 

PGD 

PUD 
PMD 

PTE mm_struct 

Process 2 Page Table 

PGD 

PUD 

PMD 
mm_struct 

Ephemeral 

RW 

RO 

DRAM/PMem 

Inode1 

Inode2 

Inode3 
PTE 

Figure 2: DaxVM maintains pre-populated shared file tables and
attaches them to processes address spaces for O(1) mappings.

PTE status bits. Page table entries also maintain status
bits to record per-page process access. Surprisingly, we find
that most of these bits track metadata mostly relevant to
volatile memory management: the access and dirty bit are
mainly used for page cache evictions and volatile memory
reclamation. DaxVM drops their maintenance in the file
table entries, as reclamation happens explicitly during file
delete for DAX mappings. DaxVM sets the PTE permission
bits to maximum and supports per-process access at 2MB
or coarser granularities. Similarly, it manages durability at
coarser granularities. We discuss both in the next section.
Dynamic File Table Management. File tables can be
maintained both in volatile and persistent memory.

Volatile file tables are re-constructed each time the system
accesses an inode for the first time, loading it to the VFS
inode cache (cold open). The table’s root pointer is stored
as metadata in VFS inodes. As long as the inode is cached,
the tables are updated. When the inode is evicted from the
VFS cache, they are destroyed.

Persistent file tables are stored in PMem pages and survive
across power cycles/failures. Their root pointer is stored as
metadata in the file’s permanent inode struct. During table
updates, the table entries must be flushed from the CPU
caches synchronously to guarantee persistence. To control
this overhead, DaxVM leverages that multiple PTEs are
usually updated sequentially within a single operation (e.g.,
append). When possible, it batches their flushes at cache-line
granularity (8 64-bit PTEs in x86 64).

Persistent tables occupy storage resources but provide good
cold-start performance and save DRAM as they substitute
parts of multiple processes’ page tables. Apart from the
storage cost, they introduce higher TLB miss costs, as page
table walkers have to access slower memory [11]. Table II
shows the average page walk latency measured with perf
when we perform sequential and random reads on a file
mapped using volatile and persistent file tables. We observe
that with random access and persistent page tables, TLB



Benchmark DRAM file tables PMem file tables

seq read 28 103
rand read 111 821

Table II: Average page walk cycles measured for sequential and
random 4K access on a 10G memory-mapped file.

Performance Monitor

AvgPageWalk Total Page Walk Cycles / Number of TLB misses
MMU overhead Total Page Walk Cycles / Execution Time Cycles
Rule if (AvgPageWalk > 200 c) and (MMU overhead > 5%) migrate

Table III: DaxVM monitors the average TLB miss costs and MMU
overheads to migrates file tables to DRAM if necessary.

misses can cost up to 800 cycles. On the other hand, keeping
all file tables always in DRAM can lead to waste of resources,
while aggressively reclaiming them can penalize performance
as they will have to be re-constructed frequently.

To keep the best of both worlds, DaxVM maintains volatile
tables for files smaller than a threshold (32KB) and persists
them for larger. This policy controls the storage tax which
is high for small files (e.g., for every 4KB file a 4KB PTE
is allocated). DaxVM also monitors the MMU performance
of applications via performance counters [59]; it tracks the
average page walk latency along with the average time spent
in page walks (MMU overhead) (Table III). If the latency
is above 200 cycles and 5% of the execution time is spent
in walks, DaxVM (i) builds asynchronously volatile tables
(copying the persistent ones) and (ii) walks the process tables
to detach the persistent fragments and attach the new volatile.
After DaxVM migrates file tables to DRAM both volatile
and persistent tables are maintained.
File Tables and Crash Consistency. For journaling systems,
e.g., ext4, file tables are updated within a journal transaction.
When the transaction is committed, the tables are guaranteed
to be consistent and persistent. Similarly, for a logging FS
like NOVA, file table updates happen before the (meta)data
updates are committed (log entry appended). File table PTEs
are flushed on write and re-use the fence from the FS
log/journal commit. Incomplete PTEs are recovered on reboot
when replaying open transactions. The overhead of persisting
file tables is included in all our experimental results.

2) Fast table (de)attachment: DaxVM uses file tables
to minimize the cost of creating a mapping. When an
application maps a file, DaxVM populates all translations
for the requested target file offset (i.e., mmap-populate). It
attaches parts of the pre-populated file tables to the process’s
private page table. Figure 2 depicts how DaxVM builds a
page table in DRAM (blue) up to the PMD level. Then it
attaches the pre-populated file PTE (orange) on the PMD.
Attachments enable O(1) mmap operations; the latency is
near constant with respect to file size.
Mapping size. Attaching a file table’s fragment updates
interior pointers at some level of the process’s private page
table radix tree. Therefore, the attachment can happen only
at certain granularities/levels, i.e., at PMD, PUD, etc. In

addition, the mapping’s virtual address and the corresponding
file offset must be properly aligned, i.e., to 2MB for PMD.

To enable O(1) mmap, DaxVM silently rounds the size
and file offsets attributes of the daxvm mmap system call
to the granularity of the next level of the process’s page
table tree. Up to 1GB, files are mapped using PMD entries
at 2MB granularity, and files above 1GB are mapped using
PUD entries at 1GB granularity. This leads to the anomaly
that mapping files >1GB can be faster than smaller files.

DaxVM returns to the user the virtual address that maps
to the requested file offset. A larger portion of the file may
be silently mapped (before/after the requested boundaries).
Permission rights per process. With DaxVM, the pre-
populated file page table fragments are shared among
the processes that map the same file. The pre-populated
PTEs have the maximum access rights pre-set. To enable
different access permissions per process, DaxVM manages
the permission bits at the attachment level (e.g., the PMD)
rather than at the PTEs, as the former belongs to the private
part of each process’s page tables. Figure 2 shows how
two different processes have read-only and read/write access
rights over the same 2MB file region while still using the
shared file tables. The x86 translation hardware (page walker
and TLB) applies the minimum access rights found at all the
page table levels for an address, enabling this strategy [45].
ASLR. With DaxVM, the address space layout randomization
works seamlessly at 2MB granularity. File tables are attached
to randomly allocated virtual addresses aligned to 2MB. The
file data will always be located at the same offset within the
random 2MB region (alignment restriction).
FS extensions. To support O(1) mmap a file system must be
extended to (de)construct and update file tables during storage
block (de)allocations and to attach them during mmap.

B. Ephemeral mappings

As discussed in Section III, the centralized locking of a
process’s virtual address space prohibits issuing parallel
frequent m(un)map operations as they cannot scale to many
cores [19]. This almost excludes MM as an interface for a
common file access pattern: open a file, quickly process its
data and close it. An old study on distributed file systems
shows that 75% of files are open for less than a quarter
of a second [15]. We refer to this as ephemeral file access,
and DaxVM provides a dedicated address space manager for
ephemeral mappings of persistent memory files. It builds its
strategy for better scalability on the idea that such mappings
do not require support for complex virtual address space
operations beyond unmap.
Ephemeral heap. DaxVM pre-allocates a virtual address
range (ephemeral heap) in the process’s address space and
manages it independently to (de)allocate virtual address
regions for ephemeral mappings. The allocator’s objectives
are similar to a user space heap allocator (e.g., malloc()): to



VMA 

mm_rb 

VMA 

VMA 

down_write (mmap_sem) down_read 
(mmap_sem) 

spin_lock *ptl 

Ephemeral 
Heap 

atomic_t meta 
*ephemeral VMA VMA 

Figure 3: DaxVM ephemeral VMAs.

quickly allocate and free address ranges. It does not have to
support splitting and merging of mappings.

Our current heap implementation leverages short mapping
lifetimes to perform linear allocations. The heap is dynami-
cally extended in virtual regions of 1GB, to avoid exhaustion.
Each region’s virtual addresses are reclaimed only when
all the mappings populating it are destroyed; tracked by a
counter. Thus, currently allocations from the ephemeral heap
resemble a stack; but other allocation schemes can be applied.
Ephemeral mapping visibility and tracking. Only munmap
operations are allowed for ephemeral mappings; any other
operation (mprotect, mremap, etc.) that falls inside the heap’s
range returns an error. As complex per-mapping support is
omitted, ephemeral VMAs do not need to be recorded by the
virtual memory’s core data structures, i.e., the VMA red-black
tree (mm_rb). It is sufficient that the manager records only
the aggregate ephemeral heap region. This enables tracking
ephemeral VMA’s in a dedicated data structure, a list (or a
tree) associated only with the heap (Figure 3).

The major advantage of this design is that lightweight lock-
ing can be used to protect this structure, avoiding contention
over the global manager’s locks. In Linux, the entire address
space of a process is protected by the heavily contended
mmap semaphore [31], which mainly protects the VMA tree.
Table IV summarizes the main code paths that contend for
the semaphore for insight. DAX mappings inherently are not

Path Target Reader/ DAX Ephemeral
Writer Mappings Mappings

A

Khugepaged

R/W ✗ ✗
Ksm Volatile Memory
Mlock Management
Madvise
Mempolicy

B Page Fault Populate Mapping R ✓ ✗

C
Mremap Resize mapping
Mprotect Change Perm R/W ✓ ✗
Exec Set up binary

D

Mmap Create Mapping

R/W ✓ ✓
Munmap Dissolve Mapping
Fork Duplicate mm
Msync Flush dirty pages

Table IV: Paths acquiring the mmap semaphore and their involve-
ment in DAX and ephemeral mappings management.

involved in paths that target volatile memory management
(set A). On top of that, DaxVM ephemeral mappings do not
fault often (only for dirty page tracking) (set B) nor support
memory operations (set C). This leaves mainly m(un)map to
contend for the semaphore (set D); simplifying the design
of a more scalable address space manager.

We use atomic operations to update heap’s metadata
and a spinlock to protect the ephemeral VMA list. Heap
(de)allocations hold the mmap semaphore as readers. The
idea of VMA locks instead of a global semaphore has been
discussed [28], with the concern that they could lead to
contention for one big VMA lock. In our design, ephemeral
heap locking scales because the operations that take place
under the lock are stripped down and fast.

Ephemeral VMAs are still visible to the file system. They
are attached to the address space trees that track the VMAs
that map each file (address space→i mmap). This enables
their management (e.g., unmapping) by the file system.

C. Optimized munmap

Unmapping a virtual region involves three steps: (i) clear-
ing/destroying the page tables, (ii) invalidating the local and
remote TLB entries (shootdowns) that cache the region’s
PTEs, and (iii) releasing resources. DaxVM detaches file
tables instead of destroying them.
Async unmap. TLB shootdowns are inherently non-scalable
as they require IPIs. Linux batches the virtual addresses of
a single munmap request to perform a cheaper range TLB
invalidation (one IPI) instead of individual page shootdowns.
After a certain threshold (33 pages for x86), it opts for a
full TLB flush as the gains of the flush are estimated to
outperform the penalty of the TLB misses introduced.

DaxVM builds on this strategy and gives the option to
not perform munmap operations synchronously at all. It
records the VMAs that the user requested to unmap, the now
“zombie” VMAs, and defers their unmapping to batch TLB
invalidations across requests. It tracks the total number of
zombie pages and when a threshold is reached, it tears down
their corresponding page table entries and performs a single
full remote TLB flush on the cores that the application runs.
It does so on the munmap request that exceeds the threshold.
Apart from the key advantage of replacing frequent TLB
invalidations with fewer, cheaper, entire TLB flushes, the
virtual memory locks are also held for shorter periods.
File system races. While an unmapping is deferred, the size
of the mapped file may change if the file gets truncated or
even deleted. DaxVM maintains safety by synchronously
forcing unmappings if storage blocks are reclaimed.

D. Durability management

DaxVM fully supports msync and fsync calls in the same way
as default DAX through permission faults. DaxVM tracks
dirty regions at 2MB or coarser granularities, as access
permissions are held at the attachment level of the file tables.



For example, if a 4KB page is written, DaxVM will mark
the entire 2MB region as dirty in the page cache. Note that
the same happens if a huge page backs the file. This can
potentially penalize fsync calls, but reduces dirty tracking
overheads, as fewer permission faults take place (Section V).

DaxVM does not require userspace durability management
to work properly. But to further stress performance limits,
DaxVM has a nosync mode for applications that manage
durability from user-space [80]. In this mode, it does not
track dirty pages via permission faults and does not record
them at all in the page cache metadata tree. In a nutshell, it
drops sync operation support (e.g., msync), which becomes
a no-op, and data durability becomes entirely a userspace
responsibility. This creates a race condition if a file is mapped
via DaxVM and POSIX simultaneously: data modifications
of the DaxVM mapping might not be captured by the
msync() operations of the POSIX mapping. To manage this,
DaxVM pushes the cost to the POSIX process, which flushes
the entire file during its msync().

E. Asynchronous block pre-zeroing

DAX memory-mapped append operations – unlike system
calls – inherently require the zero-out of the newly allocated
blocks for security reasons, doubling the write activity and
penalizing performance by ∼30-40% irrespective to the
append size. DaxVM extends the file system to pre-zero
blocks asynchronously to avoid this cost.

DaxVM does not interfere with the file system block allo-
cator, to avoid inducing involuntarily external fragmentation
to the system. With storage, external fragmentation matters
in the granularity of extents – rather than pages – which can
grow up to multiple MB. Instead, DaxVM hooks the file
system’s free operations. Upon a file truncate operation, the
blocks to be freed are kept on per-core lists instead of being
immediately released to the FS block allocator. A rate-limited
kernel-thread periodically scans the lists and zeros-out blocks
using non-temporal store instructions for persistence and to
minimize bandwidth consumption [86]. Once a whole set of
blocks-to-be-freed is zeroed, they are released to the allocator.
Per-core lists preserve the scalability of free operations.

With PMem, more so than volatile memory, pre-zeroing
consumes precious bandwidth and can potentially penalize
other operations. To avoid BW saturation we throttle band-
width to a configurable amount on an idle core.

F. DaxVM forms a new relaxed interface

Many of DaxVM’s mechanisms derive performance by relax-
ing some POSIX strict requirements and abandoning some
POSIX functionalities, e.g., advanced memory operations
support for all file mappings. The impact of the interface on
scalability and performance is a formally studied topic [26].

DaxVM interface consists of two new system calls (daxvm
mmap and daxvm munmap). Daxvm mmap implements

O(1) file tables attachment and currently supports shared map-
pings. From the rest of the POSIX flags, DaxVM currently
supports MAP SYNC and adds three new flags.
MAP EPHEMERAL: the mapping is expected to be brief
and does not need any memory operation support. This flag
activates the ephemeral address space allocator.
MAP UNMAP ASYNC: the program does not require access
faults right after unmap. Activates asynchronous unmapping.
MAP NO MSYNC: this flag is combined with MAP SYNC
and means that the program will not rely on msync function-
ality at all. This flag activates the no sync mode, where all
dirty page tracking is dropped and msync becomes a no-op.

We now discuss how DaxVM affects other operations.
Memory protection. Partial mprotect system calls over
DaxVM mappings fail. DaxVM only allows changing the
permissions for an entire mapping. Moreover, when the
MAP EPHEMERAL flag is set, any mprotect call fails.
Mremap. Similar to mprotect, DaxVM allows only mremap
calls on the entire mapping (e.g., to resize) and fails if MAP
EPHEMERAL is used.
Madvise. madvise is used for volatile memory management
(e.g., page cache), thus DaxVM does not support it.
Msync. DaxVM supports msync as is, unless MAP
NO MSYNC is used when msync becomes a no op.
POSIX comparison. POSIX maps files in multiples of pages
and references beyond the mapping’s last page results in
a segmentation fault. DaxVM guarantees that at least the
portion of the user requested is mapped, but a portion before
and after may also be silently mapped to the process address
space (for proper alignment that enables O(1) mmap). If the
file is extended inside this virtual portion, the new pages
are automatically mapped to the address space. Moreover,
POSIX promises synchronous unmappings. DaxVM relaxes
that requirement, but guarantees that mappings are removed
before physical and virtual resources are reassigned.

G. Discussion and summary

Security and correctness. Daxvm mmap may map more
of the file than requested. If entire file’s content must not
be visible to the calling process, DaxVM must not be used.
Also, with MAP UNMAP ASYNC, user accesses to unmapped
regions may not trigger an exception for a time window after
a daxvm munmap call. Correctness is not violated as DaxVM
guarantees that the virtual regions will not be re-used before
the page table and TLB entries are invalidated. However,
if an application depends on traps triggered by accesses
to unmapped regions (e.g., userfaultfd() or guard pages),
MAP UNMAP ASYNC should not be used. With respect to
security, if an application expects attacks, e.g., untrusted code
injection/execution, DaxVM increases the time that data are
vulnerable, keeping them mapped for longer than expected.
Note that some DAX user-space file systems (e.g., SplitFS
[47]) map files under the hood indefinitely. Applications can
limit this behavior omitting the MAP UNMAP ASYNC flag.



Huge pages. Currently Linux and various file systems try
to control DAX paging overheads by backing files with
huge (2MB or 1GB) pages. DaxVM supports large pages
when present, harnessing their TLB performance advantages.
However, huge pages are very sensitive to FS fragmentation
[46], due to alignment restrictions, and cannot be used for
files smaller than 2MB. For both cases, DaxVM eliminates
paging and sustains high performance (more in Section V).
Programmability. Applications must change to use
DaxVM interface, replacing either a read system call or a
POSIX mmap. Simple uses of mmap can be replaced directly,
while reads should be replaced with daxvm mmap and direct
access to the data. MAP EPHEMERAL is meaningful for files
accessed briefly (i.e., once) and closed, but functionality does
not break if used with mappings of longer lifetime.
Applicability. In a nutshell, DaxVM enables performant
and scalable concurrent m(un)map requests and minimizes
paging costs, unleashing DAX benefits also for applications
that perform short-lived accesses to smaller files (a usage
previously favoring read/write). DaxVM is still beneficial
to applications that access files mapped for long periods
(e.g., databases), especially on fragmented FS images, acting
complementary to huge pages.

V. EVALUATION

A. Experimental Setup

Our experimental platform is equipped with an Intel Xeon
Gold 5812T Cascade Lake CPU with 2×16 physical cores,
with frequency fixed at 2.7 GHz and SMT disabled. Each
socket is equipped with 94GB DRAM and 384GB Intel
Optane DCPMM (PMem) in AppDirect mode (3 DCPMM
DIMMs). We limit our experimentation in a single socket.
To study interfaces performance under realistic file system
conditions, we use the Geriatrix [48] tool to age the file
system image. We use the suggested [46] Agrawal profile [12]
and apply 100TB of write activity to PMem (70% utilization).

We implement DaxVM in Linux kernel v5.1.0, incorpo-
rating it with ext4-DAX [78], NOVA [81], and the core
virtual memory manager. We use a set of micro-benchmarks
and real-world workloads to evaluate DaxVM in relation
to (i) system call file access (read and write) and (ii) the
default DAX-mmap interface. Due to space limitations, our
evaluation focuses on the commonly used ext4-DAX FS. We
discuss where results differentiate significantly with NOVA.
We use the nosync mode when applications enforce durability
from user-space. For Linux mmap we consider both lazy page
faulting and pre-faulting (MAP POPULATE flag – populate).
We also provide some comparison with an asynchronous
unmapping technique (LATR [53]). We run experiments
three times and plot the average.

B. Micro-benchmarks

Because there is no standardized benchmark to profile
file memory mapping and compare with read/write file

Figure 4: Read-once (ephemeral) file access.

access [57], [73], we construct our own set of micro-
benchmarks. We revisit the same experiments as in Figure 1;
we consider: (a) accessing files once – ephemeral access
(e.g., webservers) and (b) accessing files repetitively (e.g.,
databases). We use AVX-512 instructions and non-temporal
stores for user-space write access [86].
Ephemeral access. We open 50K files (or 100GB/filesize for
>2MB files), briefly process their content, and close them.
For memory-mapped access, we map each file, access its
data in-place at 8-byte granularity, sum them and then unmap
the file. For read, we read the entire file with one system
call into a private buffer and then process its data similarly.

Figure 4 reports throughput (MB processed/second) relative
to read for a single thread and as a function of the file size
(Figure 1 shows latency). For small file sizes (shaded), mmap
performs ∼ 20% worse than read despite avoiding data copies
due to paging. Pre-faulting (Populate) improves performance,
as the file size increases, but does not entirely solve the
problem; it still pays the cost of (de)constructing page tables.
DaxVM improves throughput by up to 50% over read for
small files eliminating paging with O(1) mmap operations.

For larger files, baseline memory-mapped access is heavily
affected by huge page coverage; reporting better performance
for file sizes close to 2MB (e.g., 4MB). As the file size
increases though, performance drops further and becomes
non-deterministic due to the increasing number of small
pages involved in the file’s mapping from a fragmented FS.
DaxVM’s file tables provide an almost robust 55% benefit
over read and ∼ 30−50% over mmap, independent of the
FS fragmentation.
Repetitive access over large files. We consider the case of
memory mapping a 100GB file and use memcpy to perform
1KB and 4KB reads and overwrites in sequential and random
order. This microbenchmark [46] mimics database operations
[80]; a use-case favoring memory-mapped access as it avoids
the significant cost of crossing the user-kernel boundary
frequently [16]. Figure 5 summarizes our results.

For 1KB access all mmap interfaces outperform read/write
access. Notably though, default mmap performs only 11%
better than read for sequential access, despite avoiding 100M
system calls. This is attributed to paging overheads. Pre-
faulting (Populate) improves performance for read access,
but penalizes it for write. For the latter, it ends up paying



Figure 5: Repetitive file access.

Figure 6: Kernel-space and user-space syncing operations.

the fault overhead twice for each page of the mapping: (i)
pre-population and (ii) dirty page tracking faults (Section III).
DaxVM eliminates all costs via O(1) file tables attachment
during mmap and managing durability either (i) at 2MB
granularity irrespective to fs fragmentation (faults) or (ii)
entirely in user-space (nosync). It performs up to 3.9× better
than system-call access and 1.9× than default mmap.

For 4KB access, default mmap, even with pre-faulting,
performs worse than read/write sequential access. The
avoided cost of the fewer system calls is not enough to
amortize paging overheads. DaxVM outperforms read/write
calls from 1.3× up to 2.72×, and mmap from 1.8× to 2.2×.

For the irregular access workloads, DaxVM’s performance
monitor detects the high TLB miss overheads (Section IV)
and migrates file tables from PMem to DRAM. We measure
that migrating the tables provides a 10% performance
improvement, avoiding the costly page walks when table
fragments are located in slow PMem.
Sync. With PMem, sync operations are needed to ensure
modified file data is flushed from processor caches. We
consider the same experiment as in Figure 5, but with a
10GB file and perform 1000 sync operations after a varying
number of sequential write operations. For kernel-space
syncing and MM, we use memcpy and perform periodically
fsync. For user-space syncing we use non-temporal stores
and omit the fsync calls. We turn huge pages off, to stress
the comparison with DaxVM, that always performs flushes
at 2MB granularities. Figure 6 summarizes our results for
the variable syncing sizes. We omit pre-faulting results, since
as discussed do not benefit write access.

Kernel-space syncing. Kernel syncing of a mapped file per-
forms worse than DAX write syscalls (up to 68% slowdown).
Writes use non-temporal stores and synchronously persist

Figure 7: Append operations.

data, while fsync on a mapped file flushes CPU caches. A
prior study [86] shows that non-temporal stores almost double
the bandwidth of cacheline flushes. For smaller syncing
(<2MB), DaxVM performs up to an order of magnitude
worse than default MM because it always handles durability
at 2MB granularity. However, in a non-fragmented FS image
that uses 2MB pages, the default MM suffers from the same
overheads due to huge pages (we measured this). Hence,
DaxVM provides the same sync overhead performance trade-
off with huge pages irrespective to FS fragmentation.
User-space syncing. Despite the kernel bypass, default MM
performs worse than writes + kernel syncing (40%). DaxVM
performs better and combined with the nosync optimization
provides speedup up to 80%.
Appends. We now examine append performance via the
different interfaces. As discussed in Section III, MM append
operations require an fallocate() to allocate new blocks and
then map them for user-space write access. For security
reasons, the OS must zero all blocks before allowing user-
space access. Figure 7 shows the relative throughput achieved
appending variable sizes as a single operation (one system
call) on an empty file from a single thread. We compare
against DaxVM (i) without pre-zeroing and with kernel-
level page tracking to support sync operations, (ii) with pre-
zeroing, and (iii) with both pre-zeroing and nosync, where
the application is responsible for data durability. Because
the results for ext4-DAX and NOVA differ substantially, we
present them separately.

Regarding ext4-DAX, the results show that pre-zeroing
can improve MM performance up to 2× for larger file
sizes (DaxVM). For ext4-DAX this reflects also as a benefit
compared to system call appends, as this FS conservatively
zeroes-out blocks also on the system call path unnecessarily.
Nosync mode boosts further performance up to ∼50%,
eliminating entirely durability management faults and their
page cache metadata update operations. For 4MB, default
MM performance improves significantly due to huge page
coverage. For very small files (e.g., 4KB) DaxVM performs
worse due to the overheads of page table construction.

On the other hand, NOVA is a PMem-aware file system
that does not zero out blocks during write system calls, but
it zeroes them out only during fallocate calls for secure
user-space DAX access. Figure 7 shows how this inherent
differentiation in DAX interfaces requirements leads to more



(a) Apache – scalability (b) Apache – webpage size
Figure 8: DaxVM allows applications that issue many (un)map requests (e.g., web-servers) (b)) to scale to many cores and exposes the
zero-copy advantage of MM over system call access on a setup that was previously considered prohibitive.

than 2× faster write call performance (compared to MM)
even for large append sizes (>1MB). DaxVM’s pre-zeroing
narrows this gap, and combined with O(1) mmap (file tables)
and nosync optimizations, DaxVM outperforms write syscalls
by up to 45%. It eliminates paging costs and exposes the
user-space benefit of AVX instructions that are unavailable to
the kernel. These results underline the necessity of handling
block zeroing asynchronously with PMem storage.
DaxVM storage overheads. DaxVM occupies at least 4KB
for files >32KB and adds an overhead of 4KB per 2MB of
data (0.2%). For file tables smaller than 32KB, DaxVM builds
volatile files tables. For the 891MB Linux git tree consisting
of 68K small files, DaxVM occupies 25MB of PMem, and
ephemerally uses up to 216MB of DRAM if all inodes are
cached in memory.
DaxVM latency overheads. DaxVM benefits come at the
cost of (de)constructing page tables during FS operations
that involve storage block (de)allocations (e.g., fallocate/ap-
pend/unlink). We measure the latency of appends with and
without DaxVM’s file tables. We find that volatile table
construction adds almost zero overheads. But, persistent table
construction penalizes operations at worst by ∼ 10% for
32KB appends on an empty file, and thereafter the overhead
declines and is entirely amortized for 256KB and beyond.
Persistent tables are more expensive to (de)construct as cache
lines are flushed for durability.

All DaxVM benefits discussed so far are attributed to O(1)
mmap, durability management and asynchronous pre-zeroing.
We study DaxVM ’s scalability optimizations (ephemeral
allocator and async unmappings) on real-world applications
in the next section.

C. Real-world Applications

In this section we measure DaxVM performance with real-
world applications operating over small and larger files. We
change their source code to use daxvm_m(un)map.

1) Small files and ephemeral access:
Apache [1] webserver uses the mpm_event module where
threads serve requests via memory-mapped access. They map

web pages, copy data into sockets, and unmap them. The
scheme stresses virtual memory due to frequent m(un)map
requests. We measure Apache’s throughput (requests/second)
while hosting static 32KB webpages stored on PMem. We
use Wrk [5] to generate HTTP requests, configuring it to
run with 16 threads and 16 open connections. We run Wrk
and Apache on the same machine but on different sockets
and scale Apache from 1 to 16 cores (socket limit). We run
wrk/Apache with multiple webpages of the same size for each
experiment [2] to avoid the unrealistic scenario of always
hitting on the processor cache when serving a webpage.

Figure 8a plots scalability results for Apache for 32KB
webpages, and corroborate that its scaling is limited by virtual
memory performance [14], [53]. Baseline MM access cannot
scale beyond 4 cores, while read scales almost linearly up
to 16. To study DaxVM performance we incrementally add
each optimization, starting with pre-populated file tables.

We verify that paging significantly limits MM scalability;
DaxVM’s O(1) mmap via file tables enables scaling up
to 8 cores and improves performance by 80% compared
to pre-faulting (Populate). Address space management is
the other severe bottleneck. DaxVM’s ephemeral address
space (de)allocation enables scaling to 16 cores and improves
throughput by 100% over file tables alone. The ephemeral
heap operations acquire the mmap semaphore only as
readers and use independent spinlocks for ephemeral address
space management (Section IV-B). This enables concurrent
m(un)map requests, significantly improving scalability. Fi-
nally, for this workload batching unmap requests does not
improve substantially performance over ephemeral mappings
(5%). The latter is sufficient to release the stress from the
mmap semaphore. Overall, DaxVM minimizes VM overheads
and outperforms baseline MM by 4× and read by 30%.

Finally, we run experiments with a kernel supporting
LATR [53], a mechanism that uses message passing to
replace TLB shootdowns with lazy local TLB invalidations
on context switches. We run with MAP POPULATE to
control paging costs and find that LATR improves baseline
MM performance by 10% at 8 cores and fails to scale



(a) Text search performance (b) Fast boot times (c) YCSB on RocksDB.
Figure 9: a) DaxVM improves scalability of applications that never move data out of PMem (like text search). b) Increases systems
availability via fast boot time (e.g., Redis). c) DaxVM sustains high operational throughput for databases on a fragmented ext4 images.

beyond that because shootdowns are not the main problem.
We find that DaxVM with only asynchronous unmapping
(without O(1) mmap) outperforms LATR by 12% because:
(i) DaxVM’s batching can be more aggressive as it targets
only PMem - it flushes the TLBs every 33 batched pages, (ii)
DaxVM’s batching is very simple, using existing IPIs, while
LATR’s status tracking mechanisms induce contention on
its own locks. Note that DaxVM’s asynchronous unmapping
efficiency depends on the level of batching (number of pages
allowed to be batched). When we increase batching level
from 33 to 512, the performance increases by 20%. However,
increasing the batching level increases also the DaxVM
vulnerability window; the extra time that data remain mapped
beyond what the user expected (Section IV-G).

Figure 8b shows how webpage size affects performance.
It summarizes the relative throughput results (ops/sec with
respect to read) when we run Apache at 16 cores and for
increasing webpage sizes. With read system call access,
Apache copies the webpage content from PMem to DRAM
and then from DRAM to a socket, while with MM access
it copies it directly from PMem to socket. As the webpage
size increases the added cost of read’s extra memory copy
becomes more significant. DaxVM eliminates all paging
overheads and minimizes VM scalability bottlenecks to
expose the zero-copy advantage of MM access; it provides
up to 50% benefit for larger webpage sizes.

Multi-threading vs multi-processing: Using multiple pro-
cesses to serve requests trades system resource utilization
(heavy processes vs. lightweight threads) for scalability to
many cores, as there is less contention on the VM locks.
Apache can run with a hybrid scheme, spawning a small
set of processes with multiple threads each. However we
find that even in the extreme case of using single-thread
processes, baseline MM performs at best similar to read and
only if pre-faulting is applied (populate). DaxVM provides
maximum performance (50% benefit) both with lightweight
threads and on a hybrid configuration, eliminating paging
costs and scalability bottlenecks.

Overall, we note that combining DaxVM’s optimizations
under a single PMem dedicated interface is essential as the

techniques operate synergistically. For example, combining
asynchronous unmapping with O(1) mmap (applicable only
to PMem) boosts the effect of the former, as shootdowns
emerge as a contention bottleneck.
Text search. We now examine an application that operates
directly over small mapped files (via load/store instructions).
We use the ag [9] search engine to search the Linux codebase
for a string. The folder contains the source tree (68K files) and
a few large files used for git versioning. Using MM access,
the search engine maps a file, searches for the requested
string and unmaps it, while with read it copies the file into
a private buffer. Figure 9a shows that DaxVM outperforms
baseline mmap interfaces and read by ∼70% at 16 cores.
The application does not spend time copying data and
DaxVM eliminates contention on the data access interface.
Unlike Apache, asynchronous unmapping further boosts
performance by 10%.

2) Large files and long-lived mappings: Our evaluation
so far shows that DaxVM is beneficial for applications that
issue frequent m(un)map operations to access data. We now
examine how DaxVM affects applications already benefiting
from MM access, operating over large files and for longer
periods. For this set of workloads we only compare against
baseline MM access.
Increasing availability with fast startup times. DaxVM’s
mmap can significantly increase the availability of applica-
tions that serve requests from memory-mapped files, as it
enables O(1) access to the file data after reboot.

P-Redis [80] is a PMem-aware version of the Redis [8]
in-memory key-value store from NVSL [6], [80]. It consists
of a key-value cache and an index hash table, both in PMem.
When the server is spawned, it maps both structures and uses
loads/stores for access. Loading data for P-Redis involves
populating the mappings’ page tables. With baseline MM
access this happens lazily during a warmup period when client
requests trigger faults. Figure 9b shows throughput for the
first 2M random get operations on a 60GB cache that stores
16KB values. Baseline mmap performance increases slowly
(warm-up faults) while mmap-populate penalizes server start-
up time by 10sec to pre-fault the cache pages and then
provides high throughput. DaxVM gets the best of both



worlds, achieving instant maximum throughput at no cost.
YCSB on Pmem-RocksDB. Finally we examine how
DaxVM affects the performance of a database optimized
to use PMem programming. Pmem-RocksDB [42] is Intel’s
PMem-optimized version of RocksDB [37] that mmaps
SSTables/write-ahead logs (WALs) (placed on PMem) and
writes directly to PMem using non-temporal stores (e.g., nt-
store), omitting kernel sync operations [41]. It also recycles
SSTables and WAL files whenever possible to control paging
and zeroing overheads. We run YCSB workloads on a 50G
dataset [46] and perform ∼12M operations (4KB records).
Ext4-dax results. Figure 9c summarizes our results. As
discussed earlier, pre-faulting (populate) hurts performance
of write/append intensive workloads (such as Load a, Load e
and Run a). For the rest it performs close to default mmap.

DaxVM significantly improves performance for appli-
cations that perform insert operations (e.g., Load a, e).
DaxVM dirty page tracking faults happen always at 2MB
granularities (Section IV), irrespective to the file system’s
fragmentation. This significantly decreases the number of
page-faults (10x less) improving performance by ∼2.3×.
When we pre-zero in advance of running the workload
(shown), performance is further boosted to ∼2.8x. With
concurrent pre-zeroing, a 64MB/sec throttle reduces this by
5-10%. Finally, this version of RocksDB enforces durability
from user-space [41] so we apply the nosync mode that
brings performance to ∼2.95× compared to default mmap,
eliminating faults entirely.

The main reason why DaxVM is so effective is that
default mmap on an aged ext4-dax suffers from synchronous
faults imposed by the MAP SYNC interface [30] necessary
to safely handle durability from user-space. On the first
write fault on each mapped page the dirty file metadata (if
any) will be synchronously flushed to storage. This triggers
journaling transaction commits on ext4 that severely penalize
scalability. On an aged FS, 4KB pages are involved on the
mapping of a file, and thus such faults are more frequent.
With DaxVM this happens always at 2MB granularities
(less frequently) irrespective of FS fragmentation, restoring
scalability to many cores. Note that on a fresh file system
(100% huge page coverage) default mmap performs similarly.

DaxVM improves also performance by 1.46× for workload
d (that also performs insertions) and 1.05-1.21× for the
rest. All benefits come from fault elimination, as DaxVM’s
ephemeral allocator and asynchronous unmapping do not
affect the long-lived and big file mappings of the workload.
NOVA results. For PMem-aware file systems that update
metadata synchronously and in-place (such as NOVA) the
MAP SYNC interface becomes a no-op with zero overheads.
We run the same experiments on a NOVA FS image and
DaxVM’s benefits for Load a and e are ∼35% compared to
default mmap. For the rest of the workloads are ∼10%.
Comparison to default RocksDB [37]. This (Intel) optimized
version of the key-value store provides ∼1.1×-2.1× benefit

compared to the default version, when we run on a fresh
FS image. When run on an aged ext4 image this benefit is
penalized (as discussed before). DaxVM sustains up to 2×
benefit even on the fragmented FS.

VI. DISCUSSION: DAXVM BEYOND PERSISTENT MEMORY

According to Intel’s 2022 Q2 earning release [44], the
company is winding down its Optane Memory business,
which is a significant step back for persistent memory
research. We do not consider this as the end of PMem storage
design potential and discuss how DaxVM is relevant and
beneficial for other fast storage technologies (despite being
designed on Optane).

A. O(1) mmap and file tables

Byte-addressable storage and CXL. DaxVM is directly
applicable to any byte-addressable storage technology; a
design advocated by the emerging Compute Express Link
(CXL [33]), e.g., Samsung has already announced a memory-
semantic SSD that is CXL-compatible [67]. Any such storage
solution, even PCIe and byte-addressable Flash NVMe
combinations [10], is very close to PMem’s philosophy and
can benefit from DaxVM.

Microsecond-scale PCIe SSDs and direct access. State-
of-the-art flash memory technologies have reduced storage-
access latency to tens of microseconds [16], [63]. Such
performance has exposed system storage stack as an im-
portant bottleneck and has questioned DRAM buffering as a
necessary layer leading to various proposals for user-space
direct access to storage [20], [50], [87]. Such solutions require
rethinking and speeding up file system indexing [58] and
even accelerating it in hardware [55] for performance and
security reasons. DaxVM’s FS file tables fall into this scope.

Memory-mapped buffered access. DaxVM’s O(1) mmap
and pre-populated file tables can be integrated as a page cache
extension, to speedup traditional buffered storage access.

B. Address Space Scalability

DaxVM’s ephemeral mappings and asynchronous unmap-
pings are relevant to any memory access with ephemeral
characteristics. This could apply both to direct or buffered
memory-mapped storage access or even heap mappings.
Memory tiering and fast storage rapidly change the usage of
memory as a now common interface to multiple mediums
with varying latencies. This imposes new challenges to
address space management, questioning the state-of-practice.

VII. RELATED WORK

User-space file systems. Multiple works [21], [34], [47],
[54], [56], [76], [88] exploit PMem direct access via new file
system (FS) designs with user-space components. Performing
(meta)data operations directly from user-space avoids syscall
overheads, but comes with two inherent challenges: (i)
(meta)data security and (ii) concurrent file sharing. Mapping



parts [21], [47], [54] or the entire FS image [56], [76] to user-
space for large time frames opens a window for intentional
attacks or unintentional errors (stray writes) that can leak
data or corrupt the FS image [34]. Such FS must employ
a mechanism to control this that may lead to scalability
issues [54], [76]. In addition, many user-level FS do not
support memory mapping [54], [76] at all. Kernel-space FS
can be less performant but support seamlessly sharing and
secure (meta)data operations. In this paper we focus on such
well-tested mature FS targeting to improve the kernel’s MM
interface performance rather than bypass it.
File system indexing. HashFS [58] uses hashing instead of
the commonly employed extent trees to accelerate software
overheads of file indexing on the read/write system call path.
ctFS [56] is a user-space file system that maps the entire
DAX device in user-space to (de)allocate files contiguously
in the virtual address layers, similar to SCMFS [79]. It
then uses page tables to index files quickly. Exposing the
entire device to user-space raises significant security concerns
acknowledged by the authors. DaxVM (de)attaches file tables
directly to address spaces, primarily to eliminate the paging
costs of MM access. By doing so, it entirely removes software
file indexing from the MM path. We discuss other works that
employ file system maintained page tables on Section III.
Address space scalability. Past studies [24], [25] of address
space scalability target generic solutions (e.g., range locking
or concurrent lock-free data structures in VM) that apply
to all memory regions. However, the Linux community has
been discussing such radical changes for many years [29] and
relevant implementations [31], [66] show that the transition
is not that easy in terms of performance [52] or complexity.
A key insight of DaxVM is that one can exploit the special
lifetime and access characteristics of PMem mappings to
provide a much simpler dedicated address space (de)allocator
that can scale to many cores (ephemeral mappings).
Fast unmap. LATR [53] proposes message passing – a
generic radical re-design of the TLB invalidation mechanism
to enable lazy invalidations. DaxVM exploits batched un-
mapping requests, adopting a dedicated design already present
for the IOMMU and traditional storage DMA mappings [62].
The key insight is that opting for a dedicated design for
targeted uses can enable higher performance at a much lower
complexity. Numerous proposals for faster/simpler delivery
of shootdowns in hardware [75], [84] and software [17], or
for more accurate shootdowns [13], [14] would reduce the
need for DaxVM’s asynchronous unmapping. Boyd-Wickizer
et al. [18] examine per-thread address private ranges to avoid
synchronization and TLB shootdowns.
Pre-zeroing. Hawkey [59] and Trident [64] examine asyn-
chronous pre-zeroing for huge volatile page allocation latency.
DaxVM exposes its necessity for PMem file mappings and
integrates it in a file system. Our key insight is that block
zeroing is an inherently different requirement among DAX
interfaces (MM access vs system calls) that if not managed

can flip performance trends.
Faster paging: Previous works underline the cost of paging
and particularly of faults for PMem direct access [47], [80],
[83]. They propose huge page usage [47], [80], caching
per-process file mappings [23], and O(1) memory [72]
on a conceptual or emulated level (more in Section III)
DaxVM expands on this work with a real implementation
of O(1) mmap in Linux and on unmodified hardware,
reduces DRAM consumption by placing file tables in PMem,
and avoids dependence on huge pages. WineFS [46] is
a new huge-page aware FS for high huge page coverage.
DaxVM is complementary to huge pages, supporting them
when available, but resilient to fragmentation in terms of
paging. Prior work on sharing page tables focused on
speeding fork [35] and removing duplicate TLB entries [69].

Song et al. [70], [71] focus on faster page reclamation and
batching shootdowns under memory pressure. Papagiannis et
al. [61] propose an mmap design that ignores DAX, targeting
page cache optimizations. DaxVM focuses on DAX mappings
that are neither subject to memory pressure nor use a cache.
PMem file systems: Many research projects focus on faster
file systems for PMem, and mostly look at (i) avoiding
the page cache like DAX [27], [36], (ii) providing faster
metadata operations with fine-grained persistence [27], [51],
[79], [81], [82], and (iii) moving kernel operations to user-
space (discussed before).

VIII. CONCLUSIONS

Byte-addressable high performance storage and the DAX-
mmap interface provide the shortest path to persistent data,
mapping it into process address spaces. Yet, the high over-
heads of virtual memory operations involved in file mapping
(e.g., paging, VM lock contention and TLB coherence) can be
prohibitive to adopt the interface. We analyze these costs and
propose DaxVM, an optimized POSIX-relaxed interface that
provides fast and scalable storage access via (i) O(1) mmap,
(ii) ephemeral mappings, (iii) asynchronous unmappings, (iv)
asynchronous storage pre-zeroing, and (v) coarse-grain or
zero kernel-space durability management.

ACKNOWLEDGEMENTS

We thank our anonymous reviewers for their insightful
comments and feedback on the paper. We thank Sujay
Yadalam and the SCAIL research group of UW Madison
for their feedback. Similarly, we thank Nectarios Koziris,
Dionisios Pnevmatikatos, Stratos Psomadakis, Christos Kat-
sakioris and the systems research group of the CSLab at
NTUA. Finally, we thank Dimitris Gizopoulos for his decisive
comments. This work has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 957407 (project DAPHNE). This
work was also funded by NSF grants CNS 1815656 and
CNS 1900758.



REFERENCES

[1] “Apache HTTP Server project.” https://httpd.apache.org/.

[2] “Benchmark multiple url paths with wrk.” https://gist.github.
com/xydinesh/28bd6ac7de1d45b61a9d896e3442248d.

[3] “Direct Access for files,” https://www.kernel.org/doc/
Documentation/filesystems/dax.txt.

[4] “ext4: Use page mkwrite vma operations to get mmap
write notification.” https://linux-ext4.vger.kernel.narkive.com/
kplEwAhG/patch-ext4-use-page-mkwrite-vma-operations-to-
get-mmap-write-notification.

[5] “Modern HTTP benchmarking tool.” https://github.com/wg/
wrk.

[6] “Non-volatile systems laboratory,” https://nvsl.io/.

[7] “Persistent Memory File System.” https://github.com/linux-
pmfs/pmfs.

[8] “Redis: an in-memory data structure store,” https://redis.io/.

[9] “The Silver Searcher – A Code Searching Tool for Program-
mers,” https://www.tecmint.com/the-silver-searcher-a-code-
searching-tool-for-linux/.

[10] A. Abulila, V. S. Mailthody, Z. Qureshi, J. Huang, N. S.
Kim, J. Xiong, and W.-m. Hwu, “Flatflash: Exploiting the
byte-accessibility of ssds within a unified memory-storage
hierarchy,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’19, 2019.
[Online]. Available: https://doi.org/10.1145/3297858.3304061

[11] R. Achermann, A. Panwar, A. Bhattacharjee, T. Roscoe,
and J. Gandhi, Mitosis: Transparently Self-Replicating Page-
Tables for Large-Memory Machines. New York, NY, USA:
Association for Computing Machinery, 2020, p. 283–300.
[Online]. Available: https://doi.org/10.1145/3373376.3378468

[12] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R.
Lorch, “A Five-Year study of File-System metadata,” in
5th USENIX Conference on File and Storage Technologies
(FAST 07). San Jose, CA: USENIX Association, Feb. 2007.
[Online]. Available: https://www.usenix.org/conference/fast-
07/five-year-study-file-system-metadata

[13] N. Amit, “Optimizing the tlb shootdown algorithm with
page access tracking,” in Proceedings of the 2017 USENIX
Conference on Usenix Annual Technical Conference, ser.
USENIX ATC ’17. USA: USENIX Association, 2017, p.
27–39.

[14] N. Amit, A. Tai, and M. Wei, “Don’t shoot down tlb
shootdowns!” in Proceedings of the Fifteenth European
Conference on Computer Systems, ser. EuroSys ’20.
Association for Computing Machinery, 2020. [Online].
Available: https://doi.org/10.1145/3342195.3387518

[15] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J. Ouster-
hout, “Measurements of a distributed file system,” ACM
SIGOPS Operating Systems Review, vol. 25, apr 2000.

[16] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan,
“Attack of the killer microseconds,” Commun. ACM,
vol. 60, no. 4, p. 48–54, mar 2017. [Online]. Available:
https://doi.org/10.1145/3015146

[17] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania, “The
multikernel: A new os architecture for scalable multicore
systems,” in Proceedings of the ACM SIGOPS 22nd
Symposium on Operating Systems Principles, ser. SOSP
’09. Association for Computing Machinery, 2009, p. 29–44.
[Online]. Available: https://doi.org/10.1145/1629575.1629579

[18] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang, “Corey: An operating system for many cores,”
in Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’08. USA:
USENIX Association, 2008, p. 43–57.

[19] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich, “An analysis of linux
scalability to many cores,” in Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation,
ser. OSDI’10. USA: USENIX Association, 2010, p. 1–16.

[20] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De,
J. Coburn, and S. Swanson, “Providing safe, user space
access to fast, solid state disks,” in Proceedings of the
17th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
2012, London, UK, March 3-7, 2012, T. Harris and M. L.
Scott, Eds. ACM, 2012, pp. 387–400. [Online]. Available:
https://doi.org/10.1145/2150976.2151017

[21] Y. Chen, Y. Lu, B. Zhu, A. C. Arpaci-Dusseau, R. H.
Arpaci-Dusseau, and J. Shu, “Scalable persistent memory
file system with kernel-userspace collaboration,” in 19th
USENIX Conference on File and Storage Technologies
(FAST 21). USENIX Association, Feb. 2021, pp. 81–95.
[Online]. Available: https://www.usenix.org/conference/fast21/
presentation/chen-youmin

[22] D. Chinner, “xfs: DAX support.” https://lwn.net/Articles/
635514/, 2015.

[23] J. Choi, J. Kim, and H. Han, “Efficient memory mapped file
i/o for in-memory file systems,” in 9th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStorage 17).
Santa Clara, CA: USENIX Association, Jul. 2017. [Online].
Available: https://www.usenix.org/conference/hotstorage17/
program/presentation/choi

[24] A. T. Clements, M. F. Kaashoek, and N. Zeldovich,
“Scalable address spaces using rcu balanced trees,” in
Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XVII. Association for
Computing Machinery, 2012, p. 199–210. [Online]. Available:
https://doi.org/10.1145/2150976.2150998

[25] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, “Radixvm:
Scalable address spaces for multithreaded applications,” in
Proceedings of the 8th ACM European Conference on
Computer Systems, ser. EuroSys ’13. Association for



Computing Machinery, 2013, p. 211–224. [Online]. Available:
https://doi.org/10.1145/2465351.2465373

[26] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris,
and E. Kohler, “The scalable commutativity rule: Designing
scalable software for multicore processors,” ACM Trans.
Comput. Syst., vol. 32, no. 4, Jan. 2015. [Online]. Available:
https://doi.org/10.1145/2699681

[27] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee, “Better i/o through byte-
addressable, persistent memory,” in Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems
Principles, ser. SOSP ’09. Association for Computing
Machinery, 2009, p. 133–146. [Online]. Available: https:
//doi.org/10.1145/1629575.1629589

[28] J. Corbet, “ Memory management locking,” https://lwn.net/
Articles/591978/, 2014.

[29] J. Corbet, “Memory-management scalability,” https://lwn.net/
Articles/636334/, 2015.

[30] J. Corbet, “Two more approaches to persistent-memory writes,”
https://lwn.net/Articles/731706/, 2017.

[31] J. Corbet, “How to get rid of mmap sem,” https://lwn.net/
Articles/787629/, 2019.

[32] A. Crotty, V. Leis, and A. Pavlo, “Are you sure you want to
use mmap in your database management system?” in CIDR
2022, Conference on Innovative Data Systems Research, 2022.
[Online]. Available: https://db.cs.cmu.edu/papers/2022/p13-
crotty.pdf

[33] CXL Consortium, “Compute express link specification revi-
sion 2.0.” https://www.computeexpresslink.org/download-the-
specification.

[34] M. Dong, H. Bu, J. Yi, B. Dong, and H. Chen, “Performance
and protection in the zofs user-space nvm file system,” in
Proceedings of the 27th ACM Symposium on Operating
Systems Principles, ser. SOSP ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 478–493.
[Online]. Available: https://doi.org/10.1145/3341301.3359637

[35] X. Dong, S. Dwarkadas, and A. L. Cox, “Shared address
translation revisited,” in Proceedings of the Eleventh
European Conference on Computer Systems, ser. EuroSys
’16. Association for Computing Machinery, 2016. [Online].
Available: https://doi.org/10.1145/2901318.2901327

[36] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson, “System software
for persistent memory,” in Proceedings of the Ninth
European Conference on Computer Systems, ser. EuroSys
’14. Association for Computing Machinery, 2014. [Online].
Available: https://doi.org/10.1145/2592798.2592814

[37] Facebook., “RocksDB.” http://rocksdb.org., 2017.

[38] A. Fedorova, “Why mmap is faster than system calls,”
https://sasha-f.medium.com/why-mmap-is-faster-than-
system-calls-24718e75ab37.

[39] J. Huang, A. Badam, M. K. Qureshi, and K. Schwan, “Unified
address translation for memory-mapped ssds with flashmap,”
in Proceedings of the 42nd Annual International Symposium
on Computer Architecture, ser. ISCA ’15. Association for
Computing Machinery, 2015, p. 580–591. [Online]. Available:
https://doi.org/10.1145/2749469.2750420

[40] Intel, “AVX-512 instructions.” https://software.intel.
com/content/www/us/en/develop/articles/intel-avx-512-
instructions.html.

[41] Intel, “How Intel Optimized RocksDB Code for Persistent
Memory with PMDK.” https://www.intel.com/content/
www/us/en/developer/articles/technical/how-intel-optimized-
rocksdb-code-for-persistent-memory-with-pmdk.html.

[42] Intel, “Pmem-RocksDB.” https://github.com/pmem/pmem-
rocksdb.

[43] Intel, “Intel(R) Optane(TM) DC Persistent Memory.”
https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-dc-persistent-memory.html, 2019.

[44] Intel, “Intel reports second-quarter 2022 financial re-
sults,” https://www.intel.com/content/www/us/en/newsroom/
news/intel-reports-q2-2022-financial-results.html, 2022.

[45] Intel Corporation, “ Intel® 64 and IA-32 Architectures Soft-
ware Developer Manuals,” https://software.intel.com/content/
www/us/en/develop/articles/intel-sdm.html.

[46] R. Kadedodi, S. Kadekodi, S. Ponnapalli, H. Shirwadkar,
G. Ganger, A. Kolli, and V. Chidambaram, “WineFS: a
hugepage-aware file system for persistent memory that ages
gracefully,” in Proceedings of the 28th ACM Symposium on
Operating Systems Principles (SOSP ’21), October 2021.

[47] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and
V. Chidambaram, “Splitfs: Reducing software overhead in file
systems for persistent memory,” in Proceedings of the 27th
ACM Symposium on Operating Systems Principles, ser. SOSP
’19. Association for Computing Machinery, 2019, p. 494–508.
[Online]. Available: https://doi.org/10.1145/3341301.3359631

[48] S. Kadekodi, V. Nagarajan, and G. R. Ganger, “Geriatrix:
Aging what you see and what you don’t see. a file system
aging approach for modern storage systems,” in 2018
USENIX Annual Technical Conference (USENIX ATC 18).
Boston, MA: USENIX Association, Jul. 2018, pp. 691–704.
[Online]. Available: https://www.usenix.org/conference/atc18/
presentation/kadekodi

[49] W. Kang, D. Shin, and S. Yoo, “Reinforcement learning-
assisted garbage collection to mitigate long-tail latency
in ssd,” ACM Transactions on Embedded Computing
Systems, vol. 16, no. 5s, sep 2017. [Online]. Available:
https://doi.org/10.1145/3126537

[50] S. Kannan, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau,
Y. Wang, J. Xu, and G. Palani, “Designing a true Direct-Access
file system with DevFS,” in 16th USENIX Conference on File
and Storage Technologies (FAST 18). Oakland, CA: USENIX
Association, Feb. 2018, pp. 241–256. [Online]. Available: https:
//www.usenix.org/conference/fast18/presentation/kannan



[51] J.-H. Kim, J. Kim, H. Kang, C.-G. Lee, S. Park, and Y. Kim,
“Pnova: Optimizing shared file i/o operations of nvm file
system on manycore servers,” in Proceedings of the 10th
ACM SIGOPS Asia-Pacific Workshop on Systems, ser. APSys
’19. Association for Computing Machinery, 2019, p. 1–7.
[Online]. Available: https://doi.org/10.1145/3343737.3343748

[52] A. Kogan, D. Dice, and S. Issa, “Scalable range locks for
scalable address spaces and beyond,” in Proceedings of
the Fifteenth European Conference on Computer Systems,
ser. EuroSys ’20. New York, NY, USA: Association
for Computing Machinery, 2020. [Online]. Available:
https://doi.org/10.1145/3342195.3387533

[53] M. K. Kumar, S. Maass, S. Kashyap, J. Veselý, Z. Yan, T. Kim,
A. Bhattacharjee, and T. Krishna, “Latr: Lazy translation
coherence,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’18.
Association for Computing Machinery, 2018, p. 651–664.
[Online]. Available: https://doi.org/10.1145/3173162.3173198

[54] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel,
and T. Anderson, “Strata: A cross media file system,”
in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17. Association for
Computing Machinery, 2017, p. 460–477. [Online]. Available:
https://doi.org/10.1145/3132747.3132770

[55] G. Lee, W. Jin, W. Song, J. Gong, J. Bae, T. J. Ham, J. W. Lee,
and J. Jeong, “A case for hardware-based demand paging,” in
2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), 2020, pp. 1103–1116.

[56] R. Li, X. Ren, X. Zhao, S. He, M. Stumm, and D. Yuan,
“ctFS: Replacing file indexing with hardware memory
translation through contiguous file allocation for persistent
memory,” in 20th USENIX Conference on File and Storage
Technologies (FAST 22). Santa Clara, CA: USENIX
Association, Feb. 2022, pp. 35–50. [Online]. Available:
https://www.usenix.org/conference/fast22/presentation/li

[57] C. Min, S. Kashyap, S. Maass, and T. Kim, “Understanding
manycore scalability of file systems,” in 2016 USENIX
Annual Technical Conference (USENIX ATC 16). Denver,
CO: USENIX Association, Jun. 2016, pp. 71–85. [Online].
Available: https://www.usenix.org/conference/atc16/technical-
sessions/presentation/min

[58] I. Neal, G. Zuo, E. Shiple, T. A. Khan, Y. Kwon,
S. Peter, and B. Kasikci, “Rethinking file mapping for
persistent memory,” in 19th USENIX Conference on
File and Storage Technologies (FAST 21). USENIX
Association, Feb. 2021, pp. 97–111. [Online]. Available:
https://www.usenix.org/conference/fast21/presentation/neal

[59] A. Panwar, S. Bansal, and K. Gopinath, “Hawkeye:
Efficient fine-grained os support for huge pages,” in
Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3297858.3304064

[60] A. Papagiannis, M. Marazakis, and A. Bilas, “Memory-
mapped i/o on steroids,” in Proceedings of the Sixteenth
European Conference on Computer Systems, ser. EuroSys ’21.
Association for Computing Machinery, 2021, p. 277–293.
[Online]. Available: https://doi.org/10.1145/3447786.3456242

[61] A. Papagiannis, G. Xanthakis, G. Saloustros, M. Marazakis,
and A. Bilas, “Optimizing memory-mapped i/o for fast storage
devices,” in 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, Jul. 2020,
pp. 813–827. [Online]. Available: https://www.usenix.org/
conference/atc20/presentation/papagiannis

[62] O. Peleg, A. Morrison, B. Serebrin, and D. Tsafrir,
“Utilizing the IOMMU scalably,” in 2015 USENIX Annual
Technical Conference (USENIX ATC 15). Santa Clara, CA:
USENIX Association, Jul. 2015, pp. 549–562. [Online].
Available: https://www.usenix.org/conference/atc15/technical-
session/presentation/peleg

[63] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishna-
murthy, T. Anderson, and T. Roscoe, “Arrakis: The operating
system is the control plane,” ACM Trans. Comput. Syst., nov
2015.

[64] V. S. S. Ram, A. Panwar, and A. Basu, “Trident: Harnessing
architectural resources for all page sizes in x86 processors,” in
MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 1106–1120.
[Online]. Available: https://doi.org/10.1145/3466752.3480062

[65] G. Rodrigues, “ ile holes, races, and mmap(),” https://lwn.net/
Articles/357767/, 2009.

[66] M. Rybczyńska, “Introducing maple trees,” https://lwn.net/
Articles/845507/, 2021.

[67] Samsung, “Memory-semantic ssd,” https://news.samsung.
com/global/samsung-electronics-unveils-far-reaching-next-
generation-memory-solutions-at-flash-memory-summit-
2022, 2022.

[68] E. H.-M. Sha, X. Chen, Q. Zhuge, L. Shi, and W. Jiang, “A
new design of in-memory file system based on file virtual
address framework,” IEEE Transactions on Computers, vol. 65,
no. 10, pp. 2959–2972, 2016.

[69] D. Skarlatos, U. Darbaz, B. Gopireddy, N. S. Kim, and J. Tor-
rellas, “Babelfish: Fusing address translations for containers,”
in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), 2020, pp. 501–514.

[70] N. Y. Song, Y. J. Yu, W. Shin, H. Eom, and H. Y. Yeom, “Low-
latency memory-mapped i/o for data-intensive applications
on fast storage devices,” in 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis,
2012, pp. 766–770.

[71] N. Y. Song, Y. Son, H. Han, and H. Y. Yeom, “Efficient
memory-mapped i/o on fast storage device,” ACM Trans.
Storage, vol. 12, no. 4, May 2016. [Online]. Available:
https://doi.org/10.1145/2846100



[72] M. M. Swift, “Towards o(1) memory,” in Proceedings of the
16th Workshop on Hot Topics in Operating Systems, ser. HotOS
’17. Association for Computing Machinery, 2017, p. 7–11.
[Online]. Available: https://doi.org/10.1145/3102980.3102982

[73] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A
flexible framework for file system benchmarking,” login
Usenix Mag., vol. 41, no. 1, 2016. [Online]. Available:
https://www.usenix.org/publications/login/spring2016/tarasov

[74] L. Torvalds, “ Linux kernel mailing list: mmap/mlock per-
formance versus read,” https://marc.info/?l=linux-kernel&m=
95496636207616&w=2, 2000.

[75] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion,
A. Ramirez, A. Mendelson, N. Navarro, A. Cristal, and
O. S. Unsal, “Didi: Mitigating the performance impact of tlb
shootdowns using a shared tlb directory,” in Proceedings of
the 2011 International Conference on Parallel Architectures
and Compilation Techniques, ser. PACT ’11. USA: IEEE
Computer Society, 2011, p. 340–349. [Online]. Available:
https://doi.org/10.1109/PACT.2011.65

[76] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan,
P. Saxena, and M. M. Swift, “Aerie: Flexible file-system
interfaces to storage-class memory,” in Proceedings of the
Ninth European Conference on Computer Systems, ser.
EuroSys ’14. Association for Computing Machinery, 2014.
[Online]. Available: https://doi.org/10.1145/2592798.2592810

[77] Z. Wang, X. Liu, J. Yang, T. Michailidis, S. Swanson, and
J. Zhao, “Characterizing and modeling non-volatile memory
systems,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2020, pp. 496–
508.

[78] M. Wilcox, “Add support for NV-DIMMs to ext4.” https:
//lwn.net/Articles/613384/, 2014.

[79] X. Wu, S. Qiu, and A. L. Narasimha Reddy, “Scmfs: A file
system for storage class memory and its extensions,” ACM
Trans. Storage, vol. 9, no. 3, Aug. 2013. [Online]. Available:
https://doi.org/10.1145/2501620.2501621

[80] J. Xu, J. Kim, A. Memaripour, and S. Swanson, “Finding and
fixing performance pathologies in persistent memory software
stacks,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming

[82] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah,
A. Borase, T. B. Da Silva, S. Swanson, and A. Rudoff,
“Nova-fortis: A fault-tolerant non-volatile main memory
file system,” in Proceedings of the 26th Symposium on
Operating Systems Principles, ser. SOSP ’17. Association for
Computing Machinery, 2017, p. 478–496. [Online]. Available:
https://doi.org/10.1145/3132747.3132761

Languages and Operating Systems, ser. ASPLOS ’19.
Association for Computing Machinery, 2019, p. 427–439.
[Online]. Available: https://doi.org/10.1145/3297858.3304077

[81] J. Xu and S. Swanson, “Nova: A log-structured file system for
hybrid volatile/non-volatile main memories,” in Proceedings of
the 14th Usenix Conference on File and Storage Technologies,
ser. FAST’16. USA: USENIX Association, 2016, p. 323–338.

[83] Y. Xu, Y. Solihin, and X. Shen, “Merr: Improving
security of persistent memory objects via efficient memory
exposure reduction and randomization,” in Proceedings of
the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ser. ASPLOS ’20. Association for Computing
Machinery, 2020, p. 987–1000. [Online]. Available: https:
//doi.org/10.1145/3373376.3378492

[84] Z. Yan, J. Veselý, G. Cox, and A. Bhattacharjee,
“Hardware translation coherence for virtualized systems,” in
Proceedings of the 44th Annual International Symposium
on Computer Architecture, ser. ISCA ’17. Association for
Computing Machinery, 2017, p. 430–443. [Online]. Available:
https://doi.org/10.1145/3079856.3080211

[85] J. Yang, J. Izraelevitz, and S. Swanson, “Orion: A distributed
file system for non-volatile main memory and rdma-capable
networks,” in 17th USENIX Conference on File and
Storage Technologies (FAST 19). Boston, MA: USENIX
Association, Feb. 2019, pp. 221–234. [Online]. Available:
https://www.usenix.org/conference/fast19/presentation/yang

[86] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and
S. Swanson, “An empirical guide to the behavior and use
of scalable persistent memory,” in 18th USENIX Conference
on File and Storage Technologies (FAST 20). Santa
Clara, CA: USENIX Association, Feb. 2020, pp. 169–182.
[Online]. Available: https://www.usenix.org/conference/fast20/
presentation/yang

[87] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu,
C. Chang, G. Cao, J. Stern, V. Verma, and L. E. Paul,
“Spdk: A development kit to build high performance storage
applications,” in 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), 2017, pp.
154–161.

[88] T. Yoshimura, T. Chiba, and H. Horii, “Evfs: User-level, event-
driven file system for non-volatile memory,” in Proceedings
of the 11th USENIX Conference on Hot Topics in Storage and
File Systems, ser. HotStorage’19. USA: USENIX Association,
2019, p. 16.

[89] P. Zijlstra, “Tracking shared dirty pages.” https://lwn.net/
Articles/185463/, 2006.


