

Context-Aware Service Provisioning in All-IP Networks

Dimitris Karteris, Christos Xenakis, and Lazaros Merakos

Communication Networks Laboratory,
Department of Informatics and Telecommunications,

University of Athens, 15784, Athens, Greece
E-mail: {dkart, xenakis, merakos}@di.uoa.gr

ABSTRACT

An architecture that supports context-aware service
provision in the All-IP network is proposed and analyzed.
The main goal of this architecture is to provide
representation of a nomadic user in each visited computing
and communication environment so that his services are
tailored to his preferences and needs. The user representing
entity collects context information that pertains to the
interactions between the user and his services in the current
environment. The collected information is fed to the
services along with any relevant preferences defined in the
user profile. The services use the received information in
order to adapt to their context. Actors in this architecture
such as the users, the network providers and the service
providers are represented by software agents, which
exchange context information. A nomadic user is
represented by a mobile agent, which follows him
wherever he may roam. User agent mobility management
is carried out by means of the cooperation of agents that
belong to the network providers of the visited
environments, and their interaction with the Mobile IP
protocol that is used for terminal mobility in All-IP
networks.

I. INTRODUCTION

The evolution of mobile networking has introduced a new
telecommunication status quo whose main characteristic is
the coexistence of wired (LAN, PSTN/ISDN/xDSL, etc.),
and wireless (WLAN, GSM, UMTS, etc.) networks, which
are managed by different principles, and cover both indoor
and outdoor environments. In an attempt to integrate the
various telecommunication systems, current research
efforts in networking lead to architectures that are known
as All-IP networks. These architectures aim to provide
fully IP-based service offering that is voice, data, and
multimedia services over an IP bearer [1]. The Internet
protocol is used for the deployment of a unified backbone
that federates the different access technologies (see Figure
1). A key issue in the All-IP architecture is the provision of
a terminal mobility mechanism that ensures seamless
roaming between the access technologies. As potential
solutions, the Mobile IPv4 [2] and Mobile IPv6 [3]
protocols have been considered.
As the Internet is expanded to a real ubiquitous network, it
accommodates the needs of nomadic users who move

between several places, such as their home, their office,
conference rooms, hotels, automobiles, airplanes, etc. [4].
So, nomadic users operate in several environments, which
may be quite different from each other in terms of
computing platforms, communication infrastructure, as
well as services provided in their realm.
While moving between different environments, nomadic
users wish to receive personalized services from specific
service providers by using whatever access technology and
terminal. Moreover, when they receive a specific service
from different service providers, they wish to experience it
as close as possible to a common and predefined look and
feel. However, the interaction between a user and his
services is not affected only by the access technology, and
the terminal used. Physical variables such as time and
environmental conditions may also affect this interaction.
Moreover, information such as his location or his current
activity should also be taken into account. The whole of
the aforementioned information, which is relevant to the
user-service interaction, constitutes the context of each
service. Influenced by the definition of context by Dey et
al. [5], a more formal definition of the service context is
given: service context consists of any information that can
be used to characterize the situation of any entity (person,
place, or object) that is considered relevant to the
interaction between a user and a service, including the user
and the service themselves. The service provisioning
requirements mentioned above call for context aware
services [6]. These services adapt their behavior, or the
content they process, to their service context in a
transparent way.
In this paper, a new architecture, which aims to support the
provision of context-aware services in the All-IP network
architecture, is proposed. It is called CASPAIR (Context-
Aware Service Provisioning in All-IP netwoRks). The
main goal of this architecture is to provide representation
of a nomadic user in each visited computing and
communication environment so that his services are
tailored to his preferences and needs. The user representing
entity collects context information that concerns the
interactions between the user and his services in the current
environment. The collected information is fed to the
services along with any relevant preferences defined in the
user profile. The services use the received information in
order to adapt to their context.
The proposed architecture uses the mobile agent
technology, which provides a number of benefits in the

creation of distributed systems [7, 8]. Due to their
autonomous and independent nature, mobile agents may
act on behalf of the application that spawned them, even if
communication between them is temporarily lost, thus
providing support for disconnected operations. Moreover,
the ability of mobile agents to migrate to the location of the
resources they access, results in less remote
communication (i.e. reduced bandwidth consumption), and
less overall latency in a series of interactions. Another
benefit of mobile agents is their ability to adapt
dynamically, as they can sense their execution
environment and react autonomously to changes. In
addition, the mobile agent paradigm offers more flexibility
than the traditional client-server communication, as mobile
agents can be used to dynamically change the interface
between a client and a server. Finally, mobile agents are
generally platform and transport layer independent thus
providing an optimal solution for heterogeneous
distributed computing environments.
The rest of this paper is organized as follows. In Section II,
the basic principles of the proposed architecture are
pointed out. Section III gives a description of the main
components that comprise the CASPAIR architecture. In
Section IV, a set of basic operations is analyzed in order to
showcase the system functionality. Finally, the conclusions
are discussed in Section V.

Figure 1 An All-IP network that federates several wired

and wireless access technologies.

II. THE CASPAIR APPROACH

The basic goal of the CASPAIR approach is to provide a
framework that supports continuous context acquisition in
every environment visited by nomadic users, and facilitates
the contextualization of the services used. This is achieved
by using software agents to represent the entities that are
relevant to the interaction between the user and his
services. These entities are illustrated in Table 1, where
information characterizing each one of them is also given.
Each agent’s responsibility is to constantly gather all the
context information concerning its entity and provide this
information to other agents in the framework. Context
information is eventually supplied to the service agents,
who use it in order to adapt the behavior of their
corresponding services.

The key agent in the CASPAIR approach is the one
representing the user. User representation is based on the
user profile, which contains a set of service-related
preferences that designate how the services should be
experienced, a set of preferences that concern the user’s
CASPAIR sessions, and, finally, the capabilities of all the
user terminals. Besides the user profile, the agent in
question obtains context information collected by agents
residing in the currently visited environment. In this way,
the user agent gains knowledge of the environment in
which the user and his services operate.
When a service is activated, the user agent identifies the
service relevant context components. Then, it extracts all
the information that is relevant to the user-service
interaction from the user profile, and constructs a service
specific profile. The service specific profile is a
specification of all possible user configurations that a
service may assume, and depends on a subset of the service
relevant context components. The service specific profile
along with the values of the service relevant context
components is eventually sent to the agent that represents
the service. The service agent applies the values of the
context components to the service specific profile and
produces a specific configuration that holds under these
values. In the following, adaptation is carried out based on
the current instance of the service context, which is the
aggregation of the currently holding user defined
configuration and the current values of the context
components. The service context is not invariable; any
updates to the values of the service relevant context
components detected by the user agent are communicated
back to the service agent and adaptation recurs.

Entity Information

User identity, location, time, activity, service preferences,
current terminal, environmental conditions

Service adaptable characteristics, current configuration,
capabilities

Network Provider network type and capabilities, network load, local
service providers, billing scheme, security policies

Service Provider available services, available execution resources,
billing scheme, security policies

Terminal terminal type and capabilities, available resources,
installed software

Table 1 Entities that are relevant to the user-service
interaction and corresponding information used to

characterize them.

Before advancing to the details of the CASPAIR
architecture, a categorization of the service types that are
assumed is defined. The three service categories are:
subscribed, guest and hybrid services. Subscribed services
are offered by home or third-party service providers and
require previous subscription in order to be used (e.g.,
stock market quotes report, electronic mail service,
personal bookmarks, Video on Demand, etc.). Guest
services are offered by a local service provider to the users
(both home and visiting) currently attached to the network

without requiring any subscription (e.g., printing, slide
projection, room interaction, etc.). Finally, hybrid services
are subscribed services that can be offered by a service
provider of a visited network, even if the visiting users
have not subscribed to this provider (e.g., nearby restaurant
retrieval, local weather report, emergency calls, etc.).

III. THE CASPAIR COMPONENTS

In the proposed architecture, a number of logical entities
are defined in order to group the functionality provided by
agents: the Profile Entity (PE), the Network Entity (NE),
the Service Provider Entity (SPE), and the Terminal Entity
(TE). Each entity corresponds to an agent system that is an
agent execution environment where agents reside and
perform portions of their life cycle. Agents may migrate
from one entity to another during their lifetime.

A. Profile Entity Agents

The Profile Management Agent (PMA) is a stationary
agent that resides in the PE and handles the activation of
CASPAIR sessions as well as the management of user
profiles. When a PMA receives a request for the activation
of a user's session, it searches for the user’s profile in the
profile database, and, after a successful authentication, it
creates the user’s Profile Agent (PA).
PAs are mobile agents that act as user representatives.
Each PA remains alive throughout a user session and
follows the user, while he roams between different
networks, by migrating to the NE of each visited network.
The PA receives user requests for the activation of services
and forwards them to appropriate service providers. The
most important functionality of a PA is the collection of
service related context information from other agents in its
local CASPAIR system. The collected context information
is sent to the service agents that use it in order to adapt the
behavior of their corresponding services.

B. Network Entity Agents

Network Agents (NAs) are stationary agents that reside in
NEs and provide access to CASPAIR. They receive
session initiation/resumption requests, which they forward
to appropriate CASPAIR agents. For each user, there is a
Home Network Agent (HNA), which is the NA that resides
in the home network, i.e. the network to which the user has
subscribed for the provision of CASPAIR functionality.
All other NAs in foreign networks are considered as
Foreign Network Agents (FNAs) to the user in question.
Agents that reside in user terminals can contact the NA of
their local network by obtaining its identifier and the
address of the corresponding NE, either through manual
configuration or by means of an automated way, such as
DHCP or router advertisements.
NAs that belong to different network providers perform
mobility management for the PAs so as to enable them to
follow the roaming users. Each NA holds three lists that
assist him in PA mobility management: a network list that

contains information for other CASPAIR-providing
networks, a home users list that contains information for
all the users to whom the NA in question acts as a HNA,
and a visiting users list that contains information for all the
users currently visiting the local network. The network list
consists of (networkID, naIdentifier, naLocation,
subnetPrefixesList) quadruplets where networkID is the
network’s identity, naIdentifier is the identifier of the
network’s NA, naLocation is the address of the NE where
the NA resides, and subnetPrefixesList is the list of the
subnet prefixes of the IP addresses that belong to this
network. The home users list contains (userID,
paIdentifier, paLocation, addressList) quadruplets where
userID is the user’s identity, paIdentifier is the identifier of
the user’s PA, paLocation is the address of the NE where
the user’s PA is currently located, and addressList is a list
that contains the home IP addresses of all the user’s
terminals that run Mobile IP. The visiting users list
contains (userID, homeNetworkID, paIdentifier) triplets
where userID is the user’s identity, homeNetworkID is the
identity of the user’s home network, and paIdentifier is the
identifier of the user’s PA.
Finally, each NA provides network related context
information to the PAs that reside in its NE.

C. Service Provider Entity Agents

The Service Provider Agent (SPA) is a stationary agent
that resides at the SPE, and handles requests for the
activation of services. Each user may subscribe to a
number of service providers in order to receive services.
The SPAs of the providers in question are considered as
Subscribed Service Provider Agents (SSPAs) for this user.
A user may also receive services by the SPA of a visited
network, even if he has not subscribed for service
provision by that network. However, in such cases, he may
access only the guest and the available hybrid services. An
SPA that provides only guest/hybrid services to a user is
considered as Guest Service Provider Agent (GSPA) for
the user in question. Each SPA is a context information
provider for the PAs. An example of such information is
the set of offered subscribed, guest, or hybrid services.
When a user activates a service, the corresponding request
is initially sent to the user’s PA, which in turn forwards it
to the appropriate SPA on the basis of the service type. The
SPA creates a corresponding Service Agent (SA) that
handles service execution and representation in the
CASPAIR framework. The SA contains the service logic,
the service user interface, the service specific profile, and
the current values of the service relevant context
components. Although, an SA is created and executed in
an SPE, it may migrate to the NE of the network that the
user currently visits. However, this depends on the visited
network’s policy as well as the NE’s resource availability.

D. Terminal Entity Agents

The Terminal Agent is a stationary agent that resides in the
TE and enables the interaction of the terminal with the

CASPAIR system. When the user logs in successfully, the
TA receives the graphical user interface (GUI) software
modules for the management of the CASPAIR session and
the activation of services. Moreover, when a service is
activated, the TA receives the GUI modules for the
interaction with the service in question. Besides service
presentation, the TE can be also used for service logic
execution either by the migration of the SA to the TE, or
by the dispatch of service logic code from the SA to the
TA. However, this feature depends on the terminal
capabilities as well as the available terminal resources.
Finally, the TA provides context information, such as
terminal type, GUI module versions, resource availability,
etc., to PAs.

IV. BASIC CASPAIR OPERATIONS

Based on the description of the CASPAIR components, the
most important CASPAIR operations are presented in
order to give a better idea of the overall system
functionality.

A. Session Initiation

A user may initiate a CASPAIR session either when he
resides at his home network or at a foreign one. Figure 2
illustrates a session initiation procedure at a foreign
network. The TA in the user terminal calls the
initiateSession() method on the FNA (1). Among the
information provided to the FNA, through the previous
method call, are the user credentials (user id, home
network id, password, etc.), the TA identifier, the TE
address, as well as terminal related context information. A
user id is unique inside a network provider’s domain so the
combination of the username and the network provider id
uniquely identifies the user in the global network. The
FNA identifies that the user is not at his home network, so
it consults its network list in order to retrieve the identifier
of the user’s HNA as well as the address of the
corresponding Home Network Entity (HNE). By using the
retrieved information, the FNA contacts the HNA, and
forwards the session initiation request to it (2). The request
is enhanced with the address of the Foreign Network Entity
(FNE). In the following, the HNA relays the session
initiation request to the PMA (3). The PMA authenticates
the user, and searches for his profile in the profile
database. Then, the PMA creates the user’s PA, based on
the retrieved profile, and instructs it to migrate to the FNE
(4, 5). So, although the PA is created at the home network,
it migrates to the currently visited network in order to
follow the user.
As soon as the PA is established at the FNE, it requests
context information from the context providers of the
visited network by means of a procedure that is described
in a following section. Finally, the PA dispatches the
CASPAIR session management GUI (CSMGUI) to the TA
(6). The dispatched GUI depends on the current terminal
and network context, as well as the user preferences. By
means of this GUI, a user may pause/resume/terminate

CASPAIR sessions, set session or GUI specific
preferences, and, eventually, activate his services.

Figure 2 Session initiation at a foreign network.

B. Session Resumption

Session resumption implies that the user has previously
paused his CASPAIR session. During the pause interval,
the PA stays “alive” in some NE. The key issue in session
resumption is for the PA to be tracked down, and
associated with the user’s TA. Moreover, if the session is
not resumed in the network where it was paused, the PA
should be instructed to migrate to the currently visited
network. Figure 3 illustrates a scenario in which the user
pauses his session at his home network and resumes it in a
foreign one. Additionally, the session is resumed in
another terminal (1). First, the TA calls the
resumeSession() method on the current FNA (2), providing
the user’s id, the home network id, the TA identifier, the
TE address, as well as context information about the new
terminal. Then, the FNA consults its visiting users list in
order to obtain the PA identifier. After failing to track
down the PA locally, the FNA consults its network list and
obtains the information needed to contact the user’s HNA.
Following, the FNA forwards the session resumption
request to the HNA by calling the resumeSession() method
(3). The HNA, in turn, accesses its home users list in order
to retrieve the PA’s current location. The HNA locates the
PA at the HNE and instructs it to migrate to the FNE by
calling the moveTo() method (4, 5). As soon as the PA
migrates to the FNE, it gathers context information
concerning the current network. Finally, the PA sends the
CSMGUI to the new terminal (6).

Figure 3 Session resumption at a foreign network.

The terminal switch that takes place in the previous
scenario does not prevent session resumption. This is due
to the fact that session state information (e.g., listing of all
the activated services and references to their corresponding
SAs) is not preserved in the terminals, but in the PA
instead. Moreover, any information that is held by the PA
and concerns the currently used terminal is updated in each
session resumption request. As a result, a user may transfer
his session from one terminal to another.

C. Handoff triggered PA migration

In the previous cases, the PA migration was the result of a
user action: a session initiation request in a foreign
network or a session resumption request in a network
different from the one the session was paused. Although
the PA mobility management mechanism works under the
circumstances just mentioned, this is not the case when the
user roams between networks and keeps his session active
in a terminal. In such a case, the CASPAIR system has no
way of knowing that a handoff occurred since the MIP
protocol ensures roaming transparent to the overlying
layers. As a consequence, the PA will not be instructed to
migrate to the currently visited network.

Figure 4 Handoff triggered PA migration.

A solution to this problem is to uncover MIP protocol
information to the CASPAIR system. When a Mobile
Node (MN) roams to another network and obtains a new
care-of address (CoA), then, it should register the CoA
with its Home Agent (HA). In case Mobile IPv4 is used,
the registration is realized by a Registration Request
message, which is sent by the MN to the HA, either
directly or through the FA. In case Mobile IPv6 is used, the
registration is realized by a Binding Update message,
which is sent by the MN directly to the HA. In CASPAIR,
after a successful registration, the HA sends the terminal
home IP address and the CoA, contained in the registration
message, to the network’s HNA. Next, the HNA queries
the network list in order to find a subnet prefix that
matches the subnet prefix of the received CoA. In this way,
the HNA obtains the location where the PA should migrate
in order to follow the user. By using the terminal home IP

address, the HNA queries the home user lists and obtains
the current location of the user’s PA. If the PA resides at
the HNE, then, the HNA instructs its migration directly.
However, if the PA resides in any other FNE, then, the
HNA delegates the migration instruction to the
corresponding FNA, through a triggerPAMigration() call.
The mechanism that was just described is called handoff
triggered PA migration. Figure 4 illustrates this
mechanism in the case MIPv4 is used. The terminal roams
between two foreign networks and the registration of the
CoA is realized through the FA.

D. Service Activation

Figure 5 illustrates the activation of a service
independently of its type. First, the user issues a service
request through the CSMGUI running on his terminal. The
request is received by the TA, which in turn calls the
activateService() method on the PA (1). This method call
provides the PA with the requested service id. Next, the
PA produces the service specific profile, and calls the
activateService() method on the SPA that provides the
requested service (2). Among the method call arguments
are: the service id, the service specific profile, and the
currently available values of the service relevant context
components. The SPA searches for the implementation of
the requested service, and, then, creates a corresponding
SA that handles service execution (3). As soon as the SA is
created at the SPE, it uses the values of the service relevant
context components in order to extract an initial user-
defined service configuration from the service specific
profile. Next, the SA sends the service GUI (SGUI) to the
TA, so as to enable the user-service interaction, as well as
the presentation of the service’s results (4). The SGUI is
adapted according to the directives of the currently holding
configuration. The SA is continuously adapting the service
behavior according to the values of the service context
components that it receives by the user’s PA.

Figure 5 Service activation procedure.

E. Service Session Management

The activation of a service implies that a service session is
initiated. The state information that specifies a service
session is handled by the corresponding SA. All service
sessions initiated by a specific user are managed by its PA.

The interface between the PA and the SAs defines two
service session operations: the service session pause, and
the service session detachment. Service pause implies that
service execution is interrupted, and, then, resumed at a
future point in time. After resumption, the service
execution continues from the point it was stopped. Service
session detachment, on the other hand, implies that the
service is detached from the user session, and may run
independently. In this way, the service may continue to
execute even when the user has paused his CASPAIR
session. The results produced are stored in the SA in order
to be delivered to the user, as soon as he resumes his
session, and the association between the user terminal and
the service is restored. On service session resumption, any
context information that concerns the currently used
terminal is updated in the corresponding SA. In this way,
the static binding between the services and the currently
used terminal is removed and the user is given the ability
to transfer a service session between terminals.

F. Context Information Exchange

Agents have two roles as far as context information
exchange is concerned. They may provide context
information about the entities they represent, in which case
they are called context providers. Moreover, they may
request context information from providers in order to

exploit it, in which case they are called context consumers.
Context information can be provided either in a
synchronous, or in an event-driven way. A consumer uses
the synchronous way if he wishes to obtain immediately
the value of one or more context components observed by
a provider. In the event-driven way, a consumer receives
asynchronously the state of a context component only if it
has been updated. The context provider publishes the set of
update events for the different context components that it
observes, and receives subscriptions by context consumers
interested in notifications for such events.

G. Sample Service Scenario

A service execution scenario is presented in order to
showcase the context information flow between the agents,
the management of the service session, and the adaptation
of service logic to the changing context. The sample
scenario, which is illustrated in Figure 6, concerns a hybrid
service that provides a list of restaurants, which are located
nearby the current user location and match a set of user
preferences. The user uses a laptop with a GPRS network
connection.
The user’s PA requests the list of context components
observed by the local NA by means of a
listContextComponents() call. The received list contains
several context components including the network type,

the current user location, the identifier of the local guest
SPA (GSPA), and the address of the local SPE, where the
GSPA resides. In this example, we assume that the
currently used access network provides location tracking.
The PA issues a requestContextComponentInfo() to the NA
in order to obtain the current value of the local GSPA
identifier. With a similar request, the PA obtains the
address of the local SPE. Then, the PA issues a context
information request to the GSPA in order to obtain the
current list of available guest and hybrid services. The
aforementioned list is presented to the user. Following, the
user activates the local restaurants report service. The PA
identifies that one of the context components that
constitute the service context is the user’s current location.
Moreover, the PA knows that the NA can monitor the
user’s current location. So, the PA subscribes to the NA for
update events, concerning the user location, through a
requestContextComponentMonitoring() call. Through this
call the PA also obtains the current value of the user
location, which it forwards to the SA. The SA sends the
appropriate GUI, for the presentation of the service, to the
TA of the currently used terminal. Following, the SA
executes the service logic in order to obtain the list of
restaurants near the current user location.
When the user pauses his session, the SA is not instructed
to pause its service session. On the contrary, it is instructed
to continue the service execution by means of a
detachServiceSession() method call. In this way, the
service keeps collecting and storing information in order to
present it to the user when he resumes his session. Later
on, the user resumes his session by using a PDA. The
update of the terminal context is sent to the SA through the
joinServiceSession() method call, which is used to
associate the SA with the new TA. Following, the SA
sends the new GUI that is appropriate for the PDA, and,
then, all the information that was collected by the service,
to the new TA.
When the user moves to a new location, this fact triggers a
context component update event, which is sent by the NA
to the PA through a notification. The notification that
carries the new user location is forwarded to the SA, which
exploits the received information in order to adapt the
service execution. Notifications are sent through the
contextComponentMonitoringEvent() call. Finally, the
service collects information about restaurants near the new
user location and sends it back to the TA in order to be
presented to the user.

V. CONCLUSIONS

In All-IP network architectures, nomadic users are moving
between different computing and communication
environments. This fact calls for the introduction of
context-awareness in the provision of personalized
services. In this paper, an architecture that supports
context-aware service provisioning in All-IP networks has
been proposed and analyzed. This architecture provides
continuous context acquisition, in every environment
visited by nomadic users, and facilitates the

contextualization of the services used. Context acquisition
is carried out by the Profile Agent, which follows the
nomadic user, and gathers context information by the
agents that represent the currently visited environment.
Context information, which is communicated either in a
synchronous or an event-driven way, is eventually fed to
the agents that manage the activated services along with
any relevant preferences defined in the user profile. The
services exploit the received information and adapt their
behavior or the content they process. The mobility
management of the Profile Agent is carried out by the
cooperation of the Network Agents of the visited
networking environments, as well as their interaction with
the Mobile IP protocol whenever that is necessary.

REFERENCES

[1] L. Morand and S. Tessier, "Global mobility approach

with Mobile IP in “All IP” Networks", In Proceedings
of the 2002 IEEE International Conference on
Communications, 2002, pp. 2075-2079.

[2] C. Perkins, "IP Mobility Support for IPv4", IETF
RFC 3344, 2002.

[3] D. Johnson, C. Perkins, and J. Arkko, "Mobility
Support in IPv6", IETF Internet Draft, June 2003.

[4] L. Kleinrock, "Nomadic Computing - An
Opportunity", ACM SIGCOMM Computer
Communication Review, vol. 25, 1995, pp. 36-40.

[5] A.K. Dey and G.D. Abowd, "Towards a Better
Understanding of Context and Context-Awareness",
Technical Report GIT-GVU-99-22, College of
Computing, Georgia Institute of Technology, 1999.

[6] H.-G. Hegering, A. Küpper, C. Linnhoff-Popien, and
H. Reiser, "Management Challenges of Context-
Aware Services in Ubiquitous Environments", In
Proceedings of the 14th IFIP/IEEE International
Workshop on Distributed Systems: Operations and
Management (DSOM 2003), 2003, pp. 246-259.

[7] D.B. Lange and M. Oshima, "Seven Good Reasons
for Mobile Agents", Communications of the ACM,
vol. 42, 1999, pp. 88-89.

[8] G. P. Picco, "Mobile Agents: An Introduction",
Journal of Microprocessors and Microsystems, vol.
25, 2001, pp. 65-74.

[9] D. Mandato, E. Kovacs, F. Hohl, and H. Amir
Alikhani, "CAMP: A Context-Aware Mobile Portal",
IEEE Communications Magazine, 2002, pp. 90-97.

[10] P. Farjami, C. Gorg, and F. Bell, "Advanced service
provisioning based on mobile agents", Computer
Communications, vol. 23, 2000, pp. 754-760.

[11] K. Raatikainen, "Middleware for Future Mobile
Networks", in Proceedings of the IEEE International
Conference on 3G Wireless and Beyond, 2001, pp.
722-727.

