
A Security Evaluation of FIDO’s UAF Protocol in Mobile

and Embedded Devices

Christoforos Panos1, Stefanos Malliaros2, Christoforos Ntantogian2, Angeliki Panou2

and Christos Xenakis2

1 Department of Informatics & Telecommunications, University of Athens, Greece
cpanos@di.uoa.gr

2 Department of Digital Systems, University of Piraeus, Greece
{stefmal, dadoyan, apanou, xenakis}@unipi.gr

Abstract. The FIDO (Fast Identity Online) Universal Authentication Framework

is a new authentication mechanism that replaces passwords, simplifying the pro-

cess of user authentication. To this end, FIDO transfers user verification tasks

from the authentication server to the user's personal device. Therefore, the overall

assurance level of user authentication is highly dependent on the security and

integrity of the user's device involved. This paper analyses the functionality of

FIDO’s UAF protocol and identifies a list of critical vulnerabilities that may com-

promise the authenticity, privacy, availability, and integrity of the UAF protocol,

allowing an attacker to launch a number of attacks, such as, capturing the data

exchanged between a user and an online service, impersonating a user at any

UAF compatible online service, impersonating online services to the user, and

presenting fake information to the user’s screen during a transaction.

Keywords: Authentication, FIDO, security analysis, trusted computing, TPM,

remote attestation, TrustZone, mobile and embedded devices.

1 Introduction

The most traditional form of authentication, i.e., one-factor, password-based authenti-

cation, has become a deficient and inconvenient solution for the modern-day user, who

must keep track and maintain an ever-growing list of login credentials and passwords.

In 2014, an average user had 25 accounts and performed logins 8 times a day, using 6.5

passwords [1]. Even more importantly, password-based authentication is becoming less

secure. Users typically rely on low entropy passwords so that they are easy to remem-

ber. Furthermore, recent password breaches resulted in large password lists (55000 ac-

counts from Twitter [2], 450000 accounts from Yahoo [3], and 6.5 million from

LinkedIn [4]), which, in conjunction with today’s abundant computing power, made

password cracking a viable attack vector. The FIDO (Fast Identity Online) Alliance [5],

a new industry working group, has been founded to define an open, interoperable set of

authentication mechanisms that reduces the reliance on passwords and addresses the

limitations and vulnerabilities of existing authentication schemes.

The FIDO set of specifications supports multifactor authentication (MFA) and pub-

lic key cryptography. Two protocols are being developed, namely the universal second

factor authentication (U2F) [6] and the universal authentication framework (UAF) [7].

Both protocols may either work in conjunction, or independently. The U2F protocol

augments the security of existing password authentication mechanisms by adding a sec-

ond factor to user login, and, therefore, does not alleviate the use of passwords. A user

logs on using a username and a password, while the protocol prompts the user to present

a second factor device for authentication. The UAF protocol, on the other hand, offers

password-less authentication.

The operation of the UAF protocol involves the communication of two computing

entities, one maintained by the service provider that requires a user’s authentication and

one controlled by the user that must be authenticated. The service provider is referred

as the relying party and is typically composed of a web server and a UAF server. The

web server provides a front-end interface to the users, while the UAF server is respon-

sible for communicating UAF protocol messages to a user’s device. On the client side,

the users’ computing entity consists of one or more UAF authenticators, the UAF client

and user agent software. The UAF authenticator is an entity connected or integrated

within user devices responsible for (i) user authentication and (ii) the generation and

association of key pairs with relying parties. The UAF client constitutes the user-side

endpoint of the UAF protocol (typically a browser plugin) and its main responsibility

is the interaction and coordination of UAF protocol operations with the UAF authenti-

cators on one end and the relying party on the other end. Finally, the user agent software

is the software used by the end user (such as a browser or an application).

During the UAF protocol’s operation, a user initially registers his/her device to a

relying party, using one or more local authentication mechanisms such as a biometric

scan, based on the authenticator policy imposed by the relying party. At this stage, the

following operations take place: (i) the relying party utilizes an attestation mechanism

to validate the legitimacy of the UAF authenticator(s) hosted by the user’s device, and

(ii), the UAF authenticator(s), associate the biometric scan with a newly generated key

pair, retain the private key, and register the device to the relying party using the public

key. Once registered, the user simply repeats the local authentication action whenever

it is required to be authenticated to the service. The device’s UAF authenticator verifies

the user based on the authentication action, while the relying party verifies the device

by transmitting a challenge, which is signed by the previously generated private key.

Therefore, the overall assurance level of user authentication is highly dependent on the

security and integrity of the user's device involved.

The UAF protocol provides several important advantages over traditional authenti-

cation mechanisms: it offers strong authentication (due to its reliance on public key

cryptography); it simplifies the registration and authentication procedure; it alleviates

the need for maintaining passwords, dealing with complex password rules, or going

through password recovery procedures; and it strengthens user privacy, since all iden-

tifying information is stored locally, at the user’s device. However, the operation of

UAF relies on one fundamental assumption: the entities responsible for most of UAF’s

critical functionality, namely the UAF authenticator and the UAF client, are trusted and

cannot be tampered by a malicious attacker. If either of these entities is compromised,

then, an attacker would be able to launch a number of critical attacks, such as, capture

the data exchanged between a user and an online service, impersonate a user at any

UAF compatible online service, impersonate online services to the user, present fake

information to the user’s screen during a transaction, access private keys used for au-

thentication, to name a few, essentially compromising the authenticity, privacy, avail-

ability, and integrity of the UAF protocol.

In this paper, we perform an informal security analysis in which we identify several

attack vectors that can be set to compromise the legitimate operation of the UAF pro-

tocol, including the ability of an attacker to: (i) gain unprivileged access to the crypto-

graphic material stored within the UAF authenticator, and (ii) highjack either the UAF

authenticator or the UAF client. Our analysis concentrates on the client-side UAF pro-

tocol functionality, which includes the most critical protocol entities, namely, the stor-

age location for the authentication keys and the entities performing the authentication

operation (i.e., the UAF authenticators and the UAF client). These entities typically

operate in a consumer platform such as a mobile device, which is susceptible to a vari-

ety of attacks such as malware and viruses, its users deploy unsupervised software, and

the deployed operating systems may be susceptible to several vulnerabilities. On the

other hand, the server-side entities of the UAF protocol (i.e., the relying party) rely on

widely adopted functionality typically associated with web servers (such as the use of

TLS cryptographic protocols). Furthermore, we investigate and identify how an at-

tacker can circumvent the security measures provided by the UAF protocol. Finally, we

provide a threat analysis and investigate the impairment that may be caused by an at-

tacker in the event of a successful exploitation of the UAF protocol. Overall the contri-

butions of this paper are the following:

• We define and comprehensively analyze the client-side operation of the UAF proto-

col, including any associated security measures proposed by the UAF protocol spec-

ifications.

• We perform, to the best of our knowledge, the first undisclosed security analysis of

the UAF protocol. Based on this analysis, we identify several critical attack vectors

that can be exploited by a malicious entity in order to compromise the authenticity,

privacy, availability, and integrity provided by the UAF protocol.

• Our analysis also reveals vulnerabilities in the security measures employed by the

UAF protocol, as well as to entities outside the scope of the UAF protocol, which,

can be exploited to circumvent the security measures, or, target the legitimate oper-

ation of the UAF protocol.

• Based on our security analysis, we identify and categorize the critical assets related

to the UAF protocols’ secure operation.

• We perform a threat analysis in which we investigate and identify several critical

attacks that can be deployed by a malicious entity exploiting the attack vectors iden-

tified in our security evaluation, including user and relying party impersonation,

phishing, and the disclosure of encrypted data.

The rest of this paper is organized as follows. In section 2 we analyze the function-

ality of the UAF protocol, outline the entities involved in the process of user registration

and authentication, present the security measures proposed by the UAF specifications

and evaluate existing literature related to the evaluation of FIDO’s security features and

functionality. In section 3, we perform a security analysis of the UAF protocol, in which

we identify several vulnerabilities and limitations that may be exploited by an attacker

in order to circumvent any security measures and compromise the legitimate operation

of the UAF protocol. Furthermore, we perform a threat analysis, with the goal of iden-

tifying the critical assets of the UAF protocol as well as the threats resulting from the

attacks identified in the security evaluation. Finally, section 4 contains the conclusions.

2 Background

In this section, we first provide an overview of the UAF protocol’s functionality. This

overview covers the most critical aspects of the protocol’s operations, including the

process of registering and authenticating a user to a relying party. A more detailed anal-

ysis of the UAF protocol exists in [7]. Furthermore, in section 2.2, we survey any liter-

ature associated with the security evaluation of the UAF protocol. We outline the secu-

rity measures proposed by the FIDO Alliance, analyze several entities associated with

the security of the UAF protocol, and identify any associated vulnerabilities and limi-

tations.

2.1 UAF protocol operations

The UAF protocol (see Figure 1) encompasses three major operations, namely, regis-

tration, authentication, and deregistration. During the registration operation, the UAF

protocol allows a user to register to a relying party using one or more UAF authentica-

tors. Once registration is complete, the user can then invoke the authentication opera-

tion, in which the relying party prompts for a user authentication using the UAF au-

thenticator previously used during the registration operation. Finally, in the deregistra-

tion operation, the relying party can trigger the deletion of the authentication key ma-

terial and remove the user from its list of authenticated users.

Fig. 1. the UAF protocol

The UAF registration operation. The registration operation is initiated when a user

requests a registration to a relying party, either through a compatible application or

through a browser. The relying party replies to the registration request by transmitting

a registration message with the following parameters: the AppID, the authenticator pol-

icy, the server generated challenge, and the username to the UAF client residing in the

user’s device (illustrated in Figure 2). The AppID parameter is used by the UAF client

to determine if the calling application (or website) is authorized to use the UAF protocol

and it is associated with a key pair by the UAF authenticator (during key generation),

so that access to the generated key pair is limited to its respective application. The au-

thenticator policy lists the type of UAF authenticators required by the relying party,

while the server generated challenge is a random nonce value used to protect against

replay attacks. Finally, the username parameter is used by the UAF authenticator to

distinguish key pairs that belong to the same application (or website), but to different

users.

Once the UAF client receives the registration message from the relying party, it first

identifies the calling app (or website) and then determines (based on the AppID param-

eter) whether the associated application is trusted and allowed to proceed with a regis-

tration request. To accomplish this, the UAF client queries the relying party for the

trusted facet list (i.e., a list of all the approved entities related to the calling app) and,

based on this list, decides whether registration will proceed or not. For example, if the

registration request was initiated by an application, then the trusted facet list will con-

tain a signature of the calling application that the UAF client can use to verify the app.

If, on the other hand, the registration was initiated by a website, then the trusted facet

list will contain all the associated and approved domain names. Subsequently, the UAF

client will check the authenticator policy parameter and generate a key registration re-

quest to the set of UAF authenticator(s) mandatory by the policy. If the required UAF

authenticators are not present in the user’s device, then the registration operation will

be canceled.

The UAF client communicates with the UAF authenticator(s) using the authenticator

specific module (ASM), a software associated with a UAF authenticator that provides

a uniform interface between the hardware and the UAF client software. At this stage,

the UAF client performs the following operations: it first calls the UAF authenticator

in order to compute the final challenge parameter (FCP), which is a hash of the AppID

and the server challenge. Then, it generates the KHAccessToken, which is an access

control mechanism for protecting an authenticator's UAF credentials from unauthorized

use. It is created by ASM by mixing various sources of information together. Typically,

KHAccessToken contains the following four data items: AppID, PersonaID, ASMTo-

ken and CallerID. The AppID is provided by the relying party and it is contained within

every UAF message. The PersonaID is obtained by ASM from the operating system,

and, typically, a different PersonaID is assigned to every user account. The ASMToken

is a random generated secret which is maintained and protected by ASM. In a typical

implementation ASM will randomly generate an ASMToken when it is first executed

and will store this secret until it is uninstalled. CallerID is the calling UAF client's plat-

form assigned ID. Once the FCP and the KHAccessToken are computed, the UAF cli-

ent will send the key registration request to the UAF authenticator including the FCP,

the KHAccessToken, and the username parameter.

Following the reception of a key registration request by a UAF authenticator, the

later will first prompt the user for authentication, and, then, generate a new key pair

(Uauth.pub, Uauth.priv), store it on its secure storage, and associate it with the received

username and KHAccessToken. Subsequently, the UAF authenticator will create the

key registration data (KRD) object containing the FCP, the newly generated user public

key (Uauth.pub), and the authenticator’s attestation ID (AAID), which is a unique iden-

tifier assigned to a model, class or batch of UAF authenticators, and it is used by the

relying party to identify a UAF authenticator and attest its legitimacy. Once the KRD

is generated, the UAF authenticator will sign it using its attestation private key and

return to the UAF client a key registration reply (which the later forwards to the relying

party) that encompasses: the signed KRD, the AAID, Uauth.pub, and its attestation

certificate (Certattest). Upon the reception of the key registration reply by the relying

party, the later cryptographically verifies the KRD object, uses the AAID to identify if

the UAF authenticator is a legitimate authenticator with a valid (i.e., unrevoked) attes-

tation certificate, and, finally, stores the Uauth.pub key in a database for the purposes

of user authentication in any subsequent authentication requests.

Fig. 2. the UAF registration operation

The UAF authentication operation. The authentication operation (illustrated in Fig-

ure 3) is initiated when a user requests a service that requires authentication to a relying

party, either through a compatible application or through a browser (in a similar fashion

with the registration operation outlined above). The relying party replies to the authen-

tication request by transmitting an authentication message with the following parame-

ters: the AppID, the authenticator policy, and a server generated challenge, to the UAF

client residing in the user’s device. The UAF client receiving the authentication request,

first identifies the calling app (or website) and then determines (based on the AppID

parameter) whether the associated application is trusted and allowed to proceed with

the authentication request. Subsequently, the UAF client checks the authenticator pol-

icy parameter and sends a key authentication request to the set of UAF authenticator(s)

mandatory by the policy. If the required UAF authenticators are not present in the user’s

device, then the authentication operation will be canceled. Using ASM, the UAF client

performs the following operations: it first calls the UAF authenticator in order to com-

pute the FCP, which is a hash of the AppID and the server challenge. Then, it retrieves

the KHAccessToken, and finally, sends the key authentication request to the UAF au-

thenticator(s) including the FCP and the KHAccessToken.

Following the reception of a key authentication request by a UAF authenticator, the

later will first check if the UAF client is authorized to request an authentication for that

particular user key, based on KHAccessToken. If the UAF client is authorized, then the

UAF authenticator will prompt the user for authentication, and, then, retrieve the asso-

ciated Uauth.priv from its secure key storage. Subsequently, the UAF authenticator will

create the SignedData object containing the FCP, a newly generated nonce, and a Sign

Counter (cntr). The cntr variable is a monotonically increasing counter, incremented on

every sign request performed by the UAF authenticator for a particular user key pair.

This value is then used by the relying party to detect cloned authenticators. Once the

SignedData object is generated, the UAF authenticator will sign it using the Uauth.priv

key and return to the UAF client a key authentication reply (which the later forwards

to the relying party) that encompasses: the signed object SignedData, the FCP, the

nonce n, and the counter cntr. Finally, upon the reception of the key authentication reply

by the relying party, the later first retrieves Uauth.pub from its database, cryptograph-

ically verifies the signedData object, and stores the value of the cntr counter. If the

verification of the SignedData object succeeds, then the user is successfully authenti-

cated.

Fig. 3. the UAF authentication operation

2.2 Related Work

The literature includes some recent work that elaborates on the security of FIDO. In

[22], the authors pinpoint and evaluate a set of trust requirements of FIDO protocols.

Based on their analysis, the authors reach the conclusion that the FIDO solution does

not solve the trust requirements of previous online identity management solutions (e.g.,

passwords) and instead it has shifted these requirements to other components in its ar-

chitecture. In [23], three attacks are presented for FIDO UAF, but the authors do not

elaborate extensively on the assumptions required to perform these attacks.

The FIDO security reference [9] outlines a list of assets that must be protected

against malicious behavior and provides a limited set of security requirements with the

goal of protecting these assets. We would like to point out that these requirements are

optional and vendors receiving FIDO certification are not obliged to implement them.

A variety of vendors such as Samsung, LG, Qualcomm, and Huawei [8] have already

received FIDO certification, however, their implementations are proprietary, and,

therefore, not open to 3rd party evaluation. Per FIDO specifications, the critical assets

of the UAF protocol are the private key of the authentication key pair, the private key

of the UAF authenticator attestation key pair, and the UAF authenticator attestation

authority private key [7]. Furthermore, the UAF protocol specifications incorporate the

following (optional) security requirements: the authentication keys must be securely

stored within a UAF authenticator and thus protected against any misuse, users must

authenticate themselves to the UAF authenticator before the authentication keys are

accessed, the UAF authenticators may support authenticator attestation using a shared

attestation certificate, and a UAF authenticator may implement a secure display mech-

anism (also referred as transaction confirmation mechanism), which can be used by the

UAF client for displaying transaction data to the user. Therefore, the UAF specifica-

tions do not incorporate any mechanisms that safeguard the cryptographic material

stored in the UAF authenticators, or protect against attacks that may target the UAF

client. Instead, the responsibility for the design and implementation of any security

measures that protect these critical entities is passed on to the vendors.

One solution to address the security requirements of the UAF specifications and pro-

vide a secure operational environment for the UAF authenticators, is the incorporation

of trusted computing platform technologies [10]. The trusted computing platform con-

stitutes specialized hardware that provides a variety of services, such as secure in-

put/output, device authentication, integrity measurement, sealed storage, remote attes-

tation, cryptographic acceleration, protected execution, root of trust, and digital rights

management. Two prevalent platforms for trusted computing currently exist [10], the

Trusted Platform Module (TPM) [11], which is based on the specifications created by

the Trusted Computing Group, and the TrustZone (TZ) platform [12], created by the

ARM corporation. The TPM is a co-processor, which provides basic cryptographic ca-

pabilities like random number generation, hashing, protected storage of sensitive data

(e.g. secret keys), asymmetric encryption, as well as generation of signatures. The TPM

platform presents some significant limitations [10]: (i) the need for a separate module

increases the cost of a device; (ii) it cannot be deployed on legacy devices; (iii) it does

not protect against runtime attacks; (iv) it relies on the assumption that a TPM cannot

be tampered; (v) the physical size and energy consumption requirements make it an

unsuitable solution for mobile and embedded devices; (vi) in case of a TPM compro-

mise, the hardware module must be physically replaced; and (vii) the supported cryp-

tographic algorithms have been found to pose security concerns (i.e., SHA-1), and are

not well suited for resource restricted devices (i.e., RSA).

The TrustZone platform, is part of ARM's processor cores and system on chip (SoC)

reference architecture. The associated hardware is part of the SoC silicon, and thus, it

does not require any additional hardware. The primary objective of TrustZone is to

establish a hardware-enforced security environment providing code isolation, that is, a

clear separation between trusted software, which is granted access to sensitive data like

secret keys, and other parts of the embedded software. To achieve this, the TrustZone

platform provides two virtual processing cores with different privileges and a strictly

controlled communication interface, enabling the creation of two distinct execution en-

vironments, encapsulated by hardware. Nevertheless, to the best of our knowledge,

Samsung is the only certified vendor that implements a UAF authenticator using the

TrustZone platform [13]. Furthermore, this approach only protects the UAF authenti-

cator, while the UAF client is still susceptible to a variety of attacks (analyzed in detail

in section 3.2). Finally, extensive literature has shown that the TrustZone platform itself

is not immune to weakness and vulnerabilities [14][15][18][19].

3 UAF security analysis

In the following section, we provide an informal security analysis in which we manually

identify several attack vectors that can beset to compromise the legitimate operation of

the UAF protocol, including the ability of an attacker to: (i) gain unprivileged access to

the cryptographic material stored within the UAF authenticator, and (ii) highjack either

the UAF authenticator or the UAF client. Furthermore, we investigate and identify how

an attacker can circumvent the security measures provided by the UAF protocol, in-

cluding the authenticator attestation mechanism, the transaction confirmation mecha-

nism, the trusted facet list, and the sign counter. Finally, we provide a threat analysis

and investigate the impairment that may be caused by an attacker in the event of a

successful exploitation of the UAF protocol.

3.1 UAF protocol vulnerabilities and limitations

As we previously analyzed in section 2.1, two UAF protocol entities, namely the UAF

authenticator and the UAF client, reside at the client’s device. These entities are re-

sponsible for most of UAF’s critical functionality, including the authentication of users,

the creation and maintenance of the cryptographic material used for either the attesta-

tion of the UAF authenticator or the authentication to a relying party, the presentation

of UAF related information to the user, and the initiation and management of both the

registration and authentication procedures. Therefore. if either of these entities is com-

promised, an attacker would be able to launch several critical attacks, compromising

the authenticity, privacy, availability, and integrity of the UAF protocol. Subsequently,

in sections 3.1.1 and 3.1.2, we identify several vulnerabilities present in the specifica-

tions of the UAF authenticator and the UAF client, respectively.

UAF authenticator vulnerabilities. The first and most apparent attack vector of the

UAF protocol is the authentication keys. Therefore, an attacker may attempt to (directly

or indirectly) gain unprivileged access to these keys. As we previously mentioned in

section 2.1.1, the responsibility of storing the authentication keys lies with the UAF

authenticator and based on the UAF protocol security requirements, the UAF authenti-

cator utilises some form of secure/privileged storage. However, it has been shown in

the literature that such types of key storage solutions can still be compromised [16]. As

we mentioned in section 2.2, UAF authenticators typically rely on trusted computing

platforms for the storage of cryptographic material. Cooijmans et al [15] have shown

that on several widely adopted trusted computing platforms, an attacker with privileged

rights can gain the ability of using encrypted credentials by moving them to a different

directory, which designates a malicious application as the owner of the credentials. Fi-

nally, an attacker may also attempt to indirectly gain access to the authentication keys,

by fully compromising the UAF authenticator(s). Based on the literature, an attacker

can gain full access to a trusted computing platform by performing an integrated circuit

attack (i.e., ICA) [14]. One limitation of this attack is the requirement to have physical

access to the user’s device. However, once the attack is performed, the attacker can

then create a cloned UAF authenticator, alleviating any further need for the original

user’s device.

When utilizing a cloned UAF authenticator, an attacker must then evade the security

mechanisms of the UAF protocol, implemented on the purpose of identifying such ma-

licious behavior. Recall from section 2.1 that the UAF protocol incorporates two secu-

rity mechanisms that safeguard the operation of the UAF authenticator: (i) an attestation

mechanism, in which the UAF authenticator must prove its legitimacy by providing an

attestation signature during the registration process and (ii) a sign counter (cntr) mech-

anism, which is a monotonically increasing counter, incremented on every sign request

performed by the UAF authenticator for a particular user key pair and used by the rely-

ing party to detect cloned UAF authenticators.

Regarding the attestation mechanism, we have identified three approaches that can

be used by an attacker to circumvent detection. In the first method, an attacker may

utilize the extracted attestation key from the compromised UAF authenticator and per-

form registration requests to relying parties, impersonating the legitimate user. Since

the attestation keys for each UAF authenticator are not unique (i.e., a group of UAF

authenticators share the same attestation key pair), the malicious behavior cannot be

easily detected by the relying party. If, however, the attestation keys are revoked by the

device’s vendor, then there is a risk of detection by the relying party. A second method

that can be used by an attacker when employing a cloned authenticator is to avoid the

attestation mechanism all together. This can be achieved by exploiting a limitation in

the attestation process. Recall from section 2.1 that the attestation process takes place

only during the registration operation. Therefore, an attacker may allow the legitimate

UAF authenticator to perform the registration process, and, subsequently, without the

users’ knowledge, use the cloned authenticator to authenticate itself to the relying party,

masquerading as the legitimate user. Finally, an attacker may use the cloned UAF au-

thenticator temporarily to collect personal information related to the legitimate user,

and, then, register at other relying parties using a different, non-cloned UAF authenti-

cator. Subsequently, since the attestation procedure takes place at a non-cloned authen-

ticator, there is no risk of revocation, while the attacker retains the ability to imperson-

ate the legitimate user to any relying party.

On the other hand, the second security measure proposed by the UAF specifications

(i.e., sign counter), can be circumvented by an attacker, if the later actively attempts to

perform an authentication operation immediately after the completion of cloning a UAF

authenticator. Recall from section 2.1 that during the authentication operation, a relying

party will assume a UAF authenticator is legitimate if the sign counter encapsulated in

the key authentication reply is equal to the sign counter maintained by the relying party

incremented by one. Therefore, a race condition evolves between the legitimate and the

cloned UAF authenticator, since only the UAF authenticator that manages to perform

an authentication request first, will be considered legitimate by the relying party (while

the second authenticator will attempt to authenticate using an older value of the sign

counter). Thus, an attacker can circumvent this security measure by performing an au-

thentication request to the relying party as soon as the UAF authenticator is cloned,

maximizing his chances of winning the race condition.

UAF client vulnerabilities. The second critical entity of the UAF protocol that re-

sides at a user’s device is the UAF client. Recall from section 2 that the UAF client acts

as an intermediator between the relying party on one hand and the UAF authenticator

on the other and it is responsible for most of UAF’s protocol operations, short of gen-

erating the encryption keys or performing cryptographic operations. Furthermore, the

UAF client is implemented entirely in software, making it an ideal candidate for soft-

ware attacks. Even more importantly, the UAF protocol does not incorporate any secu-

rity measures that safeguard the UAF client from attacks or verifies that a user’s device

operates a legitimate version of the client. The UAF protocol specifications propose the

execution of the UAF client in a “privileged” environment, however, since the client is

typically embedded within a browser either fully or as a plug-in, it is de-facto imple-

mented as a normal application.

The simplest method of delivering a malicious UAF client to a user’s device is by

deceiving the user to install the application voluntarily. Common delivery methods in-

clude attachments in e-mails or browsing a malicious website that installs software after

the user clicks on a pop-up. Other methods of compromising a UAF client is through

malicious software residing at the user’s device (such as a virus, worm. trojan, or root

kit) or by exploiting an operating system vulnerability. The latter, enables the execution

of a plethora of attacks such as spoofing of inter-process communication, privilege es-

calation, return-oriented programming, or code injection attacks. For example, in a va-

riety of sources such as [17][20][21], the authors demonstrate methodologies for ac-

complishing privilege escalation in the android operating system, one of the most

widely used platforms, which includes a variety of privilege protection mechanisms,

such as application specific sandboxing and Mandatory Access Control (MAC) poli-

cies. Furthermore, in the most recent versions of android, privilege escalation is typi-

cally achieved using system less root [20], which is the process of gaining escalated

privileges without any modification to the system partition, thus evading detection by

any security mechanisms that validate an operation system through a checksum of its

system partition (i.e., a common security mechanism used by most of the trusted com-

puting platforms).

3.2 Threat analysis

In the following section, we provide a threat analysis based on the vulnerabilities iden-

tified in section 3.1. First, we outline the assets that reside at the client side, which are

critical for the legitimate operation of the UAF protocol. In this list, we also include

assets that are not part of the UAF protocol, such as, the underlying operating system

and the utilization of a trusted computing platform, since (as we have shown in section

3.1), they are detrimental to the security of the UAF protocol. We then investigate the

consequences that may be caused in the event of a successful exploitation of the vul-

nerabilities identified in section 3.1. Table 1 provides a summary of the critical assets

related to the UAF protocols’ secure operation, the threats identified in the threat anal-

ysis, and, the consequences induced by the threats, if the later are carried out success-

fully by an attacker.

Critical assets related to the UAF protocols’ secure operation. As we mentioned

in section 2.2, the UAF specifications [9] provide a limited list of assets that must be

protected in an implementation of the UAF protocol. These assets include the private

key of the authentication key pair, the private key of the UAF authenticator attestation

key pair, and the UAF authenticator attestation authority private key. However, as we

have seen in section 3.1, an attacker may also target several other assets that are either

part of the UAF protocol, or they are integral in its secure operation. In particular, an

attacker may either target the UAF authenticator(s) or the UAF client that are present

in a legitimate users’ device. Furthermore, an attacker may indirectly compromise the

secure operation of the UAF protocol by exploiting existing vulnerabilities (i) at the

underlying operating system in which the UAF protocol is executed, or (ii) at the trusted

computing platform (typically the TrustZone platform), used for the hardware-assisted

protection of the encryption keys and the operation of the UAF authenticator(s).

Threat evaluation. Based on the security analysis in section 3.1, the private keys

stored in the UAF authenticator, namely the attestation private key and the authentica-

tion private keys pose a critical attack vector of the UAF protocol. Recall from section

2.2 that these keys are used by the UAF authenticator to sign registration and authenti-

cation replies, respectively. On the other hand, the relying party uses these signed re-

plies to authenticate the UAF authenticator and verify its legitimacy. Therefore, if an

attacker compromises the attestation private key, he would then be capable of imper-

sonating the legitimate user by registering to other relying parties on the users’ behalf,

without the latter’s consent (including fraudulent relying parties). In order to have ac-

cess to the authentication keys associated with the malicious registrations and to avoid

detection by the user, the attacker will have to import the attestation private key to a

cloned and silent authenticator, i.e., an authenticator that appears to have been manu-

factured by the same vendor as the legitimate one and does not prompt the user for any

action during the registration and authentication operations of the UAF protocol. On

the other hand, if the attacker compromises one or more authentication private keys, he

would then be capable of impersonating the legitimate user by authenticating as the

user to relying parties. The attacker is limited, however, to relying parties that the le-

gitimate user has already registered. Nevertheless, once authenticated, the attacker can

then collect personal data related to the legitimate user and stored at the relying party,

as well as perform transactions with the relying party without the users’ consent.

An attacker may also attempt to indirectly gain access to the attestation and authen-

tication keys, by fully compromising the UAF authenticator(s) residing at the device of

a legitimate user. This can be accomplished in the following ways: the user unwillingly

installs a malicious authenticator to his/her device, the attacker compromises the UAF

authenticator by targeting the UAF authenticators’ underlying trusted computing plat-

form, and, the attacker gains physical access to the device and either installs a malicious

authenticator, or tampers with the legitimate UAF authenticator(s) installed on the de-

vice. As a result, any subsequent registration and authentication requests will be cap-

tured by the malicious authenticator, enabling the attacker to impersonate the legitimate

user, collect personal data, and perform transactions on the users’ behalf, similarly to

the cloned authenticator threat we analyzed previously. Furthermore, the attacker can

also extract the attestation and authentication keys, in order to create a cloned authen-

ticator that resides outside the device of the user.

The UAF client signifies another critical attack vector identified in the security eval-

uation. An attacker may attempt to compromise the UAF client by exploiting one or

more of the following vulnerabilities: gaining physical access to the user’s device and

manually installing a malicious client, deceiving the user to install the malicious client

voluntarily, using other malicious software residing at the user’s device (such as a virus,

worm. trojan, or root kit) in order to install the malicious client, or by exploiting an

operating system vulnerability. Having successfully compromised the UAF client, an

attacker is then capable of launching several additional attacks against the UAF proto-

col, such as: allowing itself or other malicious applications to perform registration/au-

thentication operations without the user’s consent, enforce the use of the weakest/less

secure UAF authenticator during a legitimate registration process, direct a user to a fake

or malicious relying party, and defeat the user consent, transaction confirmation, and

trusted facet list security measures of the UAF protocol. Recalling from section 2.1.1,

during the registration operation, the UAF client is responsible for initiating registration

requests, determining if applications (or websites) are authorized to use the UAF pro-

tocol, present a UI to the user, and directing the relying party challenge to the UAF

authenticator based on the authenticator policy transmitted by the relying party (i.e.,

based on the trusted facet list). Since the UAF client is the only entity responsible for

assessing the trusted facet list, it can allow the registration operation for any website,

or from any application, regardless of what is enforced by the trusted facet list security

measure. Therefore, the user may unwillingly be redirected to a malicious relying party

masqueraded as a legitimate one, so that personal/valuable information can be phished

by an attacker. Furthermore, as we mentioned previously, it is the UAF client’s respon-

sibility for presenting a UI to the user, and, therefore, even if the user’s device incor-

porates a transaction confirmation security mechanism, the confirmation will always

be true, since the mechanism validates if the information provided to the user is tam-

pered/modified/spoofed after leaving the UAF client, and not if the later modified the

displayed content. Finally, a malicious UAF client may forward a relying party chal-

lenge to the weakest UAF authenticator (preferably one with a low entropy secret).

Subsequently, during authentication, the attacker could attempt to discover the secret

and access the user’s account without the legitimate users’ consent.

Table 1. threats related to the UAF protocol and their associated consequences

Asset Threat Consequences

Attestation private key
Attacker gains access to the
attestation keys

Create a fake authenticator

Authentication private key
Attacker gains access to the
authentication keys

Attempt to obtain user data from the rely-
ing party by guessing the counter

UAF authenticator
User installs a malicious au-

thenticator

Impersonate user, capture user data, regis-

ter the user to a fraudulent relying party

TrustZone, UAF authenti-

cator

Attacker compromises the

trusted computing platform

Create cloned authenticator, impersonate

user, compromise the UAF authenticator

UAF client, UAF authenti-

cator, TrustZone

Attacker gains physical ac-

cess to a user’s device

Create cloned authenticator, impersonate
user, compromise the UAF authenticator,

install malicious UAF client

UAF authenticator
Attacker employs a cloned

authenticator

Impersonate user, capture user data, regis-

ter the user to a fraudulent relying party

UAF client
User installs a malicious cli-

ent

Register to a fraudulent relying party,

phishing – lead to malicious websites,
downgrade authentication policy, capture

user data, circumvent transaction confirma-

tion security mechanism, allow malicious
apps to register/impersonate the user

Operating system

Attacker can execute privi-

leged code at the user’s de-

vice

Compromise the UAF client

4 Conclusions

The UAF protocol provides several important advantages over traditional authentica-

tion mechanisms, such as strong authentication and a simplified registration and au-

thentication procedure. However, the UAF protocol also transfers user authentication

operations from the server-side to the client-side. Therefore, the critical functionality

of the UAF protocol typically operates in a consumer platform such as a mobile device,

which is susceptible to a variety of attacks such as malware and viruses, its users deploy

unsupervised software, and the deployed operating systems may be susceptible to sev-

eral vulnerabilities. In this paper, we have provided a comprehensive security analysis

of the UAF protocol and have identified several vulnerabilities that may be exploited

by an attacker in order to compromise the authenticity, privacy, availability, and integ-

rity of the UAF protocol. More specifically, we have investigated methods of attacking

the two entities of the UAF protocol residing at a user’s device, namely, the UAF au-

thenticator and the UAF client, including the ability of an attacker to gain unprivileged

access to the cryptographic material stored within the UAF authenticator and highjack

either the of these two entities. Furthermore, we have investigated and identified how

an attacker can circumvent the security measures provided by the UAF protocol, in-

cluding the authenticator attestation mechanism, the transaction confirmation mecha-

nism, the trusted facet list, and the sign counter. Finally, we provided a threat analysis

in which we analyze the impairment that may be caused by an attacker in the event of

a successful exploitation of the UAF protocol. Based on our threat analysis, by exploit-

ing the identified vulnerabilities, an attacker would be able to capture the data ex-

changed between a user and an online service, impersonate a user at any UAF compat-

ible online service, impersonate online services to the user, perform transactions on the

users’ behalf without the latter’s consent, present fake information to the user’s screen

during a transaction, re-direct the user to a fraudulent relying party during registration,

force the use of a weak or malicious UAF authenticator, allow malicious applications

to register to a legitimate relying party, and access private keys used for authentication

of a user.

Acknowledgments. This research has been funded by the European Commission in

part of the ReCRED project (Horizon H2020 Framework Programme of the European

Union under GA number 653417).

References

1. Das, Anupam, et al. "The Tangled Web of Password Reuse." NDSS. Vol. 14. 2014

2. 55K Twitter Passwords Leaked. http://www.newser.com/story/145750/55k-twitter-pass-

words-leaked.html

3. Yahoo hacked, 450,000 passwords posted online.

http://www.cnn.com/2012/07/12/tech/web/yahoo-users-hacked

4. 6.46 million LinkedIn passwords leaked online. http://www.zdnet.com/blog/btl/6-46-mil-

lion-linkedin-passwords-leaked-online/79290.

5. FIDO Alliance. Fido security reference. http://www.fidoalliance.org/specifications

6. Srinivas, Sampath, et al. "Universal 2nd factor (U2F) overview." FIDO Alliance Proposed

Standard (2015): 1-5

7. F.I.D.O. Alliance, "FIDO UAF Protocol Specification v1.1: FIDO Alliance Proposed Stand-

ard." (2016)

8. F.I.D.O. Alliance, “FIDO Certified Products”, https://fidoalliance.org/certification/fido-cer-

tified-products/ , last accessed June 5, 2017

9. FIDO Alliance. Fido security reference (2014). www.fidoalliance.org/specifications

10. Panos, Christoforos, et al. "A specification-based intrusion detection engine for infrastruc-

ture-less networks." Computer Communications 54 (2014): 67-83

11. Trusted Computing Platform Alliance. TCPA main specification v. 1.2. http://www.trusted-

computing.org

12. Winter, Johannes. "Trusted computing building blocks for embedded linux-based ARM

trustzone platforms." Proceedings of the 3rd ACM workshop on Scalable trusted computing.

ACM, 2008

13. Common Criteria for Information Technology Security Evaluation, “SAMSUNG SDS

FIDO Server Solution V1.1 Certification Report,” (2016)

14. C. Helfmeier, D. Nedospasov, C. Tarnovsky, J. S. Krissler, C. Boit, and J.-P. Seifert, “Break-

ing and entering through the silicon,” in Computer and Communications Security (CCS),

pp. 733–744, 2013

15. Cooijmans, Tim, Joeri de Ruiter, and Erik Poll. "Analysis of secure key storage solutions on

Android." Proceedings of the 4th ACM Workshop on Security and Privacy in Smartphones

& Mobile Devices. ACM, 2014

16. Cooijmans, Tim, et al. "Secure key storage and secure computation in Android." Master's

thesis, Radboud University Nijmegen (2014)

17. Davi, Lucas, et al. "Privilege escalation attacks on android." International Conference on

Information Security. Springer Berlin Heidelberg, 2010

18. Shen, Di. "Exploiting Trustzone on Android." Black Hat USA (2015)

19. Rosenberg, Dan. "Qsee trustzone kernel integer over flow vulnerability." Black Hat confer-

ence. 2014

20. Abhishek, P. C. "Student Research Abstract: Analysing the Vulnerability Exploitation in

Android with the device-mapper-verity (dm-verity)." (2017)

21. Does, Thom, and Mike Maarse. "Subverting Android 6.0 fingerprint authentication." (2016)

22. Ijlal Loutfi and Audun Jøsang, "FIDO Trust Requirements", 20th Nordic Conference, Stock-

holm, Sweden, 2015

23. Kexin Hu, Zhenfeng Zhang, "Security analysis of an attractive online authentication stand-

ard: FIDO UAF protocol", IEEE China Communications, Vol. 13, No. 12, 2016.

http://www.newser.com/story/145750/55k-twitter-passwords-leaked.html
http://www.newser.com/story/145750/55k-twitter-passwords-leaked.html
http://www.cnn.com/2012/07/12/tech/web/yahoo-users-hacked
http://www.zdnet.com/blog/btl/6-46-million-linkedin-passwords-leaked-online/79290
http://www.zdnet.com/blog/btl/6-46-million-linkedin-passwords-leaked-online/79290
http://www.fidoalliance.org/specifications
http://www.fidoalliance.org/specifications

