
A web tool for analyzing FIDO2/WebAuthn Requests and
Responses

Athanasios Vasileios
Grammatopoulos∗

SSL, University of Piraeus, Greece
avgrammatopoulos@ssl-unipi.gr

Ilias Politis
InQbit Innovations SRL, Romania

ilias.politis@inqbit.io

Christos Xenakis
SSL, University of Piraeus, Greece

xenakis@ssl-unipi.gr

ABSTRACT
Passwords are a problem in today’s digital world. FIDO2, through
WebAuthn, brought alternative password-less authentication that
is more usable and secure than classic password-based systems, for
web applications and services. In this work, we give a brief overview
of FIDO2, and we present WebDevAuthn, a novel FIDO2/WebAuthn
requests and responses analyser web tool. This tool can be used
to help developers understand how FIDO2 works, aid in the de-
velopment processes by speeding debugging using the WebAuthn
traffic analyser and to test the security of an application through
penetration testing by editing the WebAuhn requests or responses.

CCS CONCEPTS
• CCS Description: Security and privacy, Security services,
Authentication;

KEYWORDS
FIDO, WebAuthn, Password-less, Authentication
ACM Reference Format:
Athanasios Vasileios Grammatopoulos, Ilias Politis, and Christos Xenakis.
2021. A web tool for analyzing FIDO2/WebAuthn Requests and Responses.
In The 16th International Conference on Availability, Reliability and Security
(ARES 2021), August 17–20, 2021, Vienna, Austria. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3465481.3469209

1 INTRODUCTION
The use of passwords is problematic due to the security risks they
present, not only to users but also to organizations. Popular pass-
word policies require the use of relatively long length and complex
passwords, while some of them suggest frequent changes of old
passwords. Although such policies may increase security, at the
same time compromise the usability of the passwords. Moreover,
such policies contribute to the users’ tendency to use the same
passwords – or similar passwords by modifying them just a bit
– across multiple websites and applications. Therefore, the leak-
age of a single password has the potential to compromise multiple
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARES 2021, August 17–20, 2021, Vienna, Austria
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9051-4/21/08. . . $15.00
https://doi.org/10.1145/3465481.3469209

Figure 1: Client authentication using challenge-response
and public-private key cryptography.

accounts of a single user. The latter is a huge problem exploited
usually by email and website phishing [1], [2].

These disadvantages of password authentication methods led to
the deployment of multifactor authentication mechanics and the
research and development of alternative password-less authentica-
tion methods, like the Fast ID Online (FIDO) framework by FIDO
alliance [3]. With FIDO, users can use secure authenticator devices
instead of passwords and authenticate with applications and web
services easily, quickly, and securely in a privacy preserving way
[4]. Since the release of the first version of W3C’s WebAuthn [5] –
a specification part of FIDO2 that brings it into our web browsers –
in September 2019, FIDO has gained popularity and currently it is
supported out-of-the-box by several platforms and websites. We-
bAuthn defines a way to allow web applications to request access
and communicate with FIDO authenticator devices (hardware- or
software-based) to provide FIDO2 registration and authentication
services to their users. During the last years, due to the increase
of the support by operating systems, FIDO became available to a
wider range of developers. Most notably, Microsoft’s Corporate
Vice President referenced 2020 as "A breakthrough year for pass-
wordless technology" in an article with the same name [6]. In this
effort to kill the password problem, libraries, servers, and tools are
needed to facilitate the adoption of FIDO2 and WebAuthn.

FIDO’s goal is to bring easy and secure authentication while
mitigating the traditional password authentication problems. Some
of the main advantages of FIDO through WebAuthn are a) support
for biometric authentication, b) mitigation of phishing attacks tar-
geting credentials, c) strong authentication through elliptic curve
public key cryptography d) secure authentication across multiple
services with a single authenticator. Although based on an easy-to-
understand concept – that of challenge response –, FIDO defines
a large ecosystem of components across multiple domains, which
makes it difficult for developers to understand its internals. This
complexity is usually hidden from developers behind an API, such
is the case of WebAuthn javascript API.

https://doi.org/10.1145/3465481.3469209
https://doi.org/10.1145/3465481.3469209

ARES 2021, August 17–20, 2021, Vienna, Austria Athanasios Grammatopoulos et al.

FIDO’s ecosystem stretches from secure hardware FIDO authen-
ticator devices that clients possess, all the way up to full scale
cloud-based FIDO servers offering registration and authentication
services. Looking at the client side, FIDO’s Client to Authenticator
Protocols (CTAP1 and CTAP2) define how devices can communicate
with FIDO compatible authenticators. FIDO Universal Authentica-
tion Framework (UAF) describes how a FIDO UAF server should
communicate with client devices (usually a mobile phone with a
fingerprint sensor) to offer password-less authentication using bio-
metrics. Lastly, themore recent FIDO2, improves the older Universal
2nd Factor (U2F) authentication, and through WebAuthn javascript
API and server side WebAuthn libraries or services, brings FIDO to
the web.

Due to the relative recent standardization of WebAuthn, the
scientific literature lacks papers and works on the field of devel-
oping and testing FIDO2 implementations. Up until now, related
work in the field, comes in the form of i) demo WebAuthn websites
and ii) "offline" decoder tools. Demo WebAuthn websites (such as
[20]) mostly showcase the FIDO2/WebAuthn processes, while some
of them reveal parts of their own parameters or the returned re-
sponse (like the interactive WebAuthn debugger [19] and the work
of [17][18]). Such demo applications, can be used to test the client-
side implementations, demonstrating that the FIDO2 technology is
currently available, rather than serve as tools designed for devel-
opers to test or debug server-side FIDO2 implementations. Apart
from demos, some developer tools to analyse WebAuthn traffic
(usually called “debuggers”) can be found online. Such tools, take as
an input a JSON version of the whole WebAuthn response or just a
Base64 representation of the values and decode it (for example the
WebAuthn Previewer [21][22] or the fido2viewer [23]), that can be
used by developers to unpack, decode or even validate WebAuthn
traffic, though the capturing and analysis has to be done manually.

The paper aims to introduce a novel methodology to capture
and analyse FIDO2/WebAuthn requests and responses, as well as a
technical implementation of our approach, providing the develop-
ers with the right tools to deep inspect WebAuthn traffic. Our work
allows for instant inspection of theWebAuthn parameters passed to
the authentication (essential for validation of the information given
by the FIDO2 server), deep decoding and analysis of the WebAuthn
response from the authenticator (facilitating faster debugging of
WebAuthn processes at the browser level), features a novel virtual
FIDO2 authenticator (to allow for platform independent WebAuthn
response simulation for implementation testing), as well as a We-
bAuthn playground with the ability to generate custom WebAuthn
requests (for experimentation and getting familiar with WebAuthn
API).

The rest of the paper is organized as follows. In Section 2 the
foundations of the FIDO2 and WebAuthn protocols is summarized,
while in Section 3 details the proposed WebAuthn analyzed web
tool. The capabilities of the tool and its user interface is presented
in Section 4. The paper concludes with Section 5, along with a brief
overview of the future work.

2 BACKGROUND
FIDO2 at its core uses a challenge-response scheme based on public
key cryptography. The server (relying party) prepares a challenge

in the form of a random value and forwards it to the client. The
client has to sign this challenge with his private key and send the
signature back to the server, to prove his identity. Then, the only
thing left to be done is for the server to verify the authenticity of
the signature using the public key of the user. Obviously, prior to
the execution of the challenge response scheme, the server would
need to be in possession of the client’s public key. A brief overview
of the described scheme is shown in Figure 1. The concept idea
is quite simple, though a lot more are hidden behind the scenes
(uncovered at a later section) to ensure the security of the scheme,
compatibility, and ease of use of FIDO.

2.1 FIDO2 in web application
Through the WebAuthn javascript API, web applications are able to
request, from the browser and the underlying operating system, cre-
dentials creation (public key pair generation) as well as credentials
retrieval (proof of secret key possession). The credentials creation
method (accessible through window.navigator.credentials.create),
from the Credentials Management draft spec, and the public key
options, defined at the WebAuthn spec [7], allow the creation of
asymmetric cryptography keys (e.g. ECDSA key-pairs) bonded to
the caller web application’s domain (replay party id) and a user
identifier (user handle) linking the credentials with an account. On
the other hand, through the corresponding credential get method
(accessible through window.navigator.credentials.get) and its public
key options, web applications can verify the client’s possession of
previously created credentials (key-pairs) by requesting the genera-
tion of a random challenge’s signature and thus verify the identity
of a user (through a challenge response scheme). The procedure is
illustrated in Figure 2.

A typical use case of FIDO2, using the javascript methods men-
tioned above, is online password-less authentication, or in other
words, the secure login of a user into a website without the use of
a secret password. To start the process, the user loads the website
through a WebAuthn compatible browser and selects to login with
FIDO. The website’s backend generates a random high entropy chal-
lenge (usually 128 bits or more, as suggested by the specification)
and communicates it with the website’s frontend. The frontend is
then able to invoke theWebAuthnwindow.navigator.credentials.get
javascript method to request from an authenticator to sign the
challenge. The browser then sends the challenge along with the
website’s domain name (replying party id) to the available authenti-
cator devices for signing if an authenticator has a stored key for the
website in question. Depending on the system and the support, the
browser may contact the authenticator devices directly through the
CTAP2 protocol or call custom OS WebAuthn methods. Eventually
the browser gets a response that then parses and forwards to the
corresponding javascript handler. The response includes the identi-
fier of the key used for generating the signature (credentials id), the
actual signature, the data structure used to generate the signature
as reported by the authenticator, a user identifier (user handle), a
signature counter and several flags. The website’s frontend then
sends the response data to its backend (the web application server)
for verification. Upon successful verification the user is logged in
and his session (usually implemented using cookies) is updated.
Figure 2 shows the described process as a diagram.

A web tool for analyzing FIDO2/WebAuthn Requests and Responses ARES 2021, August 17–20, 2021, Vienna, Austria

Figure 2: FIDO2/WebAuthn client authentication flow using credentials.get.

The use case described above assumes that authenticator sup-
ports resident keys (also called discoverable credentials) and can
report back the user identifier (user handle). To support older U2F
authenticators or avoid storing information on the authenticator
device, web pages may store previously used user identifiers as
cookies or at the local storage of the browser and include them
at the initial challenge creation request, then the server will re-
turn along with the challenge, a list of credential ids registered
for this user. This list could then be added on the invocation of
the WebAuthn window.navigator.credentials.get. A similar process
can be used for second factor authentication flows, as the user’s
identifier is already known through the user’s session. Thus, a true
password-less authentication without need to provide a username
or a password, requires information to be stored on the authentica-
tor device which may increase the cost of the authenticator, limits
the maximum number of keys that can be generated and needs key
management utilities (to be able to remove stored keys that are not
needed any more). On the other hand, password-less authentication
that requires the knowledge of an account’s identifier (e.g., user-
name), does not share such limitations, as the information can be
wrapped securely and stored at the relying party’s server (through
server-side credential storage modality).
Before being able to use FIDO2’s authentication process, clients
would need to register an authenticator device with the relying
party server. During the registration process, the client can generate
a public-private key pair supported by the replying party server and
send the public key as well as a credentials identifier to the server,
to be saved linked with the client’s account. Usually, to register an
authenticator the client should already be logged into the website,
thus a session linked to an account would already be set up. The
registration process starts with a request for a challenge generation
by the server for credentials creation. In most cases the server will
return not only a random challenge, but also a user handle linked to
the user’s account, a list of supported credentials types (e.g. ECDSA
or, RSASSA-PSS or RSASSA-PKCS1-v1.5), authenticator filtering
criteria (e.g. allow only external authenticators), a list of already
registered credentials (in order to exclude already registered authen-
ticators) and the server’s preference for authenticator attestation
(whether to request information about the authenticator device
used). These parameters can be used as options when calling the
window.navigator.credentials.create javascript method (as defined
by the WebAuthn specification) to request credentials creation.

After the credentials creation of an authenticator device finished
successfully, the browser will return the created credentials to the
javascript handler. The response includes the generated creden-
tials identifier, the generated public key, the challenge generated
by the server and device attestation data (e.g. a device certificate).
The received data are forwarded to the relying party server. Upon
receiving the data, the server will first validate the provided infor-
mation and then store at least the credentials identifier and the
public key under the account the challenge was generated. The
described process as a diagram can be seen in Figure 3.

2.2 Security Mechanics
WebAuthn is phishing resistant as its methods do not allow cross
domain credentials access unless they are created under the same
top domain. This is achieved through the web browser’s validation
of the relying party id of the request which should be the domain
name of the website (note that authenticator devices should bind
the credentials with the relying party id and the user handle).

To ensure the integrity and the confidentiality of the processes
described above, web browsers expose the WebAuthn API only
under secure context (web pages loaded under HTTPS) except
for localhost for development purposes. By requiring HTTPS, the
browser can verify the authenticity of the server and thus mitigate
man-in-the-middle attacks at the network traffic level.

The server has to verify a number of information apart from the
signature, in order to validate the correct execution of the process.
First, the challenge returned should match the one generated by the
server. To ensure the use of a correct key, the credential identifier
returned should be already registered to the user and bind under
the user identifier received (if one was returned). In the case of
challenge generation for a specific user (U2F or second factor), the
user id should be saved with the challenge and cross checked after
the response. Additionally, since challenges are generated for use
within a limited time frame, the server should expire unused active
challenges. To protect users against cloned authenticator devices,
the server may also save for each credentials the signature counter
and ensure that for every authentication procedure this number
increases. Lastly, the server may check the flags returned by the
authenticator and check for example whether the authenticator
requested an interaction by a user. Authenticator attestation data
can be used to check the authenticator devices in various ways, for

ARES 2021, August 17–20, 2021, Vienna, Austria Athanasios Grammatopoulos et al.

Figure 3: FIDO2/WebAuthn authenticator device registration flow using credentials.create.

example, to identify and unregister authenticators that were found
to be vulnerable or to whitelist only trusted authenticator devices.

As one can see, FIDO2/WebAuthn servers must take into consid-
eration several things in order to correctly validate a response. That
complexity makes it difficult to develop FIDO2 services without
the use of a FIDO2 server or a FIDO2/WebAuthn library. However,
even with the use of 3rd party software to handle the verification
process, still, the service may be left vulnerable to attacks due to
poor or faulty configuration. It is thus essential for the developers
to deeply understand how FIDO2 and WebAuthn works internally,
to deploy such solutions even if a 3rd party library or a server is
handling the registration and authentication flows.

3 WEBAUTHN ANALYSERWEB TOOL
In this section, we will describe our novel tool to capture
FIDO2/WebAuthn requests and responses, for analysis and hu-
man inspection. Through our implementation, one can get familiar
with the WebAuthn javascript API as well as to test and analyze
responses from real FIDO authenticator implementations. The Web-
DevAutn tool, showcased in Figure 3, consists of the following main
modules:

• the Hijacker in the form of an extension or a developer script,
• the External Communication Manager, used to pipe data
between the hijackers and the analyzers,

• the Credentials Manager module, tasked to manage creden-
tials needed across the other modules,

• the Credentials Creation analyser module, that allows the
creation of credentials creation requests and the analysis of
creation requests and responses,

• the Credentials Get analyser module, thought which one
may invoke custom credentials get requests and inspect the
analysed get requests and responses,

• the Virtual Authentication, able to create and retrieve virtual
keys for cross domain use and authenticator simulation.

3.1 Hijacker
To analyze the WebAuthn requests at the browser level, developers
normally must implement such a functionality manually for each
webpage, by editing the appropriate part of the code that initiates
the WebAuthn requests and display or print variables for inspec-
tion. As this approach directly involves editing the application’s
code, as shown in Figure 4, makes it difficult, impractical and time

Figure 4: Code flow of an application calling the credentials
createmethod. Any analysis will have to be implemented on
the application’s main code.

consuming increasing the debugging time and complexity. On top
of that, such a manual debugging method lacks advanced analysis
features (e.g., values decoding and unpacking), and to make mat-
ters worse, the debugging code in most cases is not portable and
has to be adjusted or ported if one wants to reuse it on other web
applications. To solve the above-mentioned problems, we propose
an alternative, practical approach that does not require editing the
application’s main logic code (avoid affecting the application’s func-
tionalities) and speeding up the overall debugging and analysis of
WebAuthn. Our approach can be deployed as a browser extension
or a javascript script included on the web application of interest.

Through hijacking one can intercept the function calls, process
the information passed to the methods, forward (if needed) the
request to the real handler (by calling the original function) or even
process the returned results before returning them to the caller.
In our case, we are looking into hijacking the two (2) WebAuthn
methods of interest, credentials create, and credentials get. We
must note that these methods are asynchronous and will return
a javascript promise, meaning that the WebAuthn response will
not be returned instantly, thus we will have to bind a function
to handle the response when the promise is fulfilled. Since our
aim also includes the meaning less interaction with the already in
place application code, our hijacking code will have to simulate
the behaviour of the original methods. To analyse the responses,
our hijacking code will have to return a new promise and handle

A web tool for analyzing FIDO2/WebAuthn Requests and Responses ARES 2021, August 17–20, 2021, Vienna, Austria

Figure 5: Analyse data through method hijacking code injection and cross domain web page communication.

Figure 6: Proposed code flow of an application calling the credentials create method through hijacking. The analysis of the
traffic can be implemented independently from the application code flow on a separate website.

the promise returned by the original method call, which then will
forward through fulfilling the created promise.
In our implementation, the Hijacker module is responsible for in-
tercepting WebAuthn calls and redirecting them towards the ap-
propriate Analyser module. To bypass cross domain restrictions
and be able to analyse requests of 3rd party WebAuthn implemen-
tations hosted under different domains of our tool, we developed
a browser extension that injects the Hijacker’s custom javascript
code, that once deployed on the target website hijacks and forwards
WebAuthn credentials create and get requests and/or responses to
our web tool. Alternatively, the Hijacker’s code can be injected
manually on the web page through the web browser’s developer
tools javascript console or be inserted as a web page script on de-
velopment instances of a web application (if the developer can edit
the applications front end code).

3.2 External Communication Manager
To be able to present the traffic and the analysis on a graphical
interface without affecting the underlining web application that
we are inspecting, the captured information is piped to our ana-
lyzer located on another web site context, as shown in Figure 5.

The External Communication Manager ensures this cross-website
communication using appropriate methods (message posting [8])
and appropriate data serialize/deserialise. The overall flow of the
code, based on our suggestion is shown on Figure 6.

3.3 Analyser Modules
The analysis of the traffic, as shown in Figure 5, can be executed
both on the supplied parameters (request) and on the returned
data (response) and for both credentials creation and credentials
get processes. An analysis of the request parameters can give an
insight into what exactly the web application is going to request
from the WebAuthn method. The analyser code may try to decode
the supplied WebAuthn options (public key credentials creation
[9] or get options [10]) based on the WebAuthn specification. The
analyser may print information such as the relying party id, the
challenge generated by the server, as well as any timeout option
passed. Specifically, for credential creation requests, the analyser
may also print any authenticator selection criteria (e.g., platform
authenticators only), the user identifier, attestation preference (e.g.,
indirect attestation), the ids of the already generated credentials, or
even the credentials properties defined by the server (e.g., accepted

ARES 2021, August 17–20, 2021, Vienna, Austria Athanasios Grammatopoulos et al.

credentials algorithms). Similarly, for credentials get requests, the
analyser could print any allowed credentials id or any user’s verifi-
cation preference (e.g., user verification discouraged).

Although the analyser may be helpful for inspecting the request
parameters, it can play an even more essential role in analysing
the request responses. Through the analysis of responses, it could
process the packed information and decode them into a human-
readable form. To start with, for both types of responses (creation
and get), the analyser will be able to decode and present the client
data that wraps the server’s challenge and the request’s type and
origin. For credential creation responses, it will be able to unpack
the attestation and return the generated credentials public key as
well as the provided attestation data (e.g., the device’s certificate).

3.4 Credential Manager
The Credentials Manager module stores and retrieves credentials
between the analyser’s modules. Additionally, it lets the user view
information of credentials generated through the tool and allows
the user to delete information of credentials that are not needed
any more. An example of the presented information, for a key pair
is displayed on Table 1. The tool stores the key id – an identifier
linked to the created public private key pair – returned by the
authenticator (this piece of information is needed in many cases,
depending on the authenticator implementation, for the credentials
get options generation), the user handle – an identifier linked to the
user’s account – defined on the passed options by the relying party
and the origin under which the credentials were created (as we will
explain later, our tool can generate credentials for cross domain
application debugging). This credential information is saved on
the browser’s local Storage and are retrieved by javascript when
needed.

3.5 Credentials Creation Analyser Module
The credentials creation analyser module presents a friendly user
interface – featuring commonly used interface elements such as text
inputs, dropdowns, tabs etc. – through which users can craft custom
WebAuthn credentials creation request options. The crafted request
options are printed on the page and could be analysed before for-
warding them through the WebAuthn navigation.credentials.create
method invocation. After the successful execution of the creden-
tial’s creation method, the credentials response object returned is
analysed by the tool and it is presented to the user. The analysis
of the response includes the unpacking and decoding of packed
and encoded fields respectively, to human readable formats. The
analysis of both the credentials creation options and the creden-
tials response object can be used by developers to understand how
FIDO2/WebAuthn credentials creation and authenticator device
registration works internally. Additionally, developers can craft spe-
cific creation options for testing a particular authenticator or how a
particular system handles the requests. In this concept, developers
may also inspect the analysed response of a specific authenticator
and possibly identify problems or incompatibilities (e.g., identify
authenticator’s attestation format that may not be supported by
their backend FIDO2/WebAuthn implementation).

Figure 7: Technical implementation code flow for creden-
tials create & get modules.

3.6 Credentials Get Analyser Module
The credentials get analyser module follows the same approach
to the credential’s creation page, as shown in Figure 7 for both
modules. This module features a similar interface through which
users may craft custom WebAuthn credentials get request options
according to their needs. Just like the credentials creation module,
the generated options are printed on the web page in a human
friendly format for inspection by the user. These options can then
be used to invoke the WebAuthn navigation.credentials.get method.
The credentials response object returned by the browser is analysed
by the tool and it is presented to the user, following the successful
retrieval of the credentials get assertion. Just like before, the in-
depth analysis of the response includes the unpacking and decoding
of packed and encoded fields into human readable formats for ease
of use (e.g., expose the authenticator counter).

Our tool’s credentials get module’s functionalities can be used by
developers to understand the FIDO2/WebAuthn credential posses-
sion assertion and user authentication process, as our tool exposes
all the information exchanged between a relying party and an au-
thenticator device. On top of that, the tool lets developers tweak
the credentials get options and live test their authenticator devices
as well as the underlying client system’s behaviour.

3.7 Virtual Authenticator
FIDO authenticators can be categorized based on their type into
two categories, platform authenticators and cross-platform authen-
ticators. Cross platform authenticators are external devices that
connect with the system through USB, NFC or Bluetooth (e.g., USB
Keys or NFC Keys) and communicate through FIDO’s CTAP1 and
CTAP2 protocols. On the other hand, platform authenticators are
embedded into the system (e.g., Android internal authenticator,
Windows Hello authenticator) and may communicate with applica-
tions directly through the underlined system’s calls and libraries
(e.g., Microsoft WebAuthN Win32 headers [11]). Whichever the
type of an authenticator, the device should be able to protect the
private keys so that they cannot be extracted by an adversary that
may have physical access to it.

A web tool for analyzing FIDO2/WebAuthn Requests and Responses ARES 2021, August 17–20, 2021, Vienna, Austria

Figure 8: Technical implementation code flow for creden-
tials create & get modules by using a virtual authenticator
embedded on the analyser.

To allow our web tool to create credentials for requests originat-
ing from different domains, we needed a software authenticator
device, accessible through our tool’s website without restrictions,
and able to answer WebAuthn (including cross origin) requests
with valid responses. We needed the responses to be WebAuthn
compatible so that we could forward them to 3rd party FIDO2 reg-
istration and/or authentication services as if they were crafted by a
WebAuthn compatible web browser, as described in our methodol-
ogy. The implementation of such a virtual authenticator will enable
full handle or external applications requests and new code flows as
shown in Figure 8.

To overcome any limitation placed either by the browser’s se-
curity or the operating system’s type, we based our virtual device
on javascript, making it able to run seemingly on our analyser’s
web page context provided that the browser supported the Web
Cryptography API [12]. Thus, our implementation can run on any
modern browser. The use of the web browser’s cryptography API al-
lows the fast operation of the authenticator without any noticeable
delay.

The virtual authenticator was initially developed as a supported
mobile for WebDevAuthn, additionally, due to the portability of the
code, it can also be used for malicious purposes, for example after
exploiting a XSS vulnerability on a web application, to generate and
bind additional custom authenticator devices under victim account,
that could later be used as a backdoor or for 2nd factor bypassing.

3.7.1 Credentials. In terms of public keys generation, our virtual
authentication implementation is currently able to generate and use
Elliptic Curve Digital Signature Algorithm (ECDSA) with Secure
Hash Algorithm (SHA) 256 keys (ES256, registered in the IANA
COSE Algorithms [13] registry with the code -7) for signing. It
can be easily upgraded to support other algorithms – since several
asymmetric encryption algorithms are supported by Web Cryp-
tography API – such as the ES256 for compatibility with legacy
services, or with bigger hash size as the ES384 and the ES512 for
increased security.

3.7.2 Key Wrapping. To support an unlimited number of keys
and also eliminate the need for large storage resources on the
authenticator device, authenticators may secure wrap information
that could be used to recover the generated credentials and return it
to the FIDO2/WebAuthn server as a key id. During authentication,
the relying party server will return several key ids registered and
thus the authenticator will be able to recover the private key needed
to sign the challenge. This approach cannot be used for discoverable
credentials (through resident keys creation), as for those the relying
party server will not return any key id. Many security FIDO2/FIDO-
U2F key manufacturers are using this approach so that the keys do
not run out of storage. This is mostly preferred for second factor
authentication (FIDO U2F) since the user is already logged in and
the relying party can easily retrieve the key ids associated with the
user’s account.

For our virtual authenticator implementation, to eliminate the
need for storing the private key, we are wrapping it (along with
other authenticator data) in an AES-GSMwith a 256-bit key size. To
ensure the recovery of the private key, the recovery of the virtual
authenticator state and the future compatibility of the generated
credentials, the following information are wrapped to generate the
key id:

• Authenticator Format Version (currently 1)
• Relying Party ID (the id given during credentials creation)
• User Handle (the user id given during credentials creation)
• Credentials Algorithm Code
• Private Key Values
• Credentials Creation Date

3.7.3 Signature Counter Simulation. To generate a valid attestation
response, our authenticator should be able to generate signature
counter values, each one always greater than the last one, otherwise
the relying party server may flag the authenticator device as cloned.
Since our virtual authenticator does not feature a storage to save
its state, the signature counter had to be implemented in another
way. For this reason, our implementation calculates the signature
counter based on the client’s machine time. Specifically, we set as a
point of reference the credentials creation date (therefore wrapped
inside the credentials id value) and we assume that the counter
increases by 1 value every 250 milliseconds (arbitrarily chosen),
thus the counter will overflow (and consequently be invalidated)
about 34 years after its creation, which we found to be reasonable.

3.7.4 Authenticator’s Master Key. Our implementation accepts a
custom secret during initialization that is used to generate the au-
thenticator’s master key. To generate this strong master key, the
given secret is passed through a Password-Based Key Derivation
Function 2 (PBKD2) using SHA-256 and enough iterations. The
master key is used by the authenticator as a key to the AES-GSM
for the private key wrapping. Additionally, initialising the authen-
ticator with another custom secret will result in generating a new
authenticator device, able to be used on the same accounts as other
instances of our virtual authentication.

4 PROPOSED TOOL EVALUATION
We tested our tool by using it in many cases for our research on
FIDO. We found it to be helpful, especially during the development

ARES 2021, August 17–20, 2021, Vienna, Austria Athanasios Grammatopoulos et al.

Table 1: Compatibility of our virtual authenticator implementation with popular demo FIDO2/WebAuthn web applications.

of FIDO2/WebAuthn solutions (whether they are just an applica-
tion featuring WebAuthn authentication or a fully featured FIDO2
server), when testing existing solutions as well to demonstrate and
explain the FIDO/WebAuthn internals to fellow developers and
students.

4.1 Use Case A: Getting familiar with
WebAuthn API

We used our web tool as a playground for developers interested in
password-less authentication, to create custom WebAuthn requests
and understand the authenticator responses. Since our implemen-
tation features a virtual authenticator, it can be used by developers
without FIDO2, FIDO U2F or platform authenticators.

The new members of the team were able to select and configure
various request options from the tool’s UI, as shown on Figure
9. The options of preference could then be used to automatically
generate the corresponding WebAuthn request API call code [14].

The generated code can then be used to invoke WebAuthn, and
request response from an authenticator device. For example, a cus-
tom credentials create request can be launched and the tool will
retrieve and analyse the newly created credentials, as presented on
Figure 10. Since our web tool features both a credentials creation
playground and a credentials retrieval one, which both features a
simple user interface and appropriate analysis of the requests and
responses, the developers were able to play with both credentials’
creation and get.

4.2 Use Case B: Testing Analyser & Virtual
Authenticator

We used our web tool during the development of our experimental
demo FIDO2 web application, for debugging the implementation.
We found our tool’s virtual authenticator to work with the certi-
fied Strongkey FIDO2 server [15] and with an experimental FIDO2
server we are developing based on Yubico’s FIDO2 python library
[16]. To further validate our web tool and its virtual authenticator
device, we also tested it on a number of demos webauthn applica-
tions publicly available online. Table 1 lists the publicly available
demo websites that we tested our virtual authenticator on.

Our analyser in combination with our virtual authenticator was
found to work with most implementations. During the development
of our FIDO implementations, we found our tools ability to anal-
yse the WebAuthn traffic helpful for debugging and validating the
correct behaviour or the system. Our tool’s virtual authenticator
was proved to be handy for testing implementations even without
a FIDO2 authenticator. By tweaking the configuration of the tool’s
authenticator, we were also able to reproduce bugs and test our
systems response under specific inputs. The only incompatibilities
found are associated with the server’s backend not supporting our
virtual authenticator’s self-signed packed attestation.

5 CONCLUSIONS
The paper presented a methodology to analyse WebAuthn requests
and responses by injecting javascript code into the web application
to be debugged, hijacking the WebAuthn methods, and forward-
ing it to our analyser, in a non-invasive way without affecting the
application code flow. The introduced methodology, and thus our
technical implementation, can be used by developers to analyse the
WebAuthn traffic of their applications and possibly speed up the
debugging process as it will provide direct insight into the informa-
tion which is packed inside the WebAuthn requests and responses.
Thus, we stress that the work presented will help developers get fa-
miliar with and understand deeply the FIDO2/WebAuthn javascript
requests and responses. The presented technical implementations
and the associated analysis proved that our tool is compatible with
every implementation of FIDO2/WebAuthn we tested. The proto-
type virtual authenticator implementation was found to work with
many FIDO2/WebAuthn backends and any incompatibility was
associated with the server backends’ support of FIDO2/WebAuthn
attestation formats and policies.

The tool presented in this paper is an ongoing work. Future de-
velopments and testing will be focused on more attestation formats
decoding and more attestation certificates. Additionally, the tool
will be upgraded to allow on the fly edits of the requests and the
responses through an easy interface, as now this functionality is
only available by accessing the data objects from the javascript con-
sole. This would allow the easier testing of FIDO2 implementations
as testers will be able to alter the requests and the responses sent

A web tool for analyzing FIDO2/WebAuthn Requests and Responses ARES 2021, August 17–20, 2021, Vienna, Austria

Figure 9: Credential’s creation options user interface (left) and Credential’s creation options generated through user interface
(right).

ARES 2021, August 17–20, 2021, Vienna, Austria Athanasios Grammatopoulos et al.

Figure 10: Credentials creation response generated through user interface on virtual authenticator.

to the server. For the same reasons, we are planning to upgrade
our virtual authenticator implementation, extending the support
of asymmetric cryptography algorithms, including quantum resis-
tant algorithms to provide a future-proof proof-of-concept FIDO2
authenticator.

ACKNOWLEDGMENTS
This research has been partially funded by the European projects:
the Greek national project NetPHISH (Operational Programme
Competitiveness, Entrepreneurship, and Innovation 2014-2020
(EPAnEK) - T1E∆K-05112) and INCOGNITO (Horizon H2020 Frame-
work Programme of the European Union under Grant Agreement
ID 824015). Furthermore, we would like to thank all the members
of the Systems Security Laboratory (SSL) of the University of Pi-
raeus, for their testing and feedback on improving the technical
implementation featured in this paper.

REFERENCES
[1] .M. Bromiley, “Bye Bye Passwords: New Ways to Authenticate,” SANS Report,

July 2019, https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE3y9UJ
[2] A. Angelogianni, I. Politis, F. Mohammadi and C. Xenakis, "On Identifying Threats

and Quantifying Cybersecurity Risks of Mnos Deploying Heterogeneous Rats,"
in IEEE Access, vol. 8, pp. 224677-224701, 2020.

[3] FIDO Alliance - Open Authentication Standards More Secure than Passwords,
https://fidoalliance.org/

[4] K. Papadamou et al., "Killing the Password and Preserving Privacy With
Device-Centric and Attribute-Based Authentication," in IEEE Transactions
on Information Forensics and Security, vol. 15, pp. 2183-2193, 2020, doi:
10.1109/TIFS.2019.2958763.

[5] M. Jones, R. Lindemann, A. Kumar, J. Hodges, J.C. Jones, H. Liao, A. Czeskis, E.
Lundberg and D. Balfanz, “Web Authentication:An API for accessing Public Key
Credentials Level 1,” W3C Recommendation, March 2019, https://www.w3.org/
TR/2019/REC-webauthn-1-20190304/

[6] A. Simons, “A breakthrough year for passwordless technology,” Microsoft Ar-
ticle, December 2020, https://www.microsoft.com/security/blog/2020/12/17/a-
breakthrough-year-for-passwordless-technology/

[7] M. West, “Credential Management Level 1,” W3C Working Draft, January 2019,
https://www.w3.org/TR/2019/WD-credential-management-1-20190117/

[8] Window.postMessage() - Web APIs | MDN, https://developer.mozilla.org/en-
US/docs/Web/API/Window/postMessage

[9] PublicKeyCredentialCreationOptions - Web APIs | MDN, https://developer.
mozilla.org/en-US/docs/Web/API/PublicKeyCredentialCreationOptions

[10] PublicKeyCredentialRequestOptions -Web APIs | MDN, https://developer.mozilla.
org/en-US/docs/Web/API/PublicKeyCredentialRequestOptions

[11] Microsoft, “Win32 APIs for WebAuthN standard”, GitHub Repository, October
2018, https://github.com/microsoft/webauthn

[12] Mark Watson, “Web Cryptography API,” January 2017, https://www.w3.org/TR/
2017/REC-WebCryptoAPI-20170126/

[13] CBOR Object Signing and Encryption (COSE), https://www.iana.org/
assignments/cose/cose.xhtml

[14] Dirk Balfanz, Alexei Czeskis, Jeff Hodges, J.C. Jones, Michael B. Jones, Akshay
Kumar, Angelo Liao, Rolf Lindemann, and Emil Lundberg. 2019. Web Authenti-
cation: An API for accessing Public Key Credentials Level 1 . Technical Report.
https://www.w3.org/TR/webauthn

[15] StrongKey, “Open-source FIDO server, featuring the FIDO2 standard”, GitHub
Repository, October 2019, https://github.com/StrongKey/fido2

[16] Yubico, “Python FIDO2 - Provides library functionality for FIDO 2.0, including
communication with a device over USB.”, GitHub Repository, October 2018,
https://github.com/Yubico/python-fido2

[17] M. R. Dourado, M. Gestal, and J. M. Vázquez-Naya, “Implementing a Web Ap-
plication for W3C WebAuthn Protocol Testing,” Proceedings, vol. 54, no. 1, p. 5,
Aug. 2020 [Online]. Available: http://dx.doi.org/10.3390/proceedings2020054005

[18] M. Rivera, “WebAuthn Authenticator Debugging Tool,” DebAuthn. [Online].
Available: https://debauthn.tic.udc.es/. [Accessed: 06-Jun-2021]

[19] Auth0 Inc., See your WebAuthn config in action. [Online]. Available: https://
webauthn.me/debugger. [Accessed: 06-Jun-2021]

[20] N. Steele, “A demonstration of the WebAuthn specification,” WebAuthn.io. [On-
line]. Available: https://webauthn.io/. [Accessed: 06-Jun-2021]

[21] M. Miller, “MasterKale/webauthn-previewer,” GitHub. [Online]. Available: https:
//github.com/MasterKale/webauthn-previewer. [Accessed: 06-Jun-2021]

[22] M. Miller, “WebAuthn Debugger,” SimpleWebAuthn. [Online]. Available: https:
//debugger.simplewebauthn.dev/. [Accessed: 06-Jun-2021]

[23] S. Weeden, “sbweeden/fido2viewer,” GitHub. [Online]. Available: https://github.
com/sbweeden/fido2viewer. [Accessed: 06-Jun-2021].

https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE3y9UJ
https://fidoalliance.org/
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/
https://www.microsoft.com/security/blog/2020/12/17/a-breakthrough-year-for-passwordless-technology/
https://www.microsoft.com/security/blog/2020/12/17/a-breakthrough-year-for-passwordless-technology/
https://www.w3.org/TR/2019/WD-credential-management-1-20190117/
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/PublicKeyCredentialCreationOptions
https://developer.mozilla.org/en-US/docs/Web/API/PublicKeyCredentialCreationOptions
https://developer.mozilla.org/en-US/docs/Web/API/PublicKeyCredentialRequestOptions
https://developer.mozilla.org/en-US/docs/Web/API/PublicKeyCredentialRequestOptions
https://github.com/microsoft/webauthn
https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126/
https://www.w3.org/TR/2017/REC-WebCryptoAPI-20170126/
https://www.iana.org/assignments/cose/cose.xhtml
https://www.iana.org/assignments/cose/cose.xhtml
https://www.w3.org/TR/webauthn
https://github.com/StrongKey/fido2
https://github.com/Yubico/python-fido2
http://dx.doi.org/10.3390/proceedings2020054005
https://debauthn.tic.udc.es/
https://webauthn.me/debugger
https://webauthn.me/debugger
https://webauthn.io/
https://github.com/MasterKale/webauthn-previewer
https://github.com/MasterKale/webauthn-previewer
https://debugger.simplewebauthn.dev/
https://debugger.simplewebauthn.dev/
https://github.com/sbweeden/fido2viewer
https://github.com/sbweeden/fido2viewer

	Abstract
	1 INTRODUCTION
	2 BACKGROUND
	2.1 FIDO2 in web application
	2.2 Security Mechanics

	3 WEBAUTHN ANALYSER WEB TOOL
	3.1 Hijacker
	3.2 External Communication Manager
	3.3 Analyser Modules
	3.4 Credential Manager
	3.5 Credentials Creation Analyser Module
	3.6 Credentials Get Analyser Module
	3.7 Virtual Authenticator

	4 PROPOSED TOOL EVALUATION
	4.1 Use Case A: Getting familiar with WebAuthn API
	4.2 Use Case B: Testing Analyser & Virtual Authenticator

	5 CONCLUSIONS
	Acknowledgments
	References

