
Propositional Logic - Part 2

Artificial Intelligence Propositional Logic - Part 2 1 / 70



Outline

In this lecture we will present algorithms for two problems:

Satisfiability (SAT)
Given a propositional logic sentence ϕ, is it satisfiable?

Entailment
Given a propositional knowledge base KB and a propositional logic
sentence α, do we have KB |= α?

Artificial Intelligence Propositional Logic - Part 2 2 / 70



The algorithm TT-Entails

We start with the algorithm TT-Entails for the entailment problem.

TT-Entails performs a recursive enumeration of the finite number of
assignments of truth values true and false to the symbols of the given
sentence (i.e., it is a truth-table enumeration algorithm).

TT-Entails is sound because it implements directly the definition of
entailment, and complete because it works for any KB and α and always
terminates (since there only finitely many interpretations to examine).

Artificial Intelligence Propositional Logic - Part 2 3 / 70



The algorithm TT-Entails (cont’d)

Artificial Intelligence Propositional Logic - Part 2 4 / 70



The algorithm TT-Entails (cont’d)

Important note: the term model, as used in TT-Entails (and Section
7.4.4 of the book), is essentially the term interpretation of my previous
lecture. I have used the term model in a different way: a satisfying
interpretation!

TT-Entails is a model checking algorithm because it enumerate all
possible models of KB and checks whether they are also models of α.

In TT-Entails, the function PL-True?(KB,model) returns true if the
sentence KB is satisfied by the interpretation model .

The variable model represents a partial interpretation — an assignment of
truth values true or false to some of the symbols.

The keyword and in the algorithm is an infix Boolean function symbol of
the pseudocode programming language, not an operator in propositional
logic.

Artificial Intelligence Propositional Logic - Part 2 5 / 70



Computational complexity of TT-Entails

TT-Entails has worst-case time complexity O(2n) where n is the
number of propositional symbols in KB and α. The worst-case space
complexity is O(n) because the enumeration is depth-first.

As we have already said, the entailment problem for propositional logic is
co-NP-complete. This means that every known inference algorithm
for propositional logic has a worst-case complexity that is
exponential in the size of the input.

Artificial Intelligence Propositional Logic - Part 2 6 / 70



Effective propositional model checking

We will now describe two families of efficient algorithms for SAT based on
model checking:

The Davis-Putnam algorithm which is based on backtracking search.

The WalkSat algorithm which is based on local hill-climbing search.

Artificial Intelligence Propositional Logic - Part 2 7 / 70



Effective propositional model checking (cont’d)

You should not be surprised by the fact that the algorithms that we will
discuss belong to the same families of algorithms that we saw for
constraint satisfaction problems (CSPs) given that SAT can be expressed
as a CSP as we discussed earlier.

The two algorithms that we will discuss are also important in their own
right because many combinatorial problems in Computer Science can
be reduced to checking the satisfiability of a propositional sentence.

Any improvement in satisfiability algorithms is expected to have
huge consequences for our ability to handle complexity in general.

Artificial Intelligence Propositional Logic - Part 2 8 / 70



A complete backtracking algorithm for SAT

The algorithm we will present is sometimes called the Davis-Putnam
algorithm since it was invented in 1960 by Martin Davis and Hilary
Putnam. The version we will present was described by Davis, Logemann
and Loveland in 1962, so we will use the acronym DPLL for it.

DPLL works with a sentence after transforming it in conjunctive normal
form (CNF) i.e., a set of clauses. It is essentially a depth-first enumeration
of possible models for the sentence.

However, DPLL goes beyond TT-Entails in three ways: early
termination, pure symbol heuristic and unit clause heuristic.

Artificial Intelligence Propositional Logic - Part 2 9 / 70



Improvements over TT-Entails

Early termination: The algorithm detects whether the sentence is
true or false, even with a partially completed model.

A clause is true if any literal is true; hence, the sentence as a whole
could be judged true even before the model is complete.
A sentence is false if any clause is false, which occurs when each of its
literals is false. Again, this can occur long before the model is complete.

Early termination avoids examination of entire subtrees in the search
space.

Artificial Intelligence Propositional Logic - Part 2 10 / 70



Improvements over TT-Entails (cont’d)

Pure symbol heuristic: A pure symbol is a symbol that always
appears with the same “sign” (i.e., positive or negative) in all clauses.
For example, in the three clauses

(A ∨ ¬B), (¬B ∨ ¬C ), (C ∨ A)

the symbols A and B are pure and C is impure.

Note that if a sentence has a model, then it has a model with the
pure symbols assigned so as to make their literals true, because doing
so can never make a clause false.

Artificial Intelligence Propositional Logic - Part 2 11 / 70



Improvements over TT-Entails (cont’d)

Pure symbol heuristic (cont’d):
Note also that in determining the purity of a symbol, the algorithm
can ignore clauses that are already known to be true in the model
constructed so far.

In the previous example, if the model contains B = false, then the
clause (¬B ∨ ¬C ) is already true, and in the remaining clauses C
appears only as a positive literal; therefore C becomes pure.

In the algorithm DPLL given below, the call to function
Find-Pure-Symbol returns a a symbol (or null) and the truth
value to assign to that symbol in order to make the corresponding
literals true.

Artificial Intelligence Propositional Logic - Part 2 12 / 70



Improvements over TT-Entails (cont’d)

Unit clause heuristic: A unit clause is a clause with just one literal.
In the context of DPLL, it also means clauses in which all literals but
one are already assigned to false by the model.

For example, if the model contains B = true, then (¬B ∨ ¬C )
simplifies to ¬C , which is a unit clause. Obviously, for this clause to
be true, C must be set to false. The unit clause heuristic assigns all
such symbols before branching on the remainder.

Artificial Intelligence Propositional Logic - Part 2 13 / 70



Improvements over TT-Entails (cont’d)

Unit clause heuristic (cont’d):
One important consequence of the heuristic is that any attempt prove
(by refutation) a literal that is already in the knowledge base will
succeed immediately.

Notice also that assigning one unit clause can create another unit
clause — for example, when C is set to false, C ∨ A becomes unit
clause, causing true to be assigned to A.

This cascade of forced assignments is called unit propagation.

In the algorithm DPLL given below, the call to function
Find-Unit-Clause returns a a symbol (or null) and the truth value
to assign to that symbol in order to make the corresponding unit
clause true.

Artificial Intelligence Propositional Logic - Part 2 14 / 70



The algorithm DPLL

Artificial Intelligence Propositional Logic - Part 2 15 / 70



Improvements to DPLL

The following techniques can be used to speed up DPLL, and SAT
solvers in general, significantly (some of them we have seen earlier e.g.,
for CSPs):

Component analysis: As DPLL assigns truth values to variables, the
set of clauses may become separated into disjoint subsets, called
components, that share no unassigned variables. Given an efficient
component detection algorithm, a solver can gain considerable speed
by working on each component separately.

Variable and value ordering: The above implementation of DPLL
uses an arbitrary variable ordering and always tries the value true
before false. The degree heuristic suggests choosing the variable
that appear most frequently in the remaining clauses.

Artificial Intelligence Propositional Logic - Part 2 16 / 70



Improvements to DPLL (cont’d)

Intelligent backtracking: All SAT solvers that do intelligent
backtracking use some form of conflict clause learning to record
conflicts so that they won’t be repeated later in the search. Usually, a
limited-size conflict set is kept, and rarely used conflicts are dropped.

Random restarts: Sometimes a run appears not to be making
progress. In this case, we can start over from the top of the search
tree, rather than trying to continue. After restarting, different random
choices (in variable and value ordering) are made. Conflict clauses
that are learned in the first run are retained after the restart and can
help prune the search space.
Restarting does not guarantee that a solution will be found faster, but
it does reduce the variance on the time to solution.

Artificial Intelligence Propositional Logic - Part 2 17 / 70



Improvements to DPLL (cont’d)

Clever indexing: The speedup methods used in DPLL itself, as well
as the tricks used in modern SAT solvers, require fast indexing of
such things as “the set of clauses in which variable Xi appears as a
positive literal”.

This task is complicated by the fact that the algorithms are interested
only in the clauses that have not yet been satisfied by previous
assignments to variables, so the indexing structures must be
updated dynamically as the computation proceeds.

With these enhancements, modern SAT solvers can handle problems
with tens of millions of variables. They have revolutionized areas such
as hardware verification and security protocol verification, which
previously required laborious, hand-guided proofs.

Artificial Intelligence Propositional Logic - Part 2 18 / 70



Local search algorithms

Provided that we have a good evaluation function, we can apply local
search algorithms such as Hill-Climbing, Simulated-Annealing and
Min-Conflicts to SAT.

Because the goal is to find an assignment that satisfies every clause, an
evaluation function that counts the number of unsatisfied clauses
will do the job. This is exactly what Min-Conflicts does.

All these algorithms take steps in the space of complete assignments,
flipping the truth value of one symbol at a time.

The space usually contains many local minima, to escape from which
various forms of randomness are required. In recent years, there have been
many algorithms that try to find a good balance between greediness
and randomness.

Artificial Intelligence Propositional Logic - Part 2 19 / 70



The algorithm WalkSAT

One of the simplest and most effective algorithms to emerge from all this
work is called WalkSAT.

On every iteration, WalkSAT selects randomly an unsatisfied clause and
picks a symbol in the clause to flip. It chooses with probability p between
two ways to pick which symbol to flip:

A “min-conflicts” step that minimizes the number of unsatisfied
clauses in the new state, and

a “random walk” step that picks the symbol randomly.

Artificial Intelligence Propositional Logic - Part 2 20 / 70



The algorithm WalkSAT (cont’d)

Artificial Intelligence Propositional Logic - Part 2 21 / 70



The algorithm WalkSAT (cont’d)

When algorithm WalkSAT returns a model, the input sentence is indeed
satisfiable, but when it returns failure, there are two possible causes: either
the sentence is unsatisfiable or we need to give the algorithm more time.

If we set max flips = ∞ and p > 0, WalkSAT will eventually return a
model (if one exists), because the random walk steps will eventually hit a
solution. However, if the sentence is unsatisfiable, the algorithm will
never terminate.

For this reason, WalkSAT is most useful when we expect a solution to
exist.

On the other hand, WalkSAT cannot always detect unsatisfiability,
which is required for deciding entailment. Therefore, an agent cannot
reliably use WalkSAT to prove that a square is safe in the wumpus
world.

Artificial Intelligence Propositional Logic - Part 2 22 / 70



The landscape of random SAT problems

Some SAT problems are harder than others. Easy problems can be solved
by any of the algorithms we presented earlier, but because we know that
SAT is NP-complete, at least some problem instances must require
exponential time.

In our lecture on CSPs, we saw some surprising facts for the n-queens
problem: although it was tricky to solve for backtracking search
algorithms, it turned out to be very easy for local search algorithms such
as Min-Conflicts.

This is because solutions of the n-queens problem are densely
distributed in the space of assignments, and any initial assignment
is guaranteed to have a solution nearby. Thus, n-queens is easy,
because it is underconstrained.

Artificial Intelligence Propositional Logic - Part 2 23 / 70



Underconstrained SAT problems

When we look at SAT problems in CNF, an underconstrained problem is
one with relatively few clauses constraining the variables.

For example, here is a randomly generated 3-CNF sentence with five
symbols and five clauses:

(¬D ∨ ¬B ∨ C ) ∧ (B ∨ ¬A ∨ ¬C ) ∧ (¬C ∨ ¬B¬E )∧

(E ∨ ¬D ∨ B) ∧ (B ∨ E ∨ ¬C )

16 of the 32 possible assignments are models of this sentence, so, on
average, it would take just 2 random guesses to find a model.

Definition: A sentence is in k-CNF form if it is a conjunction of
disjunctions with at most k literals.

Artificial Intelligence Propositional Logic - Part 2 24 / 70



Overconstrained SAT problems

On the other hand, an overconstrained SAT problem has many clauses
relative to the number of variables and is likely to have no solutions.

Overconstrained problems are often easy to solve, because the constraints
quickly lead either to a solution or to a dead end.

Artificial Intelligence Propositional Logic - Part 2 25 / 70



Random SAT problems

How can we generate random SAT problems?

Notation: CNFk(m, n) denotes a k-CNF sentence with m clauses and n
symbols, where the clauses are chosen uniformly, independently, and
without replacement from among all clauses with k different literals that
are positive or negative at random.

Given a source of random sentences, we can measure the probability of
satisfiability. The figure on the next slide shows the probability that a
random 3-CNF sentence with n = 50 symbols is satisfiable, as a function
of the clause/symbol ratio m/n.

Artificial Intelligence Propositional Logic - Part 2 26 / 70



Random SAT problems (cont’d)

Artificial Intelligence Propositional Logic - Part 2 27 / 70



Random SAT problems (cont’d)

As we expect:

For small m/n, the probability of satisfiability is close to 1.

For large m/n, the probability of satisfiability is close to 0.

The probability drops fairly sharply around m/n = 4.3. Empirically, we can
find that the “cliff” stays in roughly the same place (for k = 3) and gets
sharper and sharper as n increases.

Artificial Intelligence Propositional Logic - Part 2 28 / 70



The satisfiability threshold conjecture

The satisfiability threshold conjecture says that for every k ≥ 3, there is
a threshold ratio rk such that, as n goes to infinity, the probability that
CNFk(rn, n) is satisfiable becomes 1 for all values of r below the threshold,
and 0 for all values above.

The conjecture remains unproven, even for special cases like k = 3.

Whether it is a theorem or not, this kind of thresholding effect is certainly
common, for satisfiability problems as well as other types of NP-hard
problems.

Artificial Intelligence Propositional Logic - Part 2 29 / 70



Where are the hard SAT problems?

The SAT problems that are hard to be solved are also often at the
threshold value.

The figure on the next slide shows that 50-symbol problems at the
threshold value of 4.3 are about 20 times more difficult to solve than those
at ratio of 3.3. The graph shows median run time (measured in number of
iterations) for both DPLL and WalkSAT on random 3-CNF sentences.

The underconstrained problems are easiest to solve because it is so easy to
guess a solution. The overconstrained problems are not as easy as the
underconstrained, but still are much easier than the ones right at the
threshold.

Artificial Intelligence Propositional Logic - Part 2 30 / 70



Where are the hard SAT problems? (cont’d)

Artificial Intelligence Propositional Logic - Part 2 31 / 70



Agents based on propositional logic

Logical agents operate by deducing what to do from a knowledge base
of sentences about the world.

The knowledge base consists of:

Axioms i.e., general sentences about how the world works (the
“physics” of the world).

Percept sentences obtained from the agent’s experience in particular
world.

As an example, let us focus on the problem of deducing the current
state of the wumpus world: where the agent is, is that square safe and
so on.

Artificial Intelligence Propositional Logic - Part 2 32 / 70



The wumpus world

Artificial Intelligence Propositional Logic - Part 2 33 / 70



The wumpus world (cont’d)

Artificial Intelligence Propositional Logic - Part 2 34 / 70



Representing the current state of the wumpus world

The agent knows that the starting square contains no pit: ¬P1,1

The agent knows that the starting square contains no wumpus: ¬W1,1

For each square, the agent knows that the square is breezy if and and only
if a neighboring square has a pit. Similarly, a square is smelly if and only if
a neighboring square has a wumpus. Thus, we include a large collection of
formulas of the following form:

B1,1 ⇔ (P1,2 ∨ P2,1)

S1,1 ⇔ (W1,2 ∨W2,1)

· · ·

Artificial Intelligence Propositional Logic - Part 2 35 / 70



Representing the current state of the wumpus world
(cont’d)

The agent also knows that there is exactly one wumpus.

This is expressed in two parts. First, we have to say there is at least one
wumpus:

W1,1 ∨W1,2 ∨ · · · ∨W4,3 ∨W4,4

Then, we have to say that there is at most one wumpus. How can
express this?

Artificial Intelligence Propositional Logic - Part 2 36 / 70



Representing the current state of the wumpus world
(cont’d)

For each pair of locations, we add a sentence saying that at least one of
them must be wumpus-free:

¬W1,1 ∨ ¬W1,2

¬W1,1 ∨ ¬W1,3

· · ·

¬W4,3 ∨ ¬W4,4

Artificial Intelligence Propositional Logic - Part 2 37 / 70



Agent percepts

We are using S1,1 to mean that there is a stench in square [1, 1].

Can we use a single propositional symbol Stench to mean that the agent
perceives a stench?

Unfortunately, we can’t: if there was no stench at a previous time step,
then ¬Stench would already be asserted, and the new assertion would
result in a contradiction!

The problem is solved when we realize that a percept asserts something
only about the current time. Thus, we can have propositional symbols

. . . ,¬Stench3,Stench4, . . .

and there is no contradiction.

The same goes for breeze, bump, glitter, and scream percepts.
Artificial Intelligence Propositional Logic - Part 2 38 / 70



Fluents

The idea of associating propositional symbols with time steps extends to
any aspect of the world that changes with time.

For example, the initial knowledge base includes L01,1 i.e., the agent is in

square [1, 1] at time 0. Similarly, FacingEast0,HaveArrow0, and
WumpusAlive0.

We use the noun fluent (from the Latin fluens, flowing) to refer to an
aspect of the world that changes. Propositional symbols, like Stench,
that take a time superscript will be called fluents.

Symbols associated with permanent aspects of the world do need a
superscript and are sometimes called atemporal variables.

Artificial Intelligence Propositional Logic - Part 2 39 / 70



Fluents (cont’d)

We can connect stench and breeze percepts directly to the properties of
the squares where they are experienced as follows. For any time step t and
any square [x , y ], we assert

Ltx ,y ⇔ (Breezet ⇔ Bx ,y )

Ltx ,y ⇔ (Stencht ⇔ Sx ,y ).

Now, of course, we need axioms that allow the agent to keep track of
fluents such as Ltx ,y .

Artificial Intelligence Propositional Logic - Part 2 40 / 70



Transition model

These fluents change as the result of actions taken by the agent, so we
need to write down the transition model of the wumpus world as a set of
logical sentences.

First, we need proposition symbols for the occurrences of actions.

As with percepts, these symbols are indexed by time; thus, Forward0

means that the agent executes the action Forward at time 0.

By convention, the percept of a give time step happens first, followed
by the action for that time step, followed by a transition to the next
time step.

Artificial Intelligence Propositional Logic - Part 2 41 / 70



Effect axioms

To describe how the world changes, we will write effect axioms that
specify the outcome of an action at the next time step.

For example, if the agent is at location [1, 1] facing east at time 0 and
goes Forward , the result is that the agent is in square [2, 1] and no longer
is in [1, 1]:

L01,1 ∧ FacingEast0 ∧ Forward0 ⇒ (L12,1 ∧ ¬L11,1)

We would need one such sentence for each possible timestep, for
each of the 16 squares and each of the four orientations. We would
also need similar sentences for the other actions:

Grab,Shoot,Climb,TurnLeft,TurnRight

Artificial Intelligence Propositional Logic - Part 2 42 / 70



Effect axioms (cont’d)

Let us suppose that the agent does decide to move Forward at time 0 and
asserts this fact into its knowledge base.

Given the above effect axiom, combined with the initial assertions about
the state at time 0, the agent can now deduce that it is in [2, 1].

In other words, Ask(KB, L12,1) = true

Artificial Intelligence Propositional Logic - Part 2 43 / 70



The frame problem

Unfortunately, if we Ask(KB,HaveArrow1), the answer is false, that is
the agent cannot prove that it still has the arrow; nor can it prove it
doesn’t have it.

The information has been lost because the effect axiom fails to state what
remains unchanged as the result of an action. The need to do so gives
rise to the frame problem.

Artificial Intelligence Propositional Logic - Part 2 44 / 70



Frame axioms

One possible solution to the frame problem would be to add frame
axioms explicitly asserting all the propositions that remain the same. For
example, for each time t, we would have

Forward t ⇒ (HaveArrow t ⇔ HaveArrow t+1)

Forward t ⇒ (WumpusAlivet ⇔ WumpusAlivet+1)

· · ·

where we explicitly mention every proposition that stays unchanged from
time t to time t + 1 under the action Forward .

This proposal is inefficient. In a world with m different actions and n
fluents, the set of frame axioms will be of size O(mn) for every time step.

Artificial Intelligence Propositional Logic - Part 2 45 / 70



The frame problem (cont’d)

The above specific manifestation of the frame problem has been called the
representational frame problem.

The representational frame problem is significant because the real world
has very many fluents. Fortunately for us humans, each action typically
changes no more than some small number k of those fluents i.e., the
world exhibits locality.

Solving the representational frame problem requires defining the transition
model with a set of axioms of size O(mk) rather than of size O(mn).

There is also an inferential frame problem: the problem of projecting
forward the result of a t-step plan of action in time O(kt) rather than
O(nt).

Artificial Intelligence Propositional Logic - Part 2 46 / 70



Solving the frame problem

The solution to the frame problem that we will present involves changing
our focus from writing axioms about actions to writing axioms
about fluents.

Thus, for each fluent F , we will have an axiom that defines the truth value
of F t+1 in terms of fluents (including F itself) at time t and the actions
that may have occured at time t.

Now, the truth value of F t+1 can be set in one of two ways:

Either the action at time t causes F to be true at t + 1, or

F was already true at time t and the action at time t does not cause
it to be false at time t + 1.

Artificial Intelligence Propositional Logic - Part 2 47 / 70



Successor-state axioms

An axiom of this form is called a successor-state axiom and has the
following form:

F t+1 ⇔ ActionCausesF t ∨ (F t ∧ ¬ActionCausesNotF t)

One of the simplest successor state axioms is the one for HaveArrow .
Because there is no action for reloading, the ActionCausesF t part goes
away and we are left with

HaveArrow t+1 ⇔ (HaveArrow t ∧ ¬Shoott).

Artificial Intelligence Propositional Logic - Part 2 48 / 70



Successor-state axioms (cont’d)

For the agent’s location, the successor-state axioms are more elaborate.

For example, Lt+1
1,1 is true if either:

The agent moved Forward from [1, 2] when facing south, or from
[2, 1] when facing west; or

Lt1,1 was already true and the action did not cause movement (either
because the action was not Forward or because the action bumped
into a wall).

Written out in propositional logic, this becomes:

Lt+1
1,1 ⇔ (Lt1,1 ∧ (¬Forward t ∨ Bumpt+1))

∨ (Lt1,2 ∧ (¬FacingSoutht ∨ Forward t))

∨ (Lt2,1 ∧ (¬FacingWestt ∨ Forward t))

Artificial Intelligence Propositional Logic - Part 2 49 / 70



Using Ask

Given a complete set of successor-state axioms and axioms specifying the
initial world state and the “physics” of the world, the agent will be able to
Ask and answer any answerable question about the current state of the
world.

Artificial Intelligence Propositional Logic - Part 2 50 / 70



Using Ask (cont’d)

For example, let us assume the following sequence of percepts and actions
in the wumpus world:

¬Stench0 ∧ ¬Breeze0 ∧ ¬Glitter0 ∧ ¬Bump0 ∧ ¬Scream0 ; Forward0

¬Stench1 ∧ Breeze1 ∧ ¬Glitter1 ∧ ¬Bump1 ∧ ¬Scream1 ; TurnRight1

¬Stench2 ∧ Breeze2 ∧ ¬Glitter2 ∧ ¬Bump2 ∧ ¬Scream2 ; TurnRight2

¬Stench3 ∧ Breeze3 ∧ ¬Glitter3 ∧ ¬Bump3 ∧ ¬Scream3 ; Forward3

¬Stench4 ∧ ¬Breeze4 ∧ ¬Glitter4 ∧ ¬Bump4 ∧ ¬Scream4 ; TurnRight4

¬Stench5 ∧ ¬Breeze5 ∧ ¬Glitter5 ∧ ¬Bump5 ∧ ¬Scream5 ; Forward5

Stench6 ∧ ¬Breeze6 ∧ ¬Glitter6 ∧ ¬Bump6 ∧ ¬Scream6

Artificial Intelligence Propositional Logic - Part 2 51 / 70



The state of the wumpus world

Artificial Intelligence Propositional Logic - Part 2 52 / 70



Using Ask (cont’d)

At this point, we have Ask(KB, L61,2) = true, so the agent knows where it
is.

Moreover, Ask(KB,W1,3) = true and Ask(KB,P3,1) = true, so the
agent has found the wumpus and one of the pits.

The most important question for the agent is whether a square is OK to
move into — that is, whether the square is free of a pit or live wumpus.

It is convenient to add axioms for this, having the form

OK t
x ,y ⇔ ¬Px ,y ∧ ¬(Wx ,y ∧WumpusAlivet).

Finally, Ask(KB,OK 6
2,2) = true, so the square [2, 2] is OK to move into.

Artificial Intelligence Propositional Logic - Part 2 53 / 70



Using Ask (cont’d)

Given a sound and complete inference algorithm such as DPLL, the agent
can answer any answerable question about which squares are OK, and can
do so in just a few milliseconds for small-to-medium wumpus world.

Artificial Intelligence Propositional Logic - Part 2 54 / 70



The qualification problem

Solving the representational and inferential frame problems is a big step
forward, but a pernicious problem remains: we need to confirm that all
the necessary preconditions of an action hold, for it to have its
intended effect.

We said that the Forward action moves ahead unless there is a wall in the
way, but there are many other unusual exceptions that could cause the
action to fail: the agent might trip and fall, be stricken with a heart
attack, be carried away by giant bats, etc.

Specifying all these exceptions is called the qualification problem.

There is no complete solution within logic; system designers have to
use good judgment in deciding how detailed they want to be in specifying
their model, and what details they want to leave out. Probability theory
allows us to summarize all the exceptions without explicitly naming them.

Artificial Intelligence Propositional Logic - Part 2 55 / 70



Planning

Planning is an important subarea of Artificial Intelligence with many
interesting research results and implemented systems.

Classical planning is the task of finding a sequence of actions (i.e., a
plan) to accomplish a goal in discrete, deterministic, static, fully
observable environment.

A planning problem can be cast as a search problem. Then, it can be
solved using any of the search algorithms we presented in the problem
solving part of the course.

In this lecture, we will show how to solve planning problems using
propositional inference.

Artificial Intelligence Propositional Logic - Part 2 56 / 70



Planning by propositional inference

The basic idea for solving planning problems using propositional
inference is very simple:

Construct a propositional logic sentence ϕ that is the conjunction of:

Init0, a collection of assertions about the initial state;
Transition1, . . . ,Transitiont , the successor-state axioms for all possible
actions at each time up to some maximum time t;
the assertion that the goal is achieved at time t, for example,
HaveGold t ∧ ClimbedOutt .

Present the sentence ϕ to a SAT solver. If the solver finds a satisfying
model, then the goal is achievable; if the sentence is unsatisfiable,
then the problem is unsolvable.

Assuming a model is found, extract from the model those variables
that represent actions and are assigned true. Together they represent
a plan to achieve the goal.

Artificial Intelligence Propositional Logic - Part 2 57 / 70



The algorithm SATplan

The following algorithm is a propositional planning procedure which
implements the basic idea just given.

Artificial Intelligence Propositional Logic - Part 2 58 / 70



The algorithm SATplan (cont’d)

Because the agent does not know how many steps it will take to reach the
goal, SATplan tries each possible number of steps t, up to some
maximum conceivable plan length Tmax .

In this way, it is guaranteed to find the shortest plan if one exists.

Because of the way SATplan searches for a solution, this approach
cannot be used in a partially observable environment; SATplan
would just set the unobservable variables to the values it needs to create a
solution.

Artificial Intelligence Propositional Logic - Part 2 59 / 70



Constructing the knowledge base for SATplan

The key step in using SATplan is the construction of the knowledge
base (the sentence ϕ that is transformed into CNF).

It is important to revisit this issue since there is a significant difference
between the way we constructed the knowledge base when we wanted to
decide entailment and the way it needs to be constructed now that we
have to decide satisfiability.

Consider, for example, the agent’s location, initially [1, 1] and suppose the
agent’s unambitious goal is to be in [2, 1] at time 1.

The initial knowledge base contains L01,1 and the goal is L12,1. Using Ask,

we can prove L12,1 if Forward0 is asserted, and, reassuringly, we cannot

prove L12,1 if Shoot0.

Artificial Intelligence Propositional Logic - Part 2 60 / 70



Finding plans with SATplan

SATplan will also find this plan [Forward0].

But unfortunately, SATplan also finds the plan [Shoot0]. How could this
be? To find out, we inspect the model that SATplan constructs: it
includes the assignment L02,1 i.e., the agent can be in [2, 1] at time 1 by
being there at time 0 and shooting.

The problem here is that we did not assert in the knowledge base that
the agent cannot be in two squares at the same time.

For entailment, L02,1 is unknown and cannot be used in a proof. For

satisfiability, on the other hand, L02,1 is unknown and can, therefore, be set
to whatever value helps to make the goal true.

How can we fix the knowledge base so this does not happen?

Artificial Intelligence Propositional Logic - Part 2 61 / 70



Finding plans with SATplan (cont’d)

We can fix the knowledge base by asserting that, at each time step, the
agent is in exactly one location, using a collection of sentences similar
to those used to assert the existence of exactly one wumpus.

Alternatively, we can assert ¬L0x ,y for all locations other than [1, 1]; the
successor-state axiom for locations takes care of subsequent time steps.

The same fixes work to make sure that the agent has exactly one
orientation at each time step.

Artificial Intelligence Propositional Logic - Part 2 62 / 70



Finding plans with SATplan (cont’d)

SATplan has more surprises in store, however.

The first one is that it finds models with impossible actions, such as
shooting with no arrow.

To understand why, we need to look more carefully at what successor-state
axioms say about actions whose preconditions are not satisfied.

The axioms do predict correctly that nothing will happen when such
an action is executed, but they do not say that the action cannot
be executed.

Artificial Intelligence Propositional Logic - Part 2 63 / 70



Precondition axioms

To avoid generating plans with illegal actions, we must add precondition
axioms stating that an action occurrence requires the preconditions to be
satisfied.

For example, we need to say, for each time t, that

Shoott ⇒ HaveArrow t .

This ensures that if a plan selects the Shoot action at any time, it must be
the case that the agent has an arrow at that time.

Artificial Intelligence Propositional Logic - Part 2 64 / 70



Action exclusion axioms

SATplan’s second surprise is the creation of plans with multiple
simultaneous actions.

For example, it may come up with a model in which both Forward0 and
Shoot0 are true, which is not allowed.

To eliminate the problem, we introduce action exclusion axioms: for
every pair of actions At

i and At
j , we add the axiom

¬At
i ∨ ¬At

j .

Artificial Intelligence Propositional Logic - Part 2 65 / 70



Action exclusion axioms (cont’d)

It might be beneficial to selectively introduce action exclusion axioms e.g.,
allow Forward t and Shoott but disallow Grabt and Shoott .

In this case, we introduce action exclusion axioms only for pairs of actions
that interfere with each other.

Because SATplan finds the shortest legal plan, we can be sure it will
take advantage of this fact and produce plans with multiple simultaneous
actions that do not interfere with each other.

Artificial Intelligence Propositional Logic - Part 2 66 / 70



Summary

SATplan finds models for a sentence containing the initial state, the
goal, the successor state axioms, the precondition axioms, and the action
exclusion axioms.

It can be shown that this collection of axioms is sufficient, in the sense
there are no longer any “spurious” solutions.

Any model satisfying the propositional sentence can be used to extract a
valid plan for the original problem.

Modern SAT solving technology makes this approach quite practical.

Artificial Intelligence Propositional Logic - Part 2 67 / 70



Conclusions

We presented a declarative approach to logical agent construction:
the agent works by a combination of asserting propositional logic
sentences in the knowledge base and performing logical inference.

This approach has some weaknesses hidden in phrases such as “for each
time t” and “for each square [x , y ]”. For any practical agent, these phrases
have to be implemented by code that generates instances of the general
sentence schema automatically for insertion in the knowledge base.

For a wumpus world of reasonable size – one comparable to a small
computer game – we might need a 100× 100 board and 1000 time steps,
leading to knowledge bases with tens or hundreds of millions of
sentences.

Artificial Intelligence Propositional Logic - Part 2 68 / 70



Conclusions (cont’d)

Not only does this becomes impractical, but it also illustrates a deeper
problem: we know something about the wumpus world — namely that the
“physics” works the same way across squares and all time steps — that
we cannot express directly in the language of propositional logic.

To solve this problem, we need a more expressive language, one in which
phrases like “for each time t” and “for each square [x , y ]” can be written
in a natural way.

First-order logic is such a language. In first-order logic, a wumpus world
of any size and duration can be described in about ten logic sentences
rather than ten million or ten trillion.

Artificial Intelligence Propositional Logic - Part 2 69 / 70



Readings

These slides are based on Sections 7.4.4, 7.6 and 7.7 of Chapter 7 of the
AIMA book.

Note: I took the liberty to use material from the above sections verbatim
without using quotes.

Artificial Intelligence Propositional Logic - Part 2 70 / 70


