YSo2 Artificial Intelligence
Project 1: Searchr

Konstantinos Plas kplas@di.uoa. {3
Sergios-Ane t Kefalidis skefalidis@di.uoa. gr

mailto:kplas@di.uoa.gr
mailto:skefalidis@di.uoa.gr

Logistics

Project: Homework 1
Deadline: 29/10/2024
Questions: On Piazza
Grading:
o Sergios-Anestis Kefalidis, skefalidis@di.uoa.gr

o Giannis Papagiannoulis, giannispapagiannoulis?5@gmail.com

https://cgi.di.uoa.gr/~ys02/askiseis2024/h1-ai2024-v1.pdf
mailto:skefalidis@di.uoa.gr
mailto:giannispapagiannoulis95@gmail.com

The PacMan Project

12

L2

®
e
@
°
*
©
*
@
*

L3

Search Problems

Consist of:

e Start State: the starting state of our problem

e Successor Function: function that takes as input a state and outputs the
available actions

e State Space: all the possible states on the problem’s world

e Goal State: the state of the problem the agent must reach

The solution is a sequence of actions from the Start State to the Goal State.

Search Problems: Pacman

Start State
o Pacman begins from the middle of the grid
e Successor Function
Pacman can move vertically or horizontally,
but is blocked by walls
State Space
o All possible states of our “problem world”
starting from the Start State and acting only
as the Successor Function allows
Goal State
o Pacman has eaten all the food

6$N99 1 0 u

\
“E”, 1.0

x Y v Y

Modeling a Search Problem

e Givenareal world problem, how can we formulate it into a search problem?

e We will focus on two examples:
o Missionaries and Cannibals
o 8puzzle problem

Modeling the Missionaries & Cannibals Problem

e Problem:
o On one bank of a river are 3 missionaries and 3 cannibals.

o There is 1 boat available that can carry at most 2 people and that they would like to use
to cross the river.

o |f the cannibals ever outnumber the missionaries on either of the river’s banks, the
missionaries will get eaten.

AAA

Red circles represent cannibals ' . .
Black triangles missionaries

Modeling the Missionaries & Cannibals Problem

e Goal: Move all missionaries and cannibals to the other side of the river
o Question: How can we formulate the given problem into a graph search
problem?

e Remember what constitutes a search problem:
o Start State: where do we start?

o Successor Function: what actions can we take?
o State Space: which are all the valid states of our world?
o Goal State: what do we want to accomplish?

p‘\
@

Modeling the Missionaries & Cannibals Problem

e State:
o atupleof 6 numbers
m M, C, B, the number of missionaries, cannibals and boats on the left
side of theriver

= MR, CR, BR the number of missionaries, cannibals and boats on the
right side of the river
o State= (ML, C,B,M.C,, B.)

L

e StartState=(3,3,1,0,0,0),the boat and all missionaries and cannibals are on
the left side of the river.

e GoalState=(0,0,0, 3, 3, 1), all missionaries and cannibals crossed the river
without any “accidents”.

Modeling the Missionaries & Cannibals Problem

e Actions: move the boat across the river with 1 or 2 people.
o if the boatis on the left side of the river the possible actions are:

move 1 missionary to the right side (ML-I, C,0,M+1,C, 1)

move 2 missionaries to the right side (ML-2, C,0,M+2,C, 1)
move 1 cannibal to the right side (ML, C-1,0,M,, C.+1, 1)

move 2 cannibals to the right side (ML, C-2,0,M,,C+2, 1)
move 1 missionary and 1 cannibal to the right side (MI-1,
Cl-1,0,Mr+1,Cr+1, 1)
o likewise for the right side...
e Question: Are all these actions legal?

o hint: if they are all legal, what do we need the Successor Function for?
O reminder: the Successor Function takes as input a state and outputs the available actions.

Modeling the Missionaries & Cannibals Problem

e Question: Are all theoretically possible actions always legal?
o Answer: not always we must check whether a state has more cannibals than
missionaries in either side of the river.
o When generating a successor the condition (M, >=C, AND M_>=C_) must be
true, for it to be considered (responsibility of the Successor Function).
e For example if we consider the Start State (3, 3, 1, 0, 0, 0) and any possible action we
get the following states:

{(2’ §’ O’ 1’ O’ 1)’ (2’ 2’ O’ 1’ 1’ 1)’ (3? 2’ O’ O’ 1’ 1)’ (1?3’0?2’071)’ (3’1907092’1)}

e Thefirst and fourth generated states have more cannibals than missionaries on the
left side of the river.
e These states are generated from illegal actions and are not considered.
e Thus the actual successors generated by the Successor Function are:
{(2,2,0,1,1,1),(3,2,0,0,1,1),(3,1,0,0,2,1) }

Modeling the Missionaries & Cannibals Problem

The search space of missionaries and cannibals problem:

A
hd } .“
Ao, 1c 1c

2 ® LY 2¢
A

1m e m 1

‘A‘ 1? Ay T.

o

Modeling the 8 puzzle problem

1 3 2 1 2
5 6 4 5
8 4 4 7 8

Start State | Goal State G

Modeling the 8 puzzle problem

e State Space (S): All possible solvable combinations for the puzzle — 9!/2 =181, 440
states

e State =((xyy), P)where:
o P € S,Pisthecurrentimage of the puzzle
-P ={pi1, p1z, pis, P21, ..., Pss}, where pi[J is the value of the tile in (i,j)
o (xy), is the coordinates of the empty space in P

e StartState=((2,2),1)

e GoalState=((3,3),G)

Modeling the 8 puzzle problem

e Actions = swap the empty space with one of its neighbors (up, down, left, right)

e Successor Function : For a given state si = ((xi, yi), Pi) outputs succ(si) ={ ((xi- 1, yi), P1), ((xi
+1,vi), P2), ((xi,yi- 1), Ps), ((xi,yi+ 1), Ps) }, where (xi- 1, yi) indicates that the empty space
was swapped with the tile above it, (xi +1, yi) with the tile below it etc. Py, is the puzzle
image produced if the empty tile was swapped with the tile above it etc.

e isGoalState: function that for a given state sioutputs:

I, P =G

isGoal State(s;) = isGoal State((x;,y;), P;) = _
0. otherwise

Graph Search Algorithms

e After we formulate a real world problem into a search problem we can utilize
graph search algorithms to solve it:

o DFS
o BFS
o UCS
o A*

Depth First Search (DFS)

e Strategy: expand nodes depth-wise
until a node has no successors
e Implementation: frontier is a stack

Breadth First Search (BFS)

e Strategy: expand nodes layerwise
e Implementation: frontier is a queue

Uniform Cost Search (UCS)

e UCS:sorts nodes according to cost g(n)
o Like BFS (min-depth) but for Graphs with different path costs (min-cost)

S@

0 3

A./BI\C.

1 5 15
S
A
| A B C
1 10 5 15
SO O 0 G 1 8
15 5

- A B o
C 15

(a) (b)

A’ (A star)

e UCS:sorts nodes according to cost g(n)

e A*:expansion of UCS, nodes are sorted based on the sum g(n) + h(n)
o g(n): cost to reach a node n from the root node
o h(n): heuristic function to approximate the solution

A" : Execution Example

75

Arad L]

118 L Vaslui

-1 Timisoara

L] Hirsova
.1 Mehadia

75 86

Drobeta []

Bucharest

Craiova] Giurgiu Eforie

(a) The initial state

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

449=75+374

447=118+329

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

646=280+366 415=2

39+176 671=291+380

526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

449=75+374

N
=l
il
("
(7
o
+
[
wn
(9
-
h
<
]
-
kf
wn
[
i
)
g
=N
~J
[}
w
3
+
S
w
h
W
%
o
[
o
8]

449=75+374

418=418+0 615=455+160 607=414+193

Heuristic Function

For a given state, estimates the cost from that state to the Goal State
e Trivial: Always returns O (same as UCS) or always returns the true cost
e Admissible: It does not overestimate the cost to reach the goal state
o 0 < heuristic_cost(s) < true_cost(s)
e Consistent: The estimation is less than or equal to the estimation of a neighboring
state plus the cost to reach that state
o h(s)=zc(s,a,s’) +h(s)
o intuition: That is, you don't think that it costs 5 from B to the goal, 2 from A to B, and
yet 20 from A to the goal.
All consistent heuristics are admissible. The opposite is necessarily not true.
Consistent heuristics make our algorithm faster, because we don’t need to revisit
nodes (in Graph Search).

Heuristic Function : How to choose a heuristic

e Aheuristicis formulated based on the problem we try to solve
Non consistent functions may prevent the search algorithms from exploring
“good” paths.

e We can easily formulate a consistent heuristic if we consider a simpler problem
(relaxation).

Heuristic Function : Pacman

e Euclidean Distance
o Euclidean distance from the goal
o Forthe given example = 11.2
e Manhattan Distance
o Manhattan distance from the goal
o Forthe given example = 15
e The actual distance is greater because of
obstacles
e Bysimplifying the problem it is easier to find
“good” heuristics

Heuristic Function : 8 puzzle

e Hamming Distance
o Tiles out of place
o Forthegiven example =7

e Manhattan Distance

o Manhattan distance of each tile for the
goal position

o Forthe given example =10
m h=0+1+1+3+1+0+1+1+2

Project 1

% Important files:
o pacman.py — Pacman main file (GameState classes)
o game.py — Thelogicbehind Pacman environment (Agent,Direction classes)
o util.py — Useful structure classes (Stack, Queue, PriorityQueue classes)
* Filestoedit:
o search.py — Hereyouwillimplement the search algorithms (Q1-Q4)
o searchAgents.py — Search based agents (Q5-Q8)

Project 1: Questions 1-4

ﬂlgorithm: GRAPH SEARCH:

frontier = {startNode}
expanded = {}
while frontier is not empty:
node = frontier.pop ()
if isGoal (node) :
return path to node
if node not in expanded:
expanded.add (node)
for each child of node’s children:

frontier.push(child)

\\\\return failure

/

e Generic algorithm:

o DFS(Q1)
o BFS(Q2)
o UCS(Q3)

o A" (Q4) (Pseudocode)
e Different frontiers for each
algorithm:
o Stack (DFS)
o Queue (BFS)
o PriorityQueue (UCS, A")
e Expanded should be a Set
e Keepin mind: The autograder
expects a specific number of nodes
to be expanded.
o Controlled by
problem.getSuccessors, don’t
forget print statements

https://en.wikipedia.org/wiki/A*_search_algorithm#Pseudocode

Project 1: Questions 1-4 - DFS

ﬂlgorithm: GRAPH SEARCH:

frontier = {startNode} «

expanded = {} «

while frontier is not empty:
node = frontier.pop ()
if isGoal (node) :
return path to node
if node not in expanded:
expanded.add (node)

for each child of node’s children:

frontier.push(child)
\return failure

~

/

A

J

Project 1: Questions 1-4 - DFS

ﬂlgorithm: GRAPH SEARCH:

frontier = {startNode}
expanded = {}
while frontier is not empty:
node = frontier.pop () «
if isGoal (node) :
return path to node
if node not in expanded:

expanded. add (node) «

for each child of node’s children:

\ frontier.push (child) «

return failure

~

/

BCD

A

J

Project 1: Questions 1-4 - DFS

ﬂlgorithm: GRAPH SEARCH:

frontier = {startNode}
expanded = {}
while frontier is not empty:
node = frontier.pop () «
if isGoal (node) :
return path to node
if node not in expanded:

expanded.add (node) «

for each child of node’s children:

\ frontier.push(child) «

return failure

~

/

CCD

A

AB

J

Project 1: Questions 1-4 - DFS

ﬂlgorithm: GRAPH SEARCH:

frontier = {startNode}
expanded = {}
while frontier is not empty:
node = frontier.pop () «
if isGoal (node) :
return path to node
if node not in expanded:

expanded.add (node) «

for each child of node’s children:

frontier.push(child)
\\\\return failure

~

/

CD

A

ABC

J

Project 1: Questions 1-4 - DFS

ﬂlgorithm: GRAPH SEARCH:

frontier = {startNode}
expanded = {}
while frontier is not empty:
node = frontier.pop () «
if isGoal (node) :
return path to node
if node not in expanded: «
expanded.add (node)

for each child of node’s children:

frontier.push(child)
\\\\return failure

~

/

A

ABC

J

Project 1: Questions 1-4 - DFS

ﬂlgorithm: GRAPH SEARCH:

frontier = {startNode}
expanded = {}
while frontier is not empty:
node = frontier.pop () «
if isGoal (node) :
return path to node
if node not in expanded:

expanded.add (node) «

for each child of node’s children:

frontier.push(child)
\\\\return failure

~

/

A

ABCD

J

Project 1. Question 5

e Goal: Define an abstract representation of the Corners Problem
o How can we model this search problem?
o Create arepresentation for start and goal state
o Design the successor function [expand]
m Returnthe next possible states, the actions required to reach them
and their cost
m Consider also the possibility that the next state is the goal state

Project 1. Question 6

e Goal: Write a non-trivial, non-decreasing admissible heuristic

> How to design a heuristic for the corners problem?
o Consider an intermediate state of the problem
o Gettheunvisited nodes
o Think of ways to compute the distance to the nodes
o Visit the corner that is closer

> Note: if you encounter problems, make sure that your solution to Question 5
does not have any subtle problems

Project 1: Question 7

e Goal: Write anon-trivial, non-decreasing admissible heuristic to eat all the food in as few
steps as possible. In other words, you are asked to write a heuristic that estimates as closely as
possible the number of steps that Pacman must take to eat all the food.

You can get the full grade in around 10 lines of code.
Note: The use of mazeDistance as a heuristic is forbidden! This is a trivial heuristic. You can
use it as part of your solution, but not as your solution.

vV

> Key items to use in foodHeuristic:
o foodGrid.asList: Get a list of food coordinates

o problem.heuristiclnfo: A dictionary provided to store the information required to be
reused in other calls of the heuristic

Project 1: Question 8

e Goal: Write an agent that always greedily eats the closest dot

> Functions you will need to implement:
o ClosestDotSearchAgent.findPathToClosestDot : Returns a path to the
closest dot starting from gameState (Hint: You've already implemented that)
o AnyFoodSearchProblem.isGoalState: Returns whether we have reached
the goal state

Exercise 3: Inspiration

» Eiloayetal o S:
Frontier [(S, 5)]
Explored []
> Agaipeitat o S kal €lLodayovtal oL yeitoveg tou (A, B, D):
Frontier [(A, 12) | (B, 12) | (D, 12)]
Explored [(S, 5)]

Exercise 4: Bidirectional Best-First Search

function BIBF-SEARCH(problem . fr, problemp, fp) returns a solution node, or failure
node g < NODE(problem g INITIAL) // Node for a start state
node g < NODE(problem p.INITIAL) / / Node for a goal state
frontier p < a priority queue ordered by fr, with node - as an element
frontier g < a priority queue ordered by fz, with nodep as an element
reached - +— a lookup table, with one key node . STATE and value node i
reached g + a lookup table, with one key node 5.STATE and value node
solution « failure
while not TERMINATED(solution, frontier -, frontier) do
if fr(ToP(frontier) < fp(TOP(frontier)) then
solution < PROCEED(F, problem - frontier ., reached -, reached g, solution)
else solution < PROCEED(B, problem g, frontier g, reached g, reached p-, solution)
return solution

function PROCEED(dir, problem, frontier, reached, reacheds, solution) returns a solution

// Expand node on frontier; check against the other frontier in reacheds.
/ / The variable “dir” is the direction: either F for forward or B for backward.
node « POP(frontier)
for each child in EXPAND(problem, node) do
5 4 child STATE
if s not in reached or PATH-COST(child) < PATH-COST(reached|s]) then
reached|s] « child
add child to frontier
if s is in reached, then
solution, < JOIN-NODES(dir, child, reacheds[s]))
if PATH-COST(solution,) < PATH-COST(solution) then
solution < solutiony
return solution

Figure 3.14 Bidirectional best-first search keeps two frontiers and two tables of reached
states. When a path in one frontier reaches a state that was also reached in the other half of
the search, the two paths are joined (by the function JOIN-NODES) to form a solution. The
first solution we get is not guaranteed to be the best; the function TERMINATED determines
when to stop looking for new solutions.

Taken from: https://aima.cs.berkeley.edu/figures.pdf

https://aima.cs.berkeley.edu/figures.pdf

