
YS02 Artificial Intelligence
Project 1: Search

Konstantinos Chousos kchousos@di.uoa.gr
Nefeli Kasa nef.kasa@gmail.com

mailto:kplas@di.uoa.gr
mailto:kplas@di.uoa.gr
mailto:nef.kasa@gmail.com

Logistics

● Project: Homework 1
● Deadline: 5/11/2025
● Questions: On Piazza
● Grading:

○ Vasileios Gkatsis, vgkatsis@di.uoa.gr
○ Konstantinos Chousos, kchousos@di.uoa.gr
○ Nefeli Kasa, nef.kasa@gmail.com

https://cgi.di.uoa.gr/~ys02/askiseis2025/hw1-2025.pdf
mailto:vgkatsis@di.uoa.gr
mailto:kchousos@di.uoa.gr
mailto:nef.kasa@gmail.com

The PacMan Project

Search Problems

Consist of:

● Start State: the starting state of our problem
● Successor Function: function that takes as input a state and

outputs the available actions
● State Space: all the possible states on the problem’s world
● Goal State: the state of the problem the agent must reach

The solution is a sequence of actions from the Start State to the
Goal State.

Search Problems: Pacman

● Start State
○ Pacman begins from the middle of the

grid
● Successor Function

○ Pacman can move vertically or
horizontally, but is blocked by walls

● State Space
○ All possible states of our “problem

world” starting from the Start State
and acting only as the Successor
Function allows

● Goal State
○ Pacman has eaten all the food

Modeling a Search Problem

● Given a real world problem, how can we formulate it into a search
problem?

● We will focus on two examples:
○ Missionaries and Cannibals
○ 8 puzzle problem

Modeling the Missionaries & Cannibals Problem

● Problem:
○ On one bank of a river are 3 missionaries and 3 cannibals.
○ There is 1 boat available that can carry at most 2 people and that they would like to use

to cross the river.
○ If the cannibals ever outnumber the missionaries on either of the river’s banks, the

missionaries will get eaten.

Red circles represent
cannibals

Black triangles missionaries

Modeling the Missionaries & Cannibals Problem

● Goal: Move all missionaries and cannibals to the other side of the
river
○ Question: How can we formulate the given problem into a

graph search problem?

● Remember what constitutes a search problem:
○ Start State: where do we start?
○ Successor Function: what actions can we take?
○ State Space: which are all the valid states of our world?
○ Goal State: what do we want to accomplish?

Modeling the Missionaries & Cannibals Problem

● State:
○ a tuple of 6 numbers

■ ML, CL, BL the number of missionaries, cannibals and boats

on the left side of the river
■ MR, CR, BR the number of missionaries, cannibals and boats

on the right side of the river
○ State = (ML, CL, BL, MR, CR, BR)

● StartState = (3, 3, 1, 0, 0, 0) , the boat and all missionaries and
cannibals are on the left side of the river.

● GoalState = (0, 0, 0, 3, 3, 1), all missionaries and cannibals crossed
the river without any “accidents”.

Modeling the Missionaries & Cannibals Problem

● Actions: move the boat across the river with 1 or 2 people.
○ if the boat is on the left side of the river the possible actions

are:
■ move 1 missionary to the right side (ML-1, CL, 0, MR+1, CR, 1)
■ move 2 missionaries to the right side (ML-2, CL, 0, MR+2, CR, 1)
■ move 1 cannibal to the right side (ML, CL-1, 0, MRr, CR+1, 1)
■ move 2 cannibals to the right side (ML, CL-2, 0, MR, CR+2, 1)
■ move 1 missionary and 1 cannibal to the right side

(ML-1, CL-1, 0, MR+1, CR+1, 1)
○ likewise for the right side…

● Question: Are all these actions legal?
○ hint: if they are all legal, what do we need the Successor Function for?
○ reminder: the Successor Function takes as input a state and outputs the

available actions.

Modeling the Missionaries & Cannibals Problem

● Question: Are all theoretically possible actions always legal?
○ Answer: Not always. We must check whether a state has more cannibals than

missionaries in either side of the river.
○ When generating a successor the condition (ML >= CL AND MR >= CR) must be true,

for it to be considered (responsibility of the Successor Function).
● For example if we consider the Start State (3, 3, 1, 0, 0, 0) and any possible action we get the

following states:

{(2, 3, 0, 1, 0, 1), (2, 2, 0, 1, 1, 1), (3, 2, 0, 0, 1, 1), (1,3,0,2,0,1), (3,1,0,0,2,1)}

● The first and fourth generated states have more cannibals than missionaries on the left side
of the river.

● These states are generated from illegal actions and are not considered.
● Thus the actual successors generated by the Successor Function are:

 { (2, 2, 0, 1, 1, 1), (3, 2, 0, 0, 1, 1), (3,1,0,0,2,1) }

Modeling the Missionaries & Cannibals Problem

The search space of missionaries and cannibals problem:

Modeling the 8 puzzle problem

 1 3 2

5 6

8 7 4

 1 2 3

4 5 6

7 8

Start
State I

Goal State
G

Modeling the 8 puzzle problem

●State Space (S): All possible solvable combinations for the puzzle → 9!/2 =
181.440 states

● State = ((x,y) , P) where:
○ P S ∈ , P is the current image of the puzzle

■ - P = { p₁₁, p₁₂, p₁₃, p₂₁, …, p₃₃}, where pᵢ ⱼ is the value of the tile
in (i,j)

○ (x,y), is the coordinates of the empty space in P

●StartState = ((2,2) , I)
○ a

●GoalState = ((3,3), G)

Modeling the 8 puzzle problem

●Actions = swap the empty space with one of its neighbors (up, down, left,
right)

●Successor Function : For a given state sᵢ = ((xᵢ , yᵢ), Pᵢ) outputs succ(sᵢ) = { ((xᵢ
- 1 , yᵢ), P₁), ((xᵢ +1 , yᵢ), P₂), ((xᵢ , yᵢ - 1), P₃), ((xᵢ , yᵢ + 1), P₄) }, where (xᵢ - 1 ,
yᵢ) indicates that the empty space was swapped with the tile above it, (xᵢ +1 ,
yᵢ) with the tile below it etc. P₁, is the puzzle image produced if the empty tile
was swapped with the tile above it etc.

●isGoalState : function that for a given state sᵢ outputs:

Graph Search Algorithms

● After we formulate a real world problem into a search problem we
can utilize graph search algorithms to solve it:
○ DFS
○ BFS
○ UCS
○ A*

Depth First Search (DFS)

● Strategy: expand nodes depth-
wise until a node has no
successors

● Implementation: frontier is a
stack

Breadth First Search (BFS)

● Strategy: expand nodes layerwise
● Implementation: frontier is a queue

Uniform Cost Search (UCS)

● UCS : sorts nodes according to cost g(n)
○ Like BFS (min-depth) but for Graphs with different path costs (min-cost)

A* (A star)

● UCS : sorts nodes according to cost g(n)
● A* : expansion of UCS, nodes are sorted based on the sum g(n) +

h(n)
○ g(n): cost to reach a node n from the root node
○ h(n): heuristic function to approximate the solution

A* : Execution Example

Heuristic Function
● For a given state, estimates the cost from that state to the Goal State
● Trivial: Always returns 0 (same as UCS) or always returns the true cost
● Admissible: It does not overestimate the cost to reach the goal state

○ 0 ≤ heuristic_cost(s) ≤ true_cost(s)
● Consistent: The estimation is less than or equal to the estimation of a

neighboring state plus the cost to reach that state
○ h(s) ≤ c(s, a, s′) + h(s′)
○ intuition: That is, you don't think that it costs 5 from B to the goal, 2 from A to

B, and yet 20 from A to the goal.
● All consistent heuristics are admissible. The opposite is not necessarily true.
● Consistent heuristics make our algorithm faster, because we don’t need to

revisit nodes (in Graph Search).

Heuristic Function : How to choose a heuristic

● A heuristic is formulated based on the problem we try to solve
● Non consistent functions may prevent the search algorithms from

exploring “good” paths.
● We can easily formulate a consistent heuristic if we consider a

simpler problem (relaxation).

Heuristic Function : Pacman

● Euclidean Distance
○ Euclidean distance from the goal
○ For the given example ≈ 11.2

● Manhattan Distance
○ Manhattan distance from the goal
○ For the given example = 15

● The actual distance is greater because
of obstacles

● By simplifying the problem it is easier
to find “good” heuristics

Heuristic Function : 8 puzzle

● Hamming Distance
○ Tiles out of place
○ For the given example = 7

● Manhattan Distance
○ Manhattan distance of each tile

for the goal position
○ For the given example = 10

■ h = 0+1+1+3+1+0+1+1+2

 1 3 2

5 6

8 7 4

 1 2 3

4 5 6

7 8

Project 1

★ Important files:
○ pacman.py ⟶ Pacman main file (GameState classes)
○ game.py ⟶ The logic behind Pacman environment (Agent,Direction

classes)
○ util.py ⟶ Useful structure classes (Stack, Queue, PriorityQueue

classes)
★ Files to edit:

○ search.py ⟶ Here you will implement the search algorithms (Q1-Q4)
○ searchAgents.py ⟶ Search based agents (Q5-Q8)

Project 1 : Questions 1-4

Algorithm: GRAPH_SEARCH:

 frontier = {startNode}

 expanded = {}

 while frontier is not empty:

node = frontier.pop()

 if isGoal(node):

return path_to_node

 if node not in expanded:

expanded.add(node)

for each child of node’s

children:

frontier.push(child)

 return failure

● Generic algorithm:
○ DFS (Q1)
○ BFS (Q2)
○ UCS (Q3)
○ A* (Q4) (Pseudocode)

● Different frontiers for each
algorithm:

○ Stack (DFS)
○ Queue (BFS)
○ PriorityQueue (UCS, A*)

● Expanded should be a Set
● Keep in mind: The autograder

expects a specific number of
nodes to be expanded.

○ Controlled by
problem.getSuccessors,
don’t forget print
statements

https://en.wikipedia.org/wiki/A*_search_algorithm#Pseudocode

Project 1 : Questions 1-4 - DFS

Algorithm: GRAPH_SEARCH:

 frontier = {startNode}

 expanded = {}

 while frontier is not empty:

node = frontier.pop()

 if isGoal(node):

return path_to_node

 if node not in expanded:

expanded.add(node)

for each child of node’s

children:

frontier.push(child)

 return failure

Project 1 : Questions 1-4 - DFS

Algorithm: GRAPH_SEARCH:

 frontier = {startNode}

 expanded = {}

 while frontier is not empty:

node = frontier.pop()

 if isGoal(node):

return path_to_node

 if node not in expanded:

expanded.add(node)

for each child of node’s

children:

frontier.push(child)

 return failure

Project 1 : Questions 1-4 - DFS

Algorithm: GRAPH_SEARCH:

 frontier = {startNode}

 expanded = {}

 while frontier is not empty:

node = frontier.pop()

 if isGoal(node):

return path_to_node

 if node not in expanded:

expanded.add(node)

for each child of node’s

children:

frontier.push(child)

 return failure

Project 1 : Questions 1-4 - DFS

Algorithm: GRAPH_SEARCH:

 frontier = {startNode}

 expanded = {}

 while frontier is not empty:

node = frontier.pop()

 if isGoal(node):

return path_to_node

 if node not in expanded:

expanded.add(node)

for each child of node’s

children:

frontier.push(child)

 return failure

Project 1 : Questions 1-4 - DFS

Algorithm: GRAPH_SEARCH:

 frontier = {startNode}

 expanded = {}

 while frontier is not empty:

node = frontier.pop()

 if isGoal(node):

return path_to_node

 if node not in expanded:

expanded.add(node)

for each child of node’s

children:

frontier.push(child)

 return failure

Project 1 : Questions 1-4 - DFS

Algorithm: GRAPH_SEARCH:

 frontier = {startNode}

 expanded = {}

 while frontier is not empty:

node = frontier.pop()

 if isGoal(node):

return path_to_node

 if node not in expanded:

expanded.add(node)

for each child of node’s

children:

frontier.push(child)

 return failure

Project 1: Question 5

● Goal: Define an abstract representation of the Corners Problem
○ How can we model this search problem?
○ Create a representation for start and goal state
○ Design the successor function [expand]

■ Return the next possible states, the actions required to
reach them and their cost

■ Consider also the possibility that the next state is the goal
state

Project 1: Question 6

● Goal: Write a non-trivial, non-decreasing admissible heuristic

➢ How to design a heuristic for the corners problem ?
○ Consider an intermediate state of the problem
○ Get the unvisited nodes
○ Think of ways to compute the distance to the nodes
○ Visit the corner that is closer

➢ Note: if you encounter problems, make sure that your solution to
Question 5 does not have any subtle problems

Project 1: Question 7

● Goal: Write a non-trivial, non-decreasing admissible heuristic to eat all the food in as few
steps as possible. In other words, you are asked to write a heuristic that estimates as
closely as possible the number of steps that Pacman must take to eat all the food.

➢ You can get the full grade in around 10 lines of code.
➢ Note: The use of mazeDistance as a heuristic is forbidden! This is a trivial heuristic. You can

use it as part of your solution, but not as your solution.

➢ Key items to use in foodHeuristic:
○ foodGrid.asList: Get a list of food coordinates
○ problem.heuristicInfo: A dictionary provided to store the information required to be

reused in other calls of the heuristic

Project 1: Question 8

● Goal: Write an agent that always greedily eats the closest dot

➢ Functions you will need to implement:
○ ClosestDotSearchAgent.findPathToClosestDot : Returns a

path to the closest dot starting from gameState (Hint: You’ve already
implemented that)

○ AnyFoodSearchProblem.isGoalState: Returns whether we
have reached the goal state

	YS02 Artificial Intelligence Project 1: Search
	Logistics
	The PacMan Project
	Search Problems
	Search Problems: Pacman
	Modeling a Search Problem
	Modeling the Missionaries & Cannibals Problem
	Modeling the Missionaries & Cannibals Problem (2)
	Modeling the Missionaries & Cannibals Problem (3)
	Modeling the Missionaries & Cannibals Problem (4)
	Modeling the Missionaries & Cannibals Problem (5)
	Modeling the Missionaries & Cannibals Problem (6)
	Modeling the 8 puzzle problem
	Modeling the 8 puzzle problem (2)
	Modeling the 8 puzzle problem (3)
	Graph Search Algorithms
	Depth First Search (DFS)
	Breadth First Search (BFS)
	Uniform Cost Search (UCS)
	A* (A star)
	A* : Execution Example
	Slide 22
	Slide 23
	Slide 24
	Heuristic Function
	Heuristic Function : How to choose a heuristic
	Heuristic Function : Pacman
	Heuristic Function : 8 puzzle
	Project 1
	Project 1 : Questions 1-4
	Project 1 : Questions 1-4 - DFS
	Project 1 : Questions 1-4 - DFS (2)
	Project 1 : Questions 1-4 - DFS (3)
	Project 1 : Questions 1-4 - DFS (4)
	Project 1 : Questions 1-4 - DFS (5)
	Project 1 : Questions 1-4 - DFS (6)
	Project 1: Question 5
	Project 1: Question 6
	Project 1: Question 7
	Project 1: Question 8

