YS02 Artificial Intelligence
Project 1: Search

Konstantinos Chousos kchousos@di.uoa.gr
Nefeli Kasa nef.kasa@gmail.com

mailto:kplas@di.uoa.gr
mailto:kplas@di.uoa.gr
mailto:nef.kasa@gmail.com

Logistics

® Project: Homework 1

® Deadline: 5/11/2025

® Questions: On Piazza

® Grading:
O Vasileios Gkatsis, vgkatsis@di.uoa.gr
O Konstantinos Chousos, kchousos@di.uoa.gr
O Nefeli Kasa, nef.kasa@gmail.com

https://cgi.di.uoa.gr/~ys02/askiseis2025/hw1-2025.pdf
mailto:vgkatsis@di.uoa.gr
mailto:kchousos@di.uoa.gr
mailto:nef.kasa@gmail.com

The PacMan Project

L 2

Search Problems

Consist of:

@® Start State: the starting state of our problem

@® Successor Function: function that takes as input a state and
outputs the available actions

@® State Space: all the possible states on the problem’s world

® Goal State: the state of the problem the agent must reach

The solution is a sequence of actions from the Start State to the
Goal State.

Search Problems: Pacman =

@ Start State
O Pacman begins from the middle of the

grid “N!! 10 '
@ Successor Function

Pacman can move vertically or
horizontally, but is blocked by walls
@ State Space
O All possible states of our “problem

world” starting from the Start State
and acting only as the Successor
Function allows

® Goal State % v v v

O Pacman has eaten all the food

GSESB 1 0

Modeling a Search Problem

® Given a real world problem, how can we formulate it into a search
problem?

® We will focus on two examples:
O Missionaries and Cannibals
O 8 puzzle problem

Modeling the Missionaries & Cannibals Problem

® Problem:
O On one bank of a river are 3 missionaries and 3 cannibals.
O There is 1 boat available that can carry at most 2 people and that they would like to use
to cross the river.
O If the cannibals ever outnumber the missionaries on either of the river’s banks, the
missionaries will get eaten.

A
A,
Red circles represent . . .

cannibals
Black triangles missionaries

Modeling the Missionaries & Cannibals Problem

® Goal: Move all missionaries and cannibals to the other side of the
river
O Question: How can we formulate the given problem into a
graph search problem?

® Remember what constitutes a search problem:
O Start State: where do we start?
O Successor Function: what actions can we take?
O State Space: which are all the valid states of our worlg
O Goal State: what do we want to accomplish? ﬁ

a5

Modeling the Missionaries & Cannibals Problem

@ State:
O a tuple of 6 numbers

B M, C, B, the number of missionaries, cannibals and boats

on the left side of the river
B Mg C;, B, the number of missionaries, cannibals and boats

on the right side of the river
O State = (M, C, B, M, C., B)

® StartState=¢3,3,1,0, 0, 0) , the boat and all missionaries and
cannibals are on the left side of the river.

® GoalState = (0, 0, 0, 3, 3, 1), all missionaries and cannibals crossed
the river without any “accidents”.

Modeling the Missionaries & Cannibals Problem

® Actions: move the boat across the river with 1 or 2 people.
O if the boat is on the left side of the river the possible actions
are:

move 1 missionary to the right side (M-1,C,0, M+1,C,, 1)

move 2 missionaries to the right side (M,-2, C,, 0, M.+2, C,, 1)
move 1 cannibal to the right side (M, C-1,0, M.r, C.+1, 1)
move 2 cannibals to the right side (M,C-20 M,C.+2, 1)
move 1 missionary and 1 cannibal to the right side

(M,-1,C,-1,0, M +1, C.+1, 1)

O likewise for the right side...

® Question: Are all these actions legal?
O hint: if they are all legal, what do we need the Successor Function for?
O reminder: the Successor Function takes as input a state and outputs the
available actions.

Modeling the Missionaries & Cannibals Problem

@® Question: Are all theoretically possible actions always legal?
O Answer: Not always. We must check whether a state has more cannibals than
missionaries in either side of the river.
O When generating a successor the condition (M, >= €, AND M, >= C,) must be true,
for it to be considered (responsibility of the Successor Function).

@® For example if we consider the Start State (3, 3, 1, 0, 0, 0) and any possible action we get the
following states:

{2,3,0,1,0,1),(2,2,0,1,1,1),(3,2,0,0, 1, 1), (1,3,0,2,0,1), (3,1,0,0,2,1) }

® The first and fourth generated states have more cannibals than missionaries on the left side
of the river.

@® These states are generated from illegal actions and are not considered.

@® Thus the actual successors generated by the Successor Function are:

{(2,2,0,1,1,1),(3,2,0,0,1, 1), (3,1,0,0,2,1) }

Modeling the Missionaries & Cannibals Problem

The search space of missionaries and cannibals problem:

L
by,
L

%

&y
kA

N

2
'
1m hd
iy] 4
®ay oy
1e L]

Modeling the 8 puzzle problem

1 3 2 1 2

5 6 4 5

8 7 4 7 8
Start Goal State

State | G

Modeling the 8 puzzle problem

@ State Space (S): All possible solvable combinations for the puzzle -» 9!/2 =
181.440 states

® State = ((x,y)., P) where:
O P e §,Pisthe current image of the puzzle
- P = { p11, P12, P13, P21, ---, P33}, Where p; is the value of the tile
in (i,j)
O (x,y), is the coordinates of the empty space in P

@®StartState = ((2,2).,1)

®GoalState = ((3,3), G)

Modeling the 8 puzzle problem

@®Actions = swap the empty space with one of its neighbors (up, down, left,
right)

@®Successor Function : For a given state s; = ((x:, yi), P;) outputs suce(s:) = { ((x;
-1,y).Pi), ((x +1,y),P2), ((%.,y:-1),Ps), ((x.,y + 1), P4}, where (x; -1,
y:) indicates that the empty space was swapped with the tile above it, (x; +7,
y:) with the tile below it etc. Py, is the puzzle image produced if the empty tile
was swapped with the tile above it etc.

i
15Goal State(s;) = sz’oaISfatge(T, Yi _
0, otherwise

@isGoalState ; function that for a given §tjg_ge_ s{nuﬁp&ts:c

Graph Search Algorithms

® After we formulate a real world problem into a search problem we
can utilize graph search algorithms to solve it:
O DFS
O BFS
O UCS
O A*

Depth First Search (DF

® Strategy: expand nodes depth-
wise until a node has no
successors

® Implementation: frontier is a
stack

Breadth First Search (BFS)

® Strategy: expand nodes layerwise
® Implementation: frontier is a queue

Uniform Cost Search (UCS)

® UCS : sorts nodes according to cost g(n)
O Like BFS (min-depth) but for Graphs with different path costs (min-cost)

S@
L s
A./BI\C‘
1 5 15
s
A
| A B c
1 10 o 1
s
SO o G 1
15 5
A B ¢

(a) (b)

A* (A star)

® UCS : sorts nodes according to cost g(n)
@® A*: expansion of UCS, nodes are sorted based on the sum g(n) +
h(n)
O g(n): cost to reach a node n from the root node
O h(n): heuristic function to approximate the solution

A* : Execution Example

Arad [

Fagaras

— L Vaslui

’= Timisoara

L] Hirsova

[1 Mehadia Urziceni

75 86

Drobeta []

Bucharest

Craiova [] Giurgiu Eforle

Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj

366

160
242
161
176

T
151
226
244

Mehadia
Neamt

Oradea

Pitesti

Rimnicu Vilcea
Sibiu
Timisoara
Urziceni

Vaslui
Zerind

241
234
380
100
193
253
329

80
199
374

(a) The initial state

300=0+300

(b) After expanding Arad

393=140+253 447=118+329 449=75+374

(c) After expanding Sibiu

447=118+329 449=75+374

D (Rimnicu Vilceg
646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

526=366+160 417=317+100 553=300+253

(e) After expanding Fagaras

449=75+374

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti

449=75+374

591=338+253 450=450+0 526=366+16()

 Craiova)

418=418+0 615=455+160 607=414+193

Heuristic Function

For a given state, estimates the cost from that state to the Goal State
Trivial: Always returns 0 (same as UCS) or always returns the true cost
Admissible: It does not overestimate the cost to reach the goal state

O 0 = heuristic_cost(s) = true_cost(s)
Consistent: The estimation is less than or equal to the estimation of a
neighboring state plus the cost to reach that state

O h(s) =c(s, a, s) + h(s)

O intuition: That is, you don't think that it costs 5 from B to the goal, 2 from A to

B, and yet 20 from A to the goal.

All consistent heuristics are admissible. The opposite is not necessarily true.
Consistent heuristics make our algorithm faster, because we don’t need to
revisit nodes (in Graph Search).

Heuristic Function : How to choose a heuristic

® A heuristic is formulated based on the problem we try to solve

® Non consistent functions may prevent the search algorithms from
exploring “good” paths.

® \We can easily formulate a consistent heuristic if we consider a
simpler problem (relaxation).

Heuristic Function : Pacman

@® Euclidean Distance
O Euclidean distance from the goal
O For the given example = 11.2
® Manhattan Distance
O Manhattan distance from the goal
O For the given example = 15
® The actual distance is greater because
of obstacles
® By simplifying the problem it is easier
to find “good” heuristics

Heuristic Function : 8 puzzle

® Hamming Distance

O Tiles out of place 1
O For the given example =7
® Manhattan Distance 5

O Manhattan distance of each tile

for the goal position
O For the given example = 10 8
B h=0+1+14+34+1+0+1+1+2

Project 1

* Important files:
O pacman.py — Pacman main file (GameState classes)

O game.py — The logic behind Pacman environment (Agent,Direction
classes)

O util.py — Useful structure classes (Stack, Queue, PriorityQueue
classes)

* Files to edit:
O search.py — Here you will implement the search algorithms (Q1-Q4)
O searchAgents.py — Search based agents (Q5-Q8)

Project 1 : Questions 1-4

® Generic algorithm:
Algorithm: GRAPH SEARCH: O DFS(Q1)

. O BFS(Q2)
frontier = {startNode} O UCS (Q3)
expanded = {} O A*(Q4) (Pseudocode)
. . . @® Different frontiers for each
while frontler 1s not empty: algorithm:
node = frontier.pop () O Stack (DFS)
o . O Queue (BFS)
1f 1sGoal (node): O PriorityQueue (UCS, A¥*)

Expanded should be a Set

Keep in mind: The autograder

expects a specific number of

expanded.add (node) nodes to be expanded.

O Controlled by
problem.getSuccessors,

children: don't forget print
frontier.push(chil statements

return failure

return path to node

if node not in expanded:

for each child of node’s

https://en.wikipedia.org/wiki/A*_search_algorithm#Pseudocode

Project 1 : Questions 1-4 - DFS

///;lgorithm: GRAPH SEARCH: <\\\\

frontier = {startNode}«
expanded = {} «
while frontier is not empty:

node = frontier.pop ()

if isGoal (node) :

return path to node
if node not in expanded:
expanded.add (node)

for each child of node’s

children:
frontier.push(chil

return failure

-

4

Project 1 : Questions 1-4 - DFS

///;lgorithm: GRAPH SEARCH:

frontier = {startNode}
expanded = {}
while frontier is not empty:

node = frontier.pdpP()

if isGoal (node) :

return path to node

if node not in expanded:

expanded.ﬂi (node)
\\\ihildren:

<=

for each child of node’s

~

frontier.push(childf/

return failure

BCD

-

4

Project 1 : Questions 1-4 - DFS

///;lgorithm: GRAPH SEARCH: <\\\\

frontier = {startNode}
expanded = {}
while frontier is not empty:

node = frontier.@*’“

if isGoal (node) :

return path to node
if node not in expanded:
expanded.gsﬁ(node)

for each child of node’s

children: «
frontier.push (chi

return failure

o

CCD

-

AB

4

Project 1 : Questions 1-4 - DFS

///;lgorithm: GRAPH SEARCH: <\\\\

frontier = {startNode}

expanded = {}
while frontier is not empty:

node = frontier.pdpP()

if isGoal (node) :

return path to node

if node not in expanded:

expanded.ﬂj (node) C D

for each child of node’s

children:
\\ frontier.push(chil/@y/ § A B C

return failure

Project 1 : Questions 1-4 - DFS

///;lgorithm: GRAPH SEARCH: <\\\\

frontier = {startNode}

expanded = {}
while frontier is not empty:

node = frontier.pdpP()

if isGoal (node) :

return path to node

if node not in expanded: «

expanded.add (node) D

for each child of node’s

children:
\\ frontier.push(chil/@y/ § A B C

return failure

Project 1 : Questions 1-4 - DFS

///;lgorithm: GRAPH SEARCH: <\\\\

frontier = {startNode}

expanded = {}
while frontier is not empty:

node = frontier.@*’“

if isGoal (node) :

return path to node

if node not in expanded:

expanded.gsﬁ(node)

for each child of node’s

children:
\\ frontier.push(chil/gy/ § A B C D

return failure

Project 1: Question 5

® Goal: Define an abstract representation of the Corners Problem
O How can we model this search problem?
O Create a representation for start and goal state
O Design the successor function [expand]
B Return the next possible states, the actions required to
reach them and their cost
B Consider also the possibility that the next state is the goal
state

Project 1: Question 6

® Goal: Write a non-trivial, non-decreasing admissible heuristic

> How to design a heuristic for the corners problem ?
O Consider an intermediate state of the problem
O Get the unvisited nodes
O Think of ways to compute the distance to the nodes
O Visit the corner that is closer
> Note: if you encounter problems, make sure that your solution to
Question 5 does not have any subtle problems

Project 1: Question 7

@® Goal: Write a non-trivial, non-decreasing admissible heuristic to eat all the food in as few
steps as possible. In other words, you are asked to write a heuristic that estimates as
closely as possible the number of steps that Pacman must take to eat all the food.

You can get the full grade in around 10 lines of code.
Note: The use of mazeDistance as a heuristic is forbidden! This is a trivial heuristic. You can
use it as part of your solution, but not as your solution.

>
>

> Key items to use in foodHeuristic:
O foodGrid.asList: Get a list of food coordinates

O problem.heuristiclnfo: A dictionary provided to store the information required to be
reused in other calls of the heuristic

Project 1: Question 8

® Goal: Write an agent that always greedily eats the closest dot

> Functions you will need to implement:
O ClosestDotSearchAgent.findPathToClosestDot : Returns a

path to the closest dot starting from gameState (Hint: You've already
implemented that)

O AnyFoodSearchProblem.isGoalState: Returns whether we
have reached the goal state

	YS02 Artificial Intelligence Project 1: Search
	Logistics
	The PacMan Project
	Search Problems
	Search Problems: Pacman
	Modeling a Search Problem
	Modeling the Missionaries & Cannibals Problem
	Modeling the Missionaries & Cannibals Problem (2)
	Modeling the Missionaries & Cannibals Problem (3)
	Modeling the Missionaries & Cannibals Problem (4)
	Modeling the Missionaries & Cannibals Problem (5)
	Modeling the Missionaries & Cannibals Problem (6)
	Modeling the 8 puzzle problem
	Modeling the 8 puzzle problem (2)
	Modeling the 8 puzzle problem (3)
	Graph Search Algorithms
	Depth First Search (DFS)
	Breadth First Search (BFS)
	Uniform Cost Search (UCS)
	A* (A star)
	A* : Execution Example
	Slide 22
	Slide 23
	Slide 24
	Heuristic Function
	Heuristic Function : How to choose a heuristic
	Heuristic Function : Pacman
	Heuristic Function : 8 puzzle
	Project 1
	Project 1 : Questions 1-4
	Project 1 : Questions 1-4 - DFS
	Project 1 : Questions 1-4 - DFS (2)
	Project 1 : Questions 1-4 - DFS (3)
	Project 1 : Questions 1-4 - DFS (4)
	Project 1 : Questions 1-4 - DFS (5)
	Project 1 : Questions 1-4 - DFS (6)
	Project 1: Question 5
	Project 1: Question 6
	Project 1: Question 7
	Project 1: Question 8

