
Artificial Intelligence II/DL for NLP - 2025
Homework 1

        

B.Sc. In for mat ics & Telecom mu ni ca tions
M.Sc. Data Science & Information Technologies

Department of Informatics & Telecommunications
National & Kapodistrian University of Athens

Yorgos Pantis - pantisyorgos@gmail.com

● Eclass
● Site
● Piazza
● Kaggle

https://yorgospantis.com
https://eclass.uoa.gr/courses/DI517/
https://cgi.di.uoa.gr/~ys19/
https://piazza.com/uoa.gr/spring2025/ys19
https://www.kaggle.com/t/f5898729240a43e3a40914f75a591f4d


Outline 

● Data 
● Feature Extraction: TF-IDF Method 
● Classifier: Logistic Regression 
● Evaluation Metrics 
● Learning Curves
● Python 
● Kaggle Competition 
● Report 
● Grading
● Questions and Answers



(1/3) Data                                                                                       Formats

● Common text data sources: Documents, Social Media, Web Pages, Emails 
● Formats: CSV, JSON, XML, TXT 
● Structured vs Unstructured text data



(2/3) Data                                                                            Preprocessing

● Tokenization: Splitting text into words or phrases 
● Lowercasing: Normalizing words to lowercase 
● Stopword Removal: Eliminating common words (e.g., "the", "is") 
● Stemming & Lemmatization: Reducing words to their base forms 
● Removing special characters and punctuation 
● Checking if anonymization is needed to ensure privacy and compliance with data protection regulations



(3/3) Data                                                                                       Example

Original

4all u guyz out there!!! Did u knw that AI is changin' da world?? 

BTW, my email is johndoe123@gmail.com

Preprocessed

for all you guys out there!!! did you know that ai is changing the world??

btw, my email is XXX@email.com

mailto:johndoe123@email.com


(1/9) Feature Extraction - TF-IDF Method                                 What is it

● Term Frequency-Inverse Document Frequency (TF-IDF) is a statistical measure used to evaluate word 
importance

● Key idea: Words that appear frequently in a document but rarely in other documents are important
● TF-IDF reduces the weight of common words (e.g. “the”, “is”) while emphasizing unique terms in a 

document

Generally, transforms text into numbers, where later can be fitted into a model:



(2/9) Feature Extraction - TF-IDF Method                           How it works

Term Frequency (TF): Measures how often a word appears in a document

TF-IDF(t, d) = TF(t, d) x IDF(t)

TF(t, d) = Number of times a term appears in a document

Inverse Document Frequency (IDF): Measures how important a word is across multiple documents

IDF(t) = log(N / DF(t) )

N = total number of documents 

DF(t) = number of documents containing term



(3/9) Feature Extraction - TF-IDF Method                                  Example

We have a collection of 5 documents about technology and AI:

1. AI ai is transforming the world of technology
2. Big tech companies invest heavily in AI research
3. AI and machine learning are the future of automation
4. AI is a major trend in the tech industry today
5. Understanding AI and deep learning is essential for innovation



(4/9) Feature Extraction - TF-IDF Method                                  Example

Let’s analyse the importance of words AI and automation:

N = 5 documents 

Results: 

> AI is not useful for distinguishing the documents

> automation is more valuable to identify a text 

DF IDF = log(N / DF)

AI 5 log(5 / 5) = log(1) = 0

automation 1 log(5 / 1) = log(5) = 0.7



(5/9) Feature Extraction - TF-IDF Method                  Why we need log?

Question: Why we need log?

● Using log ensures that very frequent words don't dominate and rare words aren't overemphasized
● A logarithm function increases much slower than a linear function

Result: smoother scaling. Instead of 5 vs 1, we have 0 vs 0.7

N / DF log(N / DF)

AI 5 / 5 = 1 log(1) = 0

automation 5 / 1 = 5 log(5) = 0.7



(6/9) Feature Extraction - TF-IDF Method                  Why we need log?

Without log: A term appearing in 10 documents vs 1 document would have a 10x difference in IDF

With log: The difference is much smaller, making scoring more stable.

IDF = log(1,000,000  / 1) = log(1,000,000) = 6

IDF = log(1,000,000  / 10) = log(100,000) = 5



(7/9) Feature Extraction - TF-IDF Method                              Drawbacks

● Doesn’t capture meaning or context (e.g., synonyms like "happy" and "joy" are treated differently)
● Treats words independently, missing phrases or word order (e.g. "machine learning" is more 

meaningful than "machine" and "learning" separately
● Assumes word importance is independent of position or sentence structure
● Sensitive to rare words (terms appearing in very few documents get high scores even if they’re 

irrelevant)
● Misspelled Words: “data science” vs. “dta science” → spelling errors break recognition
● Context Sensitivity: “Apple” (fruit) vs. “Apple” (company) → no distinction



(8/9) Feature Extraction - TF-IDF Method                         Improvements

> Preprocessing

Normalization

● Problem: "Data" and "data" are treated as different words
● Solution: Convert all text to lowercase

Stopwords

● Problem: Words like "is", "the", "and" appear frequently but carry little meaning
● Solution: Remove stopwords

c) Spelling Correction 

● Problem: Misspellings distort TF-IDF results
● Solution: Try to fix them manually or use spell checkers like TextBlob or SymSpell to correct mistakes



(9/9) Feature Extraction - TF-IDF Method                       Improvements

> N-grams (A sequence of N words treated as a single unit in the model)

Document: "New York is a big city"

Unigrams: ["New", "York", "is", "a", "big", "city"]

Bigrams: ["New York", "York is", "is a", "a big", "big city"]

Trigrams: ["New York is", "York is a", "is a big", "a big city"]



(1/3) Classifier - Logistic Regression                                Formulation
            
Question: Given a dataset X = (X1, X2, …, Xn) and labels Y = {0, 1}, can we find a function F: X → Y?

Thoughts: A similar problem arises in Linear Regression. Can we adapt it to handle classification tasks?

Answer: This adaptation is called Logistic Regression

Logistic Regression is used for binary classification:

● It models the probability that a given observation 
belongs to a particular category



(2/3) Classifier - Logistic Regression                      Connection with LR 

Linear Regression: model F: X → Y, where data X = (X1, X2, …, Xn) ∊ RN and Y ∊ R 

● Coefficients β0,β1, …, βn are estimated by Mean Squared Error

Logistic Regression: model F: X → Y, where data X = (X1, X2, …, Xn) ∊ RN and Y ∊ {0, 1} 

● Coefficients β0, β1, …, βn are estimated by Log-likelihood Estimation

Note: Logistic regression is a special case of Generalized Linear Models



(3/3) Classifier - Logistic Regression                          Connection with 
LR Linear Regression    Logistic Regression

● Based on a straight line
● Unable to fit binary data properly

● Based on sigmoid function
● Able to fit binary data



(1/5) Evaluation Metrics

Metrics:

● Accuracy
● Precision
● Recall
● F1 score 

Let’s denote:

● TP = True Positives (correctly predicted positive instances)
● TN = True Negatives (correctly predicted negative instances)
● FP = False Positives (incorrectly predicted as positive)
● FN = False Negatives (incorrectly predicted as negative)



(2/5) Evaluation Metrics              Accuracy

Accuracy: 

● Definition: Measures the proportion of correctly classified instances out of the total instances
● Formula:

● Range: 0 ≤ Accuracy ≤ 1
● Interpretation: High accuracy indicates good performance, but it might be misleading for imbalanced 

datasets



(3/5) Evaluation Metrics         Precision

Precision: 

● Definition: Measures the accuracy of positive predictions
● Formula:

● Range: 0 ≤ Precision ≤ 1
● Interpretation: High precision means fewer false positives; useful when false positives are costly (e.g., 

spam detection)



(4/5) Evaluation Metrics       Recall

Recall: 

● Definition: Measures the ability to capture all relevant instances
● Formula:

● Range: 0 ≤ Recall ≤ 1
● Interpretation: High recall means fewer false negatives; important in scenarios like medical diagnosis



(5/5) Evaluation Metrics          F1 Score

F1 Score:

● Definition: Balances precision and recall into a single metric
● Formula:

● Range: 0 ≤ F1 Score ≤ 1
● Interpretation: The F1 Score is useful when both false positives and false negatives are significant. High 

useful in unbalanced datasets



(1/5) Learning Curves         Why we need them

● Learning curves show model performance over training
● Plot of performance (e.g., general metric, such as accuracy or loss)

 against training size or epochs

Two curves: 

● Training performance (on training data)
● Testing performance (on unseen data)



(2/5) Learning Curves                              Examples

Fitted model for the classification task:



(3/5) Learning Curves                         Underfitting

Underfitting: 

● Model is too simple to capture the underlying pattern
● Low training and validation error

● Characteristics: both training and validation curves show low performance 
● Causes:  when a model is too simple, has insufficient training time, or lacks relevant features
● Solution: Increase model complexity, more training time, add relevant features



(4/5) Learning Curves                            Overfitting

Overfitting: 

● Model learns noise along with the pattern
● Low training error, high validation error

● Characteristics: low validation performance with high training performance
● Causes:  model complexity, insufficient data, lack of regularization
● Solution: regularization, more data, simpler model

Note: In some cases, overfitting does not follow this pattern—for instance, overparameterized neural networks 
can have more parameters than data points yet still achieve near-perfect performance on both training and 
validation sets



(5/5) Learning Curves                            Ideal Plots

Ideal Learning Curve:

● Balanced performance on training and validation sets
● Training curve: low error, stable after some epochs
● Validation curve: approaches training curve, without large gap
● Achieved by appropriate model complexity, sufficient data, and regularization



(1/7) Python                                                             Scikit-learn Libraries

Packages:

● Regular Expression for data cleaning
● TF-IDF Method for feature extraction
● Logistic Regression for fitting the model
● Metrics to evaluate the model’s performance

Online Python: 

● Google Colab

https://docs.python.org/3/library/re.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://colab.google/


(2/7) Python                                                                   Code Example

Import libraries



(3/7) Python                                                                   Code Example

Import the data 



(4/7) Python                                                                   Code Example

Clean the data



(5/7) Python                                                                   Code Example

Split the data into train/test sets and fit the TF-IDF method 



(6/7) Python                                                                        Code Example

Fit Logistic Regression and print the metrics



(7/7) Python                                                                       Code Example

Learning curves to check overfitting and underfitting



(1/3) Kaggle Competition                                                                Rules

Rules: 

● Team name: academic identification number (sdiXXYYYYY) 
● Submission of solutions: file name submission.csv. See the sample_submission.csv
● Notebook Name: academic identification number (sdiXXYYYYY) 
● Share your Python Notebook only with me



(2/3) Kaggle Competition                                                                   Task

Task: develop a sentiment classifier using only Logistic Regression and only TF-IDF in Python on a given 
English-language Twitter dataset

● Exploratory Data Analysis
● Data cleaning
● Fit the TF-IDF method
● Fit the logistic regression model
● Evaluation metric for the model. Only accuracy in Kaggle competition and accuracy, precision, recall, 

F1 score in the report
● Plots of the model



(3/3) Kaggle Competition                                                             Dataset

Dataset description:

● train_dataset for training the model
● val_dataset for validation the model
● test_dataset for testing the model in Kaggle competition

Each dataset consists of three columns:

● ID: A unique identifier for each tweet
● Text: The content of the tweet
● Label: A binary value where 0 represents a negative sentiment and 1 represents a positive sentiment

Note: There are no labels in test_dataset



Report

Report requirements:

● Clearly explain your thought process and reasoning
● Provide a detailed description of your methodology
● Justify your choices for model parameters, explaining their impact on performance

Submission guideline: 

● You must follow the provided template for your report using Latex or Word
● Reports must be in English for Data Science & IT master's students; others may choose any language
● Submit your report in .pdf format via only e-Class
● Name your report as [full-id].pdf (e.g., ZZZZZZXXYYYYY.pdf if you are a bachelor student in this 

department)
● You are encouraged to mention in the appendices of your report any other approaches you explored that 

did not improve the model's performance

https://eclass.uoa.gr/modules/document/file.php/DI517/Projects%202023-24/Project%201%202023-24/AI2-Template.zip


Grading

● Implementation: code and Kaggle competition                                     Total 70%
○ EDA and data processing       10%
○ Model creation                  20%
○ Experiments       30%
○ Fine Tuning and Optimization       10%

● Report: analysis and presentation  Total 30%
○ Experiments       10%
○ Analysis       15%
○ Plots         5%



(1/4) Questions and Answers

Q1: How to balance preprocessing and accuracy, and the role of EDA in the dataset?

A1:

● Data preprocessing serves multiple purposes—enhancing privacy, reducing overfitting, and improving 
model performance

● Stop words aren't always a problem. If your model is robust,
 free from bias toward specific words, and not overfitting, keeping stop words may actually improve 
accuracy

● Start with EDA: Examine the original dataset and 
its key statistics to identify potential improvements

● Apply preprocessing and then analyze how these 
modifications impact the dataset's structure and 
distribution

● Support your choices with appropriate plots

Format Statistics

Original data - -

Preprocessed data - -



(2/4) Questions and Answers

Q2: What is considered as "good" accuracy?

A2:

● Start by considering the worst accuracy you can achieve without using any model at all—this serves as 
your baseline

● Next, test a simple model without preprocessing or 
complex architecture to establish an initial benchmark

● Experiment with improvements such as preprocessing, 
feature engineering, or using a more advanced model

● Perform hyperparameter tuning to optimize performance
● Always watch out for overfitting and underfitting
● Support your choices with appropriate plots

Models Scores (train / val / test)

Random -

Baseline -

Advanced1 -

Advancedn -



(3/4) Questions and Answers

Q3: What is an "acceptable" level of overfitting for the model?

A3:

● There is no single numerical threshold—context matters. Consider a model with 0% training accuracy 
and 7% testing accuracy

● Does the model perform very well on the training set but poorly on the validation and test sets? Or does 
it show similar behavior on validation and test sets?

● Examine the learning curves. How does the model's performance change with increasing data in the 
training and validation sets?

● Would adding regularization improve generalization?
● Does the model have too many parameters? Reducing them might help strike a balance between 

complexity and performance
● Support your choices with appropriate plots



(4/4) Questions and Answers

Any other questions? Feel free to reach out on Piazza

https://piazza.com/uoa.gr/spring2025/ys19

https://piazza.com/uoa.gr/spring2025/ys19
https://piazza.com/uoa.gr/spring2025/ys19


Good luck!


