header photo

Christos Konaxis

Publications

Journals

  1. I. Z. Emiris, C. Konaxis, and C. Laroche. Implicit representations of high-codimension varieties. Computer Aided Geometric Design, 74:101764, 2019.
  2. I.Z. Emiris, T. Kalinka, and C. Konaxis, "Geometric operations using sparse interpolation matrices" , Graphical Models, 82:99 – 109,
    doi>10.1016/j.gmod.2015.06.007.
  3. M.I. Karavelas, C. Konaxis, and E. Tzanaki, "The maximum number of faces of the Minkowski sum of three convex polytopes", Journal of Computational Geometry, 6(1):21-74, 2015.
  4. I.Z. Emiris, V. Fisikopoulos, C. Konaxis, and L. Peñaranda, "An output-sensitive algorithm for computing projections of resultant polytopes", International Journal of Computational Geometry & Applications, 23(4n5), 2013.
  5. I.Z. Emiris, T. Kalinka, C. Konaxis, and T. Luu Ba, "Sparse implicitization by interpolation: Characterizing non-exactness and an application to computing discriminants", Computer-Aided Design - Special Issue on Solid and Physical Modeling 2012, Volume 45, Issue 2, pages 252–261, February 2013,
    doi>10.1016/j.cad.2012.10.008.
  6. I.Z. Emiris, T. Kalinka, C. Konaxis, and T. Luu Ba, "Implicitization of curves and (hyper)surfaces using predicted support", Theoretical Computer Science - Special Issue on Symbolic and Numeric Computation, 2012,
    doi>10.1016/j.tcs.2012.10.018.
  7. I.Z. Emiris and C. Konaxis, "Single-lifting macaulay-type formulae of generalized unmixed sparse resultants", J. Symb. Comput., vol. 46, no. 8, pages 919-942, 2011.
    doi> 10.1016/j.jsc.2011.02.002.
  8. I.Z. Emiris, C. Konaxis and L. Palios, "Computing the Newton polygon of the implicit equation", Mathematics in Computer Science - MCS Special Issue on Computational Geometry and Computer-Aided Design, vol. 4, no. 1, p. 25, 2010.
    doi> 10.1007/s11786-010-0046-1.
    Maple code based on this paper.

Conferences

  1. I.Z. Emiris, C. Konaxis, I.S. Kotsireas, and C. Laroche. "Matrix Representations by Means of Interpolation". ISSAC ’17, Kaiserslautern, Germany, July 25–28, 2017. Preprint.
  2. I.Z. Emiris, C. Konaxis, and Z. Zafeirakopoulos, "Minkowski Decomposition and Geometric Predicates in Sparse Implicitization", ISSAC 2015, Bath, UK.
  3. M.I. Karavelas, C. Konaxis, and E. Tzanaki, "The maximum number of faces of the Minkowski sum of three convex polytopes", In Proc. of the 29th Annual Symposium on Computational Geometry (SoCG'13), Rio de Janeiro, Brazil, 2013.
  4. I.Z. Emiris, V. Fisikopoulos, C. Konaxis, and L. Peñaranda, "An output-sensitive algorithm for computing projections of resultant polytopes", In Proc. of the 28th Annual Symposium on Computational Geometry (SoCG 2012), Chapel Hill, NC, USA.
  5. I.Z. Emiris, T. Kalinka, and C. Konaxis, "Implicitization of curves and surfaces using predicted support", Symbolic-Numeric Computation, San Jose, California, 2011.
    Maple code based on this paper and an example file.
  6. I.Z. Emiris, C. Konaxis, and L. Palios, "Computing the Newton polytope of specialized resultants", MEGA 2007, RICAM, Strobl, Austria, 2007.

Workshops-Posters

  1. I. Emiris, K. Gavriil, and C. Konaxis. "Interpolation of syzygies for implicit matrix representations., 7th International Conference on Algebraic Informatics, Kalamata, Greece, 2017
  2. I.Z. Emiris, V. Fisikopoulos, and C. Konaxis, "A software framework for computing Newton polytopes of resultants and (reduced) discriminants", In poster session, 12th International Conference on Effective Methods in Algebraic Geometry (MEGA 2013), Frankfurt, Germany.
  3. I.Z. Emiris, V. Fisikopoulos, and C. Konaxis, "Exact and approximate algorithms for resultant polytopes", 28th European Workshop on Computational Geometry (EuroCG12), Assisi, Perugia, Italy, 2012.
  4. I.Z. Emiris, V. Fisikopoulos, and C. Konaxis, "Regular triangulations and resultant polytopes", 26th European Workshop on Computational Geometry, Dortmund, Germany, 2010.
  5. I.Z. Emiris, C. Konaxis, and L. Palios, "Computing the Newton polygon of the implicit equation", ShApes, Geometry and Algebra (SAGA 2008), CIEM, Castro Urdiales, Spain, 2008.
  6. I.Z. Emiris and C. Konaxis, "Computing the Newton Polytope of the Resultant", In poster session, Workshop on Geometric and Topological Combinatorics (WGTC06), Alcalá de Henares, Spain, 2006.

Various

  1. I.Z. Emiris, T. Kalinka, and C. Konaxis, "Sparse implicitization by interpolation: Geometric computations using matrix representations", Technical Report, 2014. arXiv:1411.2846 [math.AG].
  2. M.I. Karavelas, C. Konaxis, and E. Tzanaki, "The maximum number of faces of the Minkowski sum of three convex polytopes", Technical Report, 2012. arXiv:1211.6089 [cs.CG].
  3. I.Z. Emiris, V. Fisikopoulos, C. Konaxis, and L. Peñaranda, "An output-sensitive algorithm for computing projections of resultant polytopes", Technical Report, 2011. arXiv:1108.5985 [cs.SC].
  4. Algebraic algorithms for polynomial system solving and applications, PhD thesis, June 2010, [PDF]
  5. I.Z. Emiris and C. Konaxis, "Single-lifting macaulay-type formulae of generalized unmixed sparse resultants", Technical Report M/10/04, Institut des Hautes Etudes Scientifiques (IHES), 2010.
  6. I.Z. Emiris, C. Konaxis, and L. Palios, "Computing the Newton polygon of the implicit equation", Technical Report, 2008. arXiv:0811.0103 [math.AG].
  7. Triangulations and Resultants, Master's thesis, July 2006, [PDF(in Greek)], [slides (in English)]