Publications

 

 

Refereed journal papers

371

 

[1]          Drakopoulos V., On the additional fixed points of Schröder iteration functions associated with a one-parameter family of cubic polynomials, Computers & Graphics 22 (1998), 629634.

 

 

atcurrent

[2]          Dalla Leoni and Drakopoulos V., On the parameter identification problem in the plane and the Polar Fractal Interpolation Functions, Journal of Approximation Theory, 101 (1999), 289–302. (DD99)

MR 2001c:41028

 

 

[3]          fractals54.jpgDrakopoulos V., How is the dynamics of König iteration functions affected by their additional fixed points?, Fractals 7 (1999), 327334.

MR 2000g:37048

 

 

[4]          sinumcoverDrakopoulos V., Argyropoulos N. and Böhm A., Generalized computation of Schröder iteration functions to motivate families of Julia and Mandelbrot-like sets, SIAM Journal on Numerical Analysis 36 (1999), 417–435.

MR 2000d:65044

 

 

[5]          Drakopoulos V., Schröder iteration functions associated with a one-parameter family of biquadratic polynomials, Chaos, Solitons & Fractals 13 (2002), 233243.

MR 2002g:37046

C09600779

 

[6]          Drakopoulos V., Comparing rendering methods for Julia sets, Journal of WSCG 10 (2002), 155–161. (DRA02)

 

 

sd

[7]          Drakopoulos V., Kakos A. and Nikolaou N., A probabilistic power domain algorithm for fractal image decoding, Stochastics & Dynamics 2 (2002), 161–173. (DKN02)

MR 2003b:68202

 

 

[8]          BJYYDrakopoulos V., Mimikou Niki and Theoharis T., An overview of parallel visualisation methods for Mandelbrot and Julia sets, Computers & Graphics 27 (2003), 635–646.

 

 

 

[9]          Dalla Leoni, Drakopoulos V. and Prodromou Maria, On the box dimension for a class of nonaffine fractal interpolation functions, Analysis in Theory and Applications 19 (2003), 220–233. (DDP03)

cmaMR 2004m:41007

 

 

[10]      Drakopoulos V., Are there any Julia sets for the Laguerre iteration function?, Computers & Mathematics with Applications 46 (2003), 1201–1210.

MR 2004i:37093

 

138_small

[11]      Drakopoulos V. and Nikolaou N., Efficient computation of the Hutchinson metric between digitised images, IEEE Trans. Image Processing 13 (2004), 1581–1588. (Hausdorff.exe)

 

 

 

[12]      Bouboulis P., Dalla Leoni and Drakopoulos V., Image compression using recurrent bivariate fractal interpolation surfaces, International Journal of Bifurcation and Chaos 16 (7) (2006), 1–9. (BDD06)

 

 

ImageProcessing

[13]      Bouboulis P., Dalla Leoni and Drakopoulos V., Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension, Journal of Approximation Theory 141 (2006), 99117.

 

 

 

[14]      Drakopoulos V., Bouboulis P. and Theodoridis S., Image compression using affine fractal interpolation surfaces on rectangular lattices, Fractals 14 (4) (2006), 259–269.

 

 

 

[15]      Drakopoulos V. and Nikolaou N., On the computation of the Hausdorff metric between digitised images in three dimensions, Applied Mathematical Sciences 1 (2007), 145164.

 

 

 

[16]      Manousopoulos P., Drakopoulos V. and Theoharis T., Curve fitting by fractal interpolation, Transactions on Computational Science I (2008), LNCS 4750, pp. 85–103.

 

 

 

[17]      Manousopoulos P., Drakopoulos V. and Theoharis T., Parameter identification of 1D fractal interpolation functions using bounding volumes, Journal of Computational and Applied Mathematics 233 (4) (2009), 10631082.

 

 

 

[18]      Drakopoulos V., Sequential visualisation methods for the Mandelbrot set, Journal of Computational Methods in Sciences and Engineering 10 (1–2)(2010), 37–45.

 

 

 

[19]      Manousopoulos P., Drakopoulos V. and Theoharis T., Parameter identification of 1D recurrent fractal interpolation functions with applications to imaging and signal processing, Journal of Mathematical Imaging and Vision 40 (2) (2011), 162–170.

 

 

 

[20]      Drakopoulos V. and Manousopoulos P., Bivariate fractal interpolation surfaces: Theory and applications, International Journal of Bifurcation and Chaos 22 (9) (2012), 1250220 [8 pages].

 

 

 

[21]      Alexopoulos C. and Drakopoulos V., On the computation of the Kantorovich distance for images, Chaotic Modeling and Simulation 2 (2012), 345–354.

 

 

 

[22]      Drakopoulos V. and Manousopoulos P., Height field representation and compression using fractal interpolation surfaces on rectangular domains, Chaotic Modeling and Simulation 4 (2012), 593–600.

 

 

 

[23]      Drakopoulos V., Fractal-based image encoding and compression techniques, Commun. – Scientific Letters of the University of Zilina, vol. 15, No. 3, 2013, 48–55.

 

 

Papers in scientific collections

3491

 

[24]      Argyropoulos N., Böhm A. and Drakopoulos V., Julia and Mandelbrot-like sets for higher order König iteration functions, in Novak M. M. and Dewey T. G. (eds), Fractal frontiers, World Scientific, Singapore, 1997, 169–178.

MR 99g:30028

 

 

[25]      Drakopoulos V. and Böhm A., Basins of attraction and Julia sets of Schröder iteration functions, in Bountis T. and Pnevmatikos Sp. (eds), Order and Chaos in Nonlinear Dynamical Systems, Pnevmatikos, Athens, 1998, 157–163.

 

4061

 

[26]      Drakopoulos V. and Dalla Leoni, Space-filling curves generated by fractal interpolation functions, in Iliev O. P., Kaschiev M. S., Margenov S. D., Sendov Bl. H.and Vassilevski P. S. (eds), Recent advances in numerical methods and applications ΙΙ, World Scientific, Singapore, 1999, 784–792.

 

 

 

[27]      Drakopoulos V. and Georgiou S., Visualization on the Riemann sphere of Schröder iteration functions and their efficient computation, in Mastorakis N. E. (ed), Modern applied mathematics techniques in Circuits, Systems and Control, World Scientific Engineering Society, New York and Athens, 1999, 131–137.

 

 

 

[28]      Drakopoulos V., Tziovaras A., Böhm A. and Dalla L., Fractal interpolation techniques for the generation of space-filling curves, in Lipitakis E. A. (ed), Hellenic European Research on Computer Mathematics and its Applications, LEA, Athens, 1999, 843–850.

 

 

 

[29]      Drakopoulos V. and Nikolaou N., Efficient computation of several metrics between digitised monochrome images, in Bountis T., Hellinas D. and Grispolakis J. (eds), Order and Chaos in Nonlinear Dynamical Systems, Vol. VII, Pnevmatikos, Athens, 2002, 259–274.

 

 

 

[30]      Drakopoulos V., Comparing sequential visualization methods for the Mandelbrot set, in Simos T. E. (ed), International Conference of Computational Methods in Sciences and Engineering 2003 (ICCMSE 2003), 148–151.

 

 

5521.jpg

[31]      Nikolaou N., Kakos A. and Drakopoulos V., A deterministic power domain algorithm for fractal image decompression, in Novak M. M. (ed), Thinking in patterns: Fractals and related phenomena in nature, World Scientific, Singapore, 2004, 255–265.

 

 

 

[32]      Manousopoulos P., Drakopoulos V. and Theoharis T., Fractal Active Shape Models, in Kropatsch W. G., Kampel M. and Hanbury A. (eds), Computer Analysis of Images and Patterns, Springer–Verlag, Berlin and Heidelberg, 2007, 645–652.

 

 

 

[33]      Manousopoulos P., Drakopoulos V. and Theoharis T., Effective representation of 2D and 3D data using fractal interpolation, in Franz-Erich Wolter, Alexei Sourin (eds), International Conference on Cyberworlds, IEEE Computer Society, 2007, Los Alamitos, California, 457464.

 

 

 

Unrefereed journal papers

 

 

[34]      Dalla Leoni, Drakopoulos V. and Böhm A., Elements of fractal theory, Mathematical Gazette 43 (1995), 21-48 (in Greek).

 

[35]      Drakopoulos V. and Dalla Leoni, The new dimension of the educational mathematical thinking, 14th Greek Conference of Mathematical Education, HMS, 1997, 235–242 (in Greek).

 

[36]      Drakopoulos V. and Böhm A., The geometry of nature in education, Two-day Workshop in Informatics “Informatics in Secondary Education”, GCS, 1997, 117–124 (in Greek).

 

[37]      Dalla Leoni and Drakopoulos V., Polar Fractal Interpolation Functions, 7th Greek Conference on Mathematical Analysis, Univ. Cyprus, 1999, 3945.

 

[38]      Drakopoulos V., Informatikbildung an den griechischen Schulen, Erziehung & Unterricht 1-2 (2002), 91–98 (invited).

 

[39]      Drakopoulos V., How many guards needs a gallery?, Astrolavos 5 (2006), 61–69 (in Greek).

 

 

 

Theses, Dissertations and other publications

 

 

[40]      Dimas E. and Drakopoulos V., Numerical solution of partial differential equations using finite differences method, Univ. of Athens, 1989 (in Greek).

 

[41]      Drakopoulos V., Introduction to fractals and chaotic dynamics, M.S. Thesis, Univ. of Athens, 1992 (in Greek).

 

[42]      Drakopoulos V., Dynamics of rational iteration methods and fractal functions: Algorithmic construction and their computer graphical representation, Ph.D. Thesis, University of Athens, 1998 (in Greek).

 

 

 

Citations (44)

 

o      [21] has been cited in Markus Ellerbrake, Eine schnelle näherungsweise Lösung des Euklidischen Travelling Salesman Problems mittels raumfüllender Kurven, Diplomarbeit, Rheinischen Friedrich-Wilhelms-Universität Bonn.

 

o      [1], [4] and [19] have been cited in S. Plaza, Conjugacies classes of some numerical methods, Proyecciones, 20 (2001), 1–17.

 

o      [3] and [19] have been cited in Xavier Buff and Christian Henriksen, On König’s root-finding algorithms, Nonlinearity, 16 (2003), 9891015.

 

o      [2] has been cited in Ruan Huojun, Sha Zhen and Su Weiyi, Counterexamples in parameter identification problem of the fractal interpolation functions, Journal of Approximation Theory, 122 (2003), 121–128.

 

o      [2] has been cited in R. Huojun, S. Zhen and S. Weiyi, Parameter identification problem of the fractal interpolation functions (2003).

 

o      [1], [4] and [5] have been cited in Sergio Amat, Sonia Busquier and Sergio Plaza, Dynamics of a family of third-order iterative methods that do not require using second derivatives, Applied Mathematics and Computation 154 (2004), 735746.

 

o      [4] and [19] have been cited in Sergio Amat, Sonia Busquier and Sergio Plaza, Review of some iterative root-finding methods from a dynamical point of view, Scientia 10 (2004), 3–35.

 

o      [23] has been cited in Guohua Jin and John Mellor-Crummey, SFCGen: A framework for efficient generation of multi-dimensional space-filling curves, ACM Transactions on Mathematical Software 31 (2005), 120148.

 

o      [19] has been cited in Sergio Amat, Sonia Busquier and Sergio Plaza, On the dynamics of a family of third-order iterative functions, to appear in ANZIAM Journal (2005), 735746.

 

o      [5] has been cited in Shou Gang Sui and Shu Tang Liu, Control of Julia sets, Chaos, Solitons and Fractals 26 (2005), 1135–1147.

 

o      [1], [4] and [5] have been cited in Sergio Amat, Sonia Busquier and Sergio Plaza, Dynamics of the King and Jarratt iterations, Aequationes Mathematicae 69 (2005), 212–223.

 

o      [2] has been cited in Zheng-shun Ruan and Xiao-Lin Wang, A note on parameter identification problem for fractal interpolation functions, Journal of Mathematics (Wuhan) 26 (2006), no. 1, 63–66.

 

o      [1] has been cited in Xingyuan Wang and Xuejing Yu, Julia sets for the standard Newton’s method, Halley’s method, and Schröder’s method, Applied Mathematics and Computation 189 (2) (2007), 1186–1195.

 

o      [2], [12] and [13] have been cited in Bouboulis P. and Dalla Leoni, Closed fractal interpolation surfaces, Journal of Mathematical Analysis and Applications 327 (1) (2007), 116126.

 

o      [13] has been cited in Bouboulis P. and Dalla Leoni, Fractal interpolation surfaces derived from fractal interpolation functions, Journal of Mathematical Analysis and Applications 336 (2) (2007), 919936.

 

o      [10] and [13] have been cited in Bouboulis P. and Dalla Leoni, A general construction of fractal interpolation functions on grids of Rn, European Journal of Applied Mathematics 18 (4) (2007), 449476.

 

o      [13] has been cited in Bouboulis P., Pseudo random number generation with the aid of iterated function systems on R2, International Journal of Modern Physics C 18 (5) (2007) 861–882.

 

o      [2] has been cited in Xiancun Chen, Qiuli Guo and Lifeng Xi, The range of an affine fractal interpolation function, International Journal of Nonlinear Science 3 (3) (2007) 181–186.

 

o      [2] has been cited in Qin Wang, Min Jin and Lifeng Xi, Fitness of graph based on fractal dimension, International Journal of Nonlinear Science 4 (2) (2007) 156–160.

 

o      [1] has been cited in Xingyuan Wang and Tingting Wang, Julia sets of generalized Newton’s method, Fractals 15 (4) (2007) 323–336.

 

o      [2] has been cited in Min Jin, Qin Wang and Lifeng Xi, Investigation on Fitting Graph Based on Fractal Dimension’s Pretreatment, in B. Apolloni et al. (eds), Knowledge-Based Intelligent Information and Engineering Systems, LNCS 4693, SpringerVerlag, Berlin and Heidelberg, 2007, 217–224.

 

o      [2] has been cited in Qin Wang, Min Jin, Lifeng Xi and Zhaoling Meng,  Fractal Interpolation Fitness Based on BOX Dimension’s Pretreatment, in O. Castillo et al. (eds), Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, ASC 42, Springer–Verlag, Berlin and Heidelberg, 2007, 520–526.

 

o      [2] has been cited in Maria A. Navascues, Fractal interpolants on the unit circle, Applied Mathematics Letters 21 (2008) 366-371.

 

o      [19] has been cited in S. Amat, C. Bermúdez, S. Busquier, S. Plaza, On the dynamics of the Euler iterative function, Applied Mathematics and Computation 197 (2) (2008) 725–732.

 

o      [2] has been cited in Hong-Yong Wang and Xiu-Juan Li, Perturbation error analysis for fractal interpolation functions and their moments, Applied Mathematics Letters 21 (5) (2008), 441446.

 

o      [2] has been cited in Jin Min, Wang Qin and Xi Lifeng, Research and implementation on genetic algorithms for graph fitness optimization, WSEAS TRANSACTIONS on SYSTEMS 7 (4) (2008) 321–331.

 

o      [13] has been cited in Hong-Yong Wang, Shou-Zhi Yang and Xiu-Juan Li, Error analysis for bivariate fractal interpolation functions generated by 3-D perturbed iterated function systems, Computers and Mathematics with Applications 56 (2008) 1684–1692.

 

o      [13] has been cited in Wolfgang Metzler and Chol Hui Yun, Construction of fractal interpolation surfaces on rectangular grids, International Journal of Bifurcation and Chaos (2008).

 

o      [13] has been cited in Wolfgang Metzler and Chol Hui Yun, Construction of recurrent fractal interpolation surfaces (RFISs) on rectangular grids, International Journal of Bifurcation and Chaos (2008).

 

o      [13] has been cited in Zhigang Feng, Variation and Minkowski dimension of fractal interpolation surface, Journal of Mathematical Analysis and Applications 345 (1) (2008) 322–334.

 

o      [13] has been cited in Bouboulis P., Dalla Leoni and Kostaki-Kosta M., Construction of smooth fractal surfaces using Hermite fractal interpolation functions, Bull. Greek Math. Soc.

 

o      [12] has been cited in A.K.B. Chand and M.A. Navascués, Natural bicubic spline fractal interpolation, Nonlinear Analysis: Theory, Methods & Applications 69 (11) (2008) 3679–3691.

 

o      [12] has been cited in W. Metzler, CH. Yun and M. Barski, Image compression predicated on recurrent iterated function systems, 2008.

 

 

Refereed conference papers

 

 

[1]          Argyropoulos N., Böhm A. and Drakopoulos V., Julia and Mandelbrot-like sets for higher order König rational iteration functions, 4th IFIP working conference on Fractals in the Natural and Applied Sciences, Denver Colo., U.S.A, April 8–11, 1997.

 

[2]          Drakopoulos V. and Dalla Leoni, Space-filling curves generated by fractal interpolation functions, 4th International Conference on Numerical Methods and Applications, Sofia, Bulgaria, Aug. 19–23, 1998.

 

[3]          Drakopoulos V. and Georgiou S., Visualization on the Riemann sphere of Schröder iteration functions and their efficient computation, 3rd IMACS/IEEE CSCC ’99 International Multiconference, Athens, Jul. 4–8, 1999.

 

[4]          Drakopoulos V., Tziovaras A., Böhm A. and Dalla Leoni, Fractal interpolation techniques for the generation of space-filling curves, 4th Hellenic European Recearch on Computer Mathematics and its Applications, AUEB, Athens, Sep. 24–26, 1998.

 

[5]          Drakopoulos V., Comparing rendering methods for Julia sets, submitted to WSCG 2002, anonymous Abstract (html), anonymous paper, Abstract (html), paper.

 

[6]          Drakopoulos V., Comparing sequential visualization methods for the Mandelbrot set, International Conference of Computational Methods in Sciences and Engineering 2003 (ICCMSE 2003), Kastoria, Greece, Sep.12–16, 2003.

 

[7]          Nikolaou N., Kakos A. and Drakopoulos V., A deterministic power domain algorithm for fractal image decompression, 8th International Multidisciplinary Conference on Complexity and Fractals in Nature, Vancouver, Canada, April 4–7, 2004.

 

[8]          Manousopoulos P., Drakopoulos V. and Theoharis T., Fractal Active Shape Models, 12th International Conference on Computer Analysis of Images and Patterns (CAIP 2007), August 27–29, Vienna, Austria.

 

[9]          Manousopoulos P., Drakopoulos V., Theoharis T. and Stavrou P., Effective representation of 2D and 3D data using fractal interpolation, New Advances in Shape Analysis and Geometric Modeling (NASAGEM Workshop of the Cyberworlds 2007), 24 – 26 October, Hannover.

 

[10]      Manousopoulos P., Drakopoulos V. and Theoharis T., Volume data visualization using fractal interpolation surfaces, submitted.

 

 

 

Unrefereed conference papers

 

 

[11]      Drakopoulos V., Julia and Mandelbrot sets: An algorithmic approach, 2nd Panhellenic Conference/7th Summer School of Nonlinear Dynamics, Xanthi, July 25 – Aug. 5 1994 (in Greek).

 

[12]      Argyropoulos N., Drakopoulos V. and Böhm A., Basins of attraction and Julia sets of Schröder iteration functions, 3rd Panhellenic Conference/8th Summer School of Complexity and Chaotic Dynamics of Nonlinear Systems, Xanthi, July 17–28 1995.

 

[13]      Drakopoulos V. and Böhm A., The geometry of nature in education, Two-day Workshop in Informatics “Informatics in Secondary Education”, Athens, April 4–5 1997. (in Greek)

 

[14]      Drakopoulos V., Argyropoulos N. και Böhm A., Σύνολα τύπου Julia και Mandelbrot των, ανώτερης τάξης, ρητών επαναληπτικών συναρτήσεων König, 5ο Πανελλήνιο Συνέδριο/10ο Θερινό Σχολείο Πολυπλοκότητας και Χαοτικής Δυναμικής Μη Γραμμικών Συστημάτων, Θεσσαλονίκη, 14–25 Ιουλ. 1997 (in Greek).

 

[15]      Drakopoulos V. and Εvangelatou-Dalla Leoni, The new dimension of the educational mathematical thinking, 14th Greek Conference of Mathematical Education, Mytilini, Nov. 14–17 1997 (in Greek).

 

[16]      Drakopoulos V., Εvangelatou-Dalla Leoni and Böhm A., Καμπύλες γεμίζουσες το χώρο παραγόμενες από fractal συναρτήσεις παρεμβολής, 6ο Πανελλήνιο Συνέδριο/11ο Θερινό Σχολείο στη Μη Γραμμική Δυναμική: Πολυπλοκότητα και Χάος, Λειβαδιά, 13–25 Ιουλ. 1998 (in Greek).

 

[17]      Drakopoulos V., Περί των πρόσθετων σταθερών σημείων των επαναληπτικών συναρτήσεων Schröder εφαρμόζουσες σε μια μονοπαραμετρική οικογένεια κυβικών πολυωνύμων, 6ο Πανελλήνιο Συνέδριο/11ο Θερινό Σχολείο στη Μη Γραμμική Δυναμική: Πολυπλοκότητα και Χάος, Λειβαδιά, 13–25 Ιουλ. 1998 (in Greek).

 

[18]      Dalla Leoni and Drakopoulos V., Polar Fractal Interpolation Functions, 7th Greek Conference on Mathematical Analysis, Nicosia, Apr. 14–18 1999.

 

[19]      Εvangelatou-Dalla Leoni and Drakopoulos V., Polar Fractal Interpolation Functions, 7ο Πανελλήνιο Συνέδριο/12ο Θερινό Σχολείο στη Μη Γραμμική Δυναμική: Χάος και Πολυπλοκότητα, Πάτρα, 14–24 Ιουλ. 1999 (in Greek).

 

[20]      Δρακόπουλος Β., Πως επηρεάζεται η δυναμική των επαναληπτικών συναρτήσεων König από τα πρόσθετα σταθερά τους σημεία;, 8ο Πανελλήνιο Συνέδριο/13ο Θερινό Σχολείο στη Μη Γραμμική Δυναμική: Χάος και Πολυπλοκότητα, Χανιά, 17 – 28 Ιουλ. 2000.

 

[21]      Δρακόπουλος Β. και Νικολάου Ν., Αποδοτικός υπολογισμός της μετρικής Hausdorff μεταξύ δύο ψηφιοποιημένων εικόνων, 9ο Πανελλήνιο Συνέδριο/14ο Θερινό Σχολείο στη Μη Γραμμική Δυναμική: Χάος και Πολυπλοκότητα, Πάτρα, 23 Ιουλ. – 3 Αυγ. 2001.

 

[22]      Μπουμπούλης Παντ., Δρακόπουλος Β. και Θεοδωρίδης Σέργ., Συμπίεση εικόνων χρησιμοποιώντας ΣΜΣΠ, 10ο Πανελλήνιο Συνέδριο/15ο Θερινό Σχολείο στη Μη Γραμμική Δυναμική: Χάος και Πολυπλοκότητα, Πάτρα, 19 – 30 Αυγ. 2002.

 

[23]      Δρακόπουλος Β., Η δυναμική των μεθόδων Newton, Schröder, König και Laguerre, 11ο Πανελλήνιο Συνέδριο/16ο Θερινό Σχολείο στη Μη Γραμμική Δυναμική: Χάος και Πολυπλοκότητα, Χαλκίδα, 14 – 24 Ιουλ. 2003.

 

[24]      Δρακόπουλος Β., Μπουμπούλης Παντ., Δάλλα Λεώνη, Συμπίεση εικόνων χρησιμοποιώντας ανάδρομες διμετάβλητες μορφοκλασματικές συναρτήσεις παρεμβολής, Πάτρα και Αρχαία Ολυμπία, Διεθνές Συνέδριο και 17ο Θερινό Σχολείο: Πολυπλοκότητα στην Επιστήμη και την Κοινωνία, 14 – 26 Ιουλ. 2004.

 

[25]      Ευαγγελάτου-Δάλλα Λ., Δρακόπουλος Β. και Μπουμπούλης Παντ., Κατασκευή fractal επιφανειών παρεμβολής και χρήση αυτών στη συμπίεση εικόνων, 10ο Πανελλήνιο Συνέδριο Μαθηματικής Ανάλυσης, Αθήναι, Πολυτεχνειούπολη Ζωγράφου, 30 Σεπ. – 2 Οκτ. 2004.

 

[26]      Δρακόπουλος Β. και Κόκκινος Χαρ., Ο συγκερασμός επιστήμης και τέχνης και η ανάπτυξη ενός νέου πεδίου: Αρχικές επισημάνσεις προς μία τεχνοεπιστήμη, 1ο Διεθνές Διεπιστημονικό Συνέδριο «ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΗ», Αθήναι, Ίδρυμα Ευγενίδου, 16 – 19 Ιουν. 2005.

 

[27]      Δρακόπουλος Β., Θεοδωρίδης Σέργ. και Μπουμπούλης Παντ., Συμπίεση εικόνων χρησιμοποιώντας κηδεστική μορφοκλασματική παρεμβολή επί ορθογωνίων δικτυωμάτων, 14ο Πανελλήνιο Συνέδριο/19ο Θερινό Σχολείο στη Μη Γραμμική Επιστήμη και Πολυπλοκότητα, Θεσσαλονίκη, 10 – 22 Ιουλ. 2006.

 

[28]      Δρακόπουλος Β., Μανουσόπουλος Πολ., Μορφοκλασματικά πρότυπα ενεργών μορφών, 20ο Πανελλήνιο Συνέδριο/Θερινό Σχολείο στη Μη Γραμμική Επιστήμη και Πολυπλοκότητα, Πάτρα, 19 – 29 Ιουλ. 2007.

 

[29]      Δρακόπουλος Β., Μανουσόπουλος Πολ., Parameter identification of fractal interpolation functions: An application to Medical Imaging, 21ο Πανελλήνιο Συνέδριο/Θερινό Σχολείο στη Μη Γραμμική Επιστήμη και Πολυπλοκότητα, Αθήνα, 21 Ιουλ.  – 2 Αυγ. 2008.

 

 

 

 

 

 

 

 

 

 

Workshops

 

 

[30]      Gountanas C. and Drakopoulos V., Deformable modelling in Medical Imaging using Active Shape Models, Automatic segmentation of MR Images, Κωνσταντινούπολη, 27 Ιουν. 2003.